Radius problems for certain classes of analytic functions

Yao Liang Chung, Maisarah Haji Mohd and Shamani Supramaniam

Abstract. Radius constants for functions in three classes of analytic functions to be a starlike function of order α , parabolic starlike function, starlike function associated with lemniscate of Bernoulli, exponential function, cardioid, sine function, lune, a particular rational function, and reverse lemniscate are obtained. One of these classes are characterized by the condition Re $g/(ze^z) > 0$. The other two classes are defined by using the function g and they consist respectively of functions f satisfying Re f/g > 0 and |f/g - 1| < 1.

Mathematics Subject Classification (2010): 30C45.

Keywords: Starlike function, radius of starlikeness, exponential function.

1. Introduction

Let \mathcal{A} denote the class of all analytic functions f in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ with normalization f(0) = 0 and f'(0) = 1. The subclass of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S} . Let \mathcal{P} be the class of functions with positive real part consisting of all analytic functions $p : \mathbb{D} \to \mathbb{C}$ satisfying p(0) = 1 and $\operatorname{Re}(p(z)) > 0$. For $0 \le \alpha < 1$, let $\mathcal{S}^*(\alpha)$ be the subclasses of \mathcal{S} consisting of starlike functions of order α . Analytically, we have $f \in \mathcal{S}^*(\alpha)$ if and only if $\operatorname{Re}(zf'(z)/f(z)) > \alpha$. For $\alpha = 0$, we have $\mathcal{S}^*(0) := \mathcal{S}^*$ which is the starlike functions. For analytic functions f and g on \mathbb{D} , we say that f is subordinate to g, denoted $f \prec g$, if there exists a Schwarz function ω in \mathbb{D} such that $f(z) = g(\omega(z)), z \in \mathbb{D}$. Several subclasses of starlike functions defined by subordination were discussed in the literature. We shall be interested in the following classes:

Received 29 December 2020; Accepted 23 March 2021.

[©] Studia UBB MATHEMATICA. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

$$\begin{aligned} \bullet \ \mathcal{S}_{L}^{*} &:= \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \sqrt{1+z}, \ z \in \mathbb{D} \right\}, \\ \bullet \ \mathcal{S}_{p}^{*} &:= \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec 1 + \frac{2}{\pi^{2}} \left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}} \right)^{2}, \ z \in \mathbb{D} \right\}, \\ \bullet \ \mathcal{S}_{e}^{*} &:= \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec e^{z}, \ z \in \mathbb{D} \right\}, \\ \bullet \ \mathcal{S}_{e}^{*} &:= \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec 1 + \frac{4}{3}z + \frac{2}{3}z^{2}, \ z \in \mathbb{D} \right\}, \\ \bullet \ \mathcal{S}_{sin}^{*} &:= \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec 1 + \sin z, \ z \in \mathbb{D} \right\}, \\ \bullet \ \mathcal{S}_{m}^{*} &:= \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec 1 + \sin z, \ z \in \mathbb{D} \right\}, \\ \bullet \ \mathcal{S}_{m}^{*} &:= \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec 1 + \frac{z}{k} \left(\frac{k+z}{k-z} \right), \ k = \sqrt{2} + 1, \ z \in \mathbb{D} \right\}, \\ \bullet \ \mathcal{S}_{RL}^{*} &:= \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \sqrt{2} - (\sqrt{2} - 1)\sqrt{\frac{1-z}{1+2(\sqrt{2}-1)z}}, \ z \in \mathbb{D} \right\}. \end{aligned}$$

For more information on the subclasses, refer [1, 2, 4, 6, 10, 11, 12, 13, 17, 18].

The radius problems is an important area of study in geometric function theory (see [1, 9]). Let F and G be two subclasses of \mathcal{A} . If for every $f \in F, r^{-1}f(rz) \in G$ for $r \leq r_0$, and r_0 is the largest number for which this holds, then r_0 is the G radius (or the radius of the property connected to G) in F. For example, the radius of starlikeness for the class \mathcal{S} is $tanh(\pi/4)$. Recently, Asha and Ravichandran [14] consider some analytic functions and obtained the radii for these functions to belong to various subclasses of starlike functions. See also [3, 5, 7, 8]. Motivated by the aforementioned works, three subclasses of analytic functions are introduced below:

$$E_1 = \{ f \in \mathcal{A} : f/g \in \mathcal{P} \text{ for some } g \in \mathcal{A} \text{ with } g/(ze^z) \in \mathcal{P} \},\$$

$$E_2 = \{ f \in \mathcal{A} : |f/g - 1| < 1 \text{ for some } g \in \mathcal{A} \text{ with } g/(ze^z) \in \mathcal{P} \},\$$

$$E_3 = \{ f \in \mathcal{A} : f/(ze^z) \in \mathcal{P} \}.$$

The main objective of the paper is to compute radius constants of the above functions for several subclasses of \mathcal{A} such as starlike functions of order α , parabolic starlike functions, starlike functions associated with lemniscate of Bernoulli, exponential function, cardioid, sine function, lune, a particular rational function, and reverse lemniscate.

2. Main results

Our first theorem gives several radius results for the class E_1 . Recall that E_1 is defined by

$$E_1 = \left\{ f \in \mathcal{A} : \operatorname{Re} \frac{f(z)}{g(z)} > 0 \text{ for some } g \in \mathcal{A} \text{ with } \operatorname{Re} \frac{g(z)}{ze^z} > 0, \, z \in \mathbb{D} \right\}.$$

The function $f_1 : \mathbb{D} \to \mathbb{C}$ defined by

$$f_1(z) = \left(\frac{1+z}{1-z}\right)^2 z e^z \tag{2.1}$$

belongs to E_1 and acts as an extremal function.

Theorem 2.1. For the class E_1 , the following results hold:

(i) For $0 \leq \alpha < 1$, the S^*_{α} radius is the smallest positive real root of the equation

 $r^3 - \alpha r^2 - 5r + \alpha = 0.$

(ii) The S_L^* -radius is the smallest positive real root of the equation

$$^{.3} + (1 - \sqrt{2})r^2 - 5r + \sqrt{2} - 1 = 0$$
, *i.e.* $R_{\mathcal{S}_L^*} \approx 0.0824$.

(iii) The S_p^* -radius is the smallest positive real root of the equation

$$2r^3 - r^2 - 10r + 1 = 0$$
 i.e. $R_{S_n^*} \approx 0.09921$

(iv) The \mathcal{S}_e^* -radius is the smallest positive root of the equation

$$r^{3} + (1-e)r^{2} - 5er + e - 1 = 0$$
 i.e. $R_{\mathcal{S}_{e}^{*}} \approx 0.1248.$

- (v) The S_c^* -radius is the smallest positive root of the equation $3r^3 - 2r^2 - 15r + 2 = 0$ i.e. $R_{S_c^*} \approx 0.13148$.
- (vi) The S_{\sin}^* -radius is the smallest positive root of the equation $r^3 - r^2 \sin 1 - 5r + \sin 1 = 0$ i.e. $R_{S_{\sin}^*} \approx 0.1646$.

(vii) The \mathcal{S}_m^* -radius is the smallest positive root of the equation

$$r^3 - r^2(2 - \sqrt{2}) - 5r + 2 - \sqrt{2} = 0$$
 i.e. $R_{\mathcal{S}_m^*} \approx 0.1159.$

(viii) The \mathcal{S}_R^* -radius is the smallest positive root of the equation

$$r^{3} - r^{2}(2 - 2\sqrt{2}) - 5r + 3 - 2\sqrt{2} = 0$$
 i.e. $R_{\mathcal{S}_{R}^{*}} \approx 0.0345.$

(ix) The \mathcal{S}^*_{RL} -radius is $R_{\mathcal{S}^*_{RL}}$ which is root of the equation

$$\frac{(5r-r^3)^2}{(1-r^2)^2} = (1 - (\sqrt{2} - (1+r^2)/(1-r^2))^2)^{1/2} - (1 - (\sqrt{2} - (1+r^2)/(1-r^2))^2).$$

Proof. Let $f \in E_1$ and $g : \mathbb{D} \to \mathbb{C}$ be chosen such that

Re
$$\frac{f(z)}{g(z)} > 0$$
 and Re $\frac{g(z)}{ze^z} > 0$ for all $z \in \mathbb{D}$. (2.2)

Define the functions $p_1, p_2 : \mathbb{D} \to \mathbb{C}$ by

e

$$p_1(z) = \frac{f(z)}{g(z)}$$
 and $p_2(z) = \frac{g(z)}{ze^z}$. (2.3)

By equations (2.2) and (2.3), we have p_1 and p_2 are in \mathcal{P} . Also, equation (2.3) yields

$$f(z) = ze^z p_1(z) p_2(z)$$

Further computations then yields

$$\frac{zf'(z)}{f(z)} = 1 + z + \frac{zp'_1(z)}{p_1(z)} + \frac{zp'_2(z)}{p_2(z)}.$$
(2.4)

For $p \in \mathcal{P}(\alpha) := \{ p \in \mathcal{P} : \operatorname{Re}(p(z)) > \alpha, z \in \mathbb{D} \}$, by [15, Lemma 2], we have

$$\left|\frac{zp'(z)}{p(z)}\right| \le \frac{2(1-\alpha)r}{(1-r)(1+(1-2\alpha)r)}, \ |z| \le r.$$
(2.5)

By using (2.4) and setting $\alpha = 0$ in (2.5), we have

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{5r - r^3}{1 - r^2}.$$
(2.6)

Hence, by (2.6), we have

Re
$$\frac{zf'(z)}{f(z)} \ge \frac{1-5r-r^2+r^3}{1-r^2} \ge 0.$$

Thus the function $f \in E_1$ is starlike in $|z| \leq 0.1939$. Hence, all the radius estimate here will be less than 0.1939.

(i) The function $m(r) = (1 - 5r - r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\rho = R_{\mathcal{S}^*(\alpha)}$ be the smallest positive root of the equation $m(r) = \alpha$. From (2.6), it follows that

Re
$$\frac{zf'(z)}{f(z)} \ge \frac{1-5r-r^2+r^3}{1-r^2} = m(r) \ge m(\varrho) = \alpha.$$

This shows that $R_{\mathcal{S}^*(\alpha)}$ is at least ϱ . At $z = R_{\mathcal{S}^*(\alpha)} = \varrho$, the function f_1 defined in (2.1) satisfies

Re
$$\frac{zf_1'(z)}{f_1(z)} = \frac{1-5\rho-\rho^2+\rho^3}{1-\rho^2} = \alpha.$$

Thus the radius is sharp.

(ii) The function $m(r) = (5r - r^3)(1 - r^2)^{-1} + 1$, $0 \le r < 1$ is an increasing function. Let $\rho = R_{\mathcal{S}_L^*}$ be the root of the equation $m(r) = \sqrt{2}$. For $0 < r \le R_{\mathcal{S}_L^*}$, we have $m(r) \le \sqrt{2}$. That is,

$$\frac{5r - r^3}{1 - r^2} + 1 \le \sqrt{2} = m(\varrho).$$

For the class E_1 , the centre of the disc in (2.6) is 1. Using [1, Lemma 2.2], the disc obtained in (2.6) is contained in the region bounded by lemniscate. For the function f_1 defined in (2.1), at $z = R_{S_L^*} = -\rho$,

$$\left| \left(\frac{zf_1'(z)}{f_1(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 + 5\rho - \rho^2 + \rho^3}{1 - \rho^2} \right)^2 - 1 \right| = \left| (\sqrt{2})^2 - 1 \right| = 1.$$

(iii) The function $m(r) = (1 - 5r - r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\varrho = R_{\mathcal{S}_p^*}$ be the root of the equation m(r) = 1/2. For $0 < r \le R_{\mathcal{S}_p^*}$, we have $m(r) \ge 1/2$. That is,

$$\frac{5r - r^3}{1 - r^2} \le \frac{1}{2} = m(\rho).$$

Using [16, Lemma 1], we see that the disc obtained in (2.6) is contained in the region bounded by parabola. For the function f_1 defined in (2.1), at $z = R_{S_n^*} = \rho$,

$$\operatorname{Re}\frac{zf_1'(z)}{f_1(z)} = \frac{1-5\rho-\rho^2+\rho^3}{1-\rho^2} = \frac{1}{2} = \left|\frac{zf_1'(z)}{f_1(z)} - 1\right|.$$

(iv) The function $m(r) = (1 - 5r - r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\varrho = R_{\mathcal{S}_e^*}$ be the root of the equation m(r) = 1/e. For $0 < r \le R_{\mathcal{S}_e^*}$, we have $m(r) \ge 1/e$. That is,

$$\frac{5r - r^3}{1 - r^2} \le 1 - \frac{1}{e}.$$

Using [11, Lemma 2.2], the disc obtained in (2.6) is contained in the region bounded by exponential function. For the function f_1 defined in (2.1), at $z = R_{S_*} = \rho$,

$$\left|\log \frac{zf_1'(z)}{f_1(z)}\right| = \left|\log \frac{1 - 5\rho - \rho^2 + \rho^3}{1 - \rho^2}\right| = 1.$$

(v) The function $m(r) = (1 - 5r - r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\rho = R_{\mathcal{S}_c^*}$ be the root of the equation m(r) = 1/3. For $0 < r \le R_{\mathcal{S}_c^*}$, we have $m(r) \ge 1/3$. That is,

$$\frac{5r-r^3}{1-r^2} \le 1 - \frac{1}{3}.$$

Using [17, Lemma 2.5], the disc obtained in (2.6) is contained in the region bounded by the cardioid. For the function f_1 defined in (2.1), at $z = R_{S_c^*} = \rho$,

$$\frac{zf_1'(z)}{f_1(z)} = \frac{1 - 5\rho - \rho^2 + \rho^3}{1 - \rho^2} = \frac{1}{3} = h_c(-1),$$

where $h_c(z) = 1 + (4/3)z + (2/3)z^2$ is the superordinate function in the class \mathcal{S}_c^* .

(vi) The function $m(r) = (1 - 5r - r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\varrho = R_{\mathcal{S}_{sin}^*}$ be the root of the equation $m(r) = 1 - \sin 1$. For $0 < r \le R_{\mathcal{S}_{sin}^*}$, we have $m(r) \ge 1 - \sin 1$. That is,

$$\frac{5r-r^3}{1-r^2} \le \sin 1.$$

Using [2, Lemma 3.3], the disc obtained in (2.6) is contained in the region Ω_s bounded by the sine function. For the function f_1 defined in (2.1), at $z = -R_{\mathcal{S}^*_{sin}} = -\rho$,

$$\frac{zf_1'(z)}{f_1(z)} = \frac{1 - 5\rho - \rho^2 + \rho^3}{1 - \rho^2} = 1 + \sin 1 = h_s(1),$$

where $h_s(z) = 1 + \sin z$ is the superordinate function in the class \mathcal{S}_{sin}^* .

(vii) The function $m(r) = (1 - 5r - r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\varrho = R_{\mathcal{S}_m^*}$ be the root of the equation $m(r) = \sqrt{2} - 1$. For $0 < r \le R_{\mathcal{S}_m^*}$, we have $m(r) \ge \sqrt{2} - 1$. That is,

$$\frac{5r - r^3}{1 - r^2} \le 2 - \sqrt{2}.$$

Using [4, Lemma 2.1], the disc obtained in (2.6) is contained in the region bounded by the intersection of disk $\{w : |w-1| < \sqrt{2}\}$ and $\{w : |w+1| < \sqrt{2}\}$. For the function f_1 defined in (2.1), at $z = -R_{\mathcal{S}_m^*} = -\rho$,

$$\left| \left(\frac{zf_1'(z)}{f_1(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 - 5\rho - \rho^2 + \rho^3}{1 - \rho^2} \right)^2 - 1 \right| = 2 \left| \frac{1 - 5\rho - \rho^2 + \rho^3}{1 - \rho^2} \right|.$$

(viii) The function $m(r) = (1 - 5r - r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\varrho = R_{\mathcal{S}_R^*}$ be the root of the equation $m(r) = 2(\sqrt{2} - 1)$. For $0 < r \le R_{\mathcal{S}_P^*}$, we have $m(r) \ge 2(\sqrt{2} - 1)$. That is,

$$\frac{5r-r^3}{1-r^2} \le 1 - 2(\sqrt{2} - 1).$$

Using [6, Lemma 2.2], the disc obtained in (2.6) is contained in the region bounded by the rational function. For the function f_1 defined in (2.1), at $z = -R_{S_R^*} = -\rho$,

$$\frac{zf_1'(z)}{f_1(z)} = \frac{1 - 5\rho - \rho^2 + \rho^3}{1 - \rho^2} = 2(\sqrt{2} - 1) = h_R(-1)$$

where $h_R(z) = 1 + (zk + z^2)/(k^2 - kz)$, $k = 1 + \sqrt{2}$ is the superordinate function in the class \mathcal{S}_R^* .

(ix) The function $m(r) = ((5r - r^3)(1 - r^2)^{-1}) + 1, \ 0 \le r < 1$ is an increasing function. Let $\rho = R_{\mathcal{S}_{RL}^*}$ be the root of the equation

$$m(r) = \left(\left(1 - \left(\sqrt{2} - 1\right)^2\right)^{1/2} - \left(1 - \left(\sqrt{2} - 1\right)^2\right) \right)^{1/2}.$$

Using [10, Lemma 3.2], the disc obtained in (2.6) is contained in the region

$$\{w: |(w-\sqrt{2})^2 - 1| < 1\}.$$

For the function f_1 defined in (2.1), at $z = -R_{\mathcal{S}_{RL}^*} = -\rho$,

$$\left| \left(\frac{zf_1'(z)}{f_1(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 - 5\rho - \rho^2 + \rho^3}{1 - \rho^2} - \sqrt{2} \right)^2 - 1 \right| = 1.$$

Recall that the class E_2 was defined by

$$E_2 = \left\{ f \in \mathcal{A} : \left| \frac{f(z)}{g(z)} - 1 \right| < 1 \text{ for some } g \in \mathcal{A} \text{ with } \operatorname{Re} \frac{g(z)}{ze^z} > 0, z \in \mathbb{D} \right\}.$$

The function f_2 defined by

$$f_2(z) = \frac{(1+z)^2}{1-z} z e^z$$
(2.7)

belongs to the class E_2 and is an extremal function.

Theorem 2.2. For the class E_2 , the following results hold:

(i) For $0 \leq \alpha < 1$, the S^*_{α} -radius is the smallest positive real root of the equation

$$r^3 - (\alpha + 1)r^2 - 4r + \alpha = 0$$

(ii) The \mathcal{S}_L^* -radius is the smallest positive root of the equation

$$r^{3} + r^{2}(2 - \sqrt{2}) - 4r + \sqrt{2} - 1 = 0$$
 i.e. $R_{\mathcal{S}_{L}^{*}} \approx 0.1055.$

(iii) The S_p^* -radius is the smallest positive root of the equation

$$2r^3 - 3r^2 - 8r + 1 = 0$$
 i.e. $R_{S_n^*} \approx 0.1200.$

(iv) The S_e^* -radius is the smallest positive root of the equation

$$er^{3} + r^{2}(1 - 2e) - 4er + e - 1 = 0$$
 i.e. $R_{\mathcal{S}_{e}^{*}} \approx 0.1497$

(v) The \mathcal{S}_C^* -radius is the smallest positive root of the equation

$$3r^3 - 5r^2 - 12r + 2 = 0$$
 i.e. $R_{\mathcal{S}_C^*} \approx 0.1573$.

(vi) The S_{\sin}^* -radius the smallest positive root of the equation

 $r^3 - r^2 \sin 1 - 5r + \sin 1 = 0$ *i.e.* $R_{S_{\sin}^*} \approx 0.00349$.

(vii) The \mathcal{S}_m^* -radius is the smallest positive root of the equation

$$r^{3} - r^{2}(3 - \sqrt{2}) - 4r + 2 - \sqrt{2} = 0$$
 i.e. $R_{\mathcal{S}_{m}^{*}} \approx 0.1394$

(viii) The \mathcal{S}_{B}^{*} -radius is the smallest positive root of the equation

$$r^3 - r^2(3 - 2\sqrt{2}) - 4r + 3 - 2\sqrt{2} = 0$$
 i.e. $R_{\mathcal{S}_R^*} \approx 0.0428$.

(ix) The
$$S_{RL}^*$$
-radius is $R_{S_{RL}^*}$ which is root of the equation

$$\frac{(r^2 + 4r - r^3)^2}{(1 - r^2)^2} = \left((1 - (\sqrt{2} - (1 + r^2)/(1 - r^2)^2))^{1/2} - (1 - (\sqrt{2} - (1 + r^2)/(1 - r^2))^2) \right).$$

Proof. Let $f \in E_2$ and $g : \mathbb{D} \to \mathbb{C}$ such that

$$\left| \frac{f(z)}{g(z)} - 1 \right| < 1 \quad \text{and} \quad \operatorname{Re} \frac{g(z)}{ze^z} > 0.$$
(2.8)

Using the fact |w - 1| < 1 if and only if $\operatorname{Re}(1/w) > 1/2$, it follows that $\operatorname{Re}(g(z)/f(z)) > 1/2$. Define the functions $p_1, p_2 : \mathbb{D} \to \mathbb{C}$ by

$$p_1(z) = \frac{g(z)}{ze^z}$$
 and $p_2(z) = \frac{g(z)}{f(z)}$. (2.9)

By (2.8) and (2.9), we have $p_1 \in \mathcal{P}$ and $p_2 \in \mathcal{P}(1/2)$. Also, from (2.9), we have

$$f(z) = \frac{ze^z p_1(z)}{p_2(z)}.$$

and eventually

$$\frac{zf'(z)}{f(z)} = 1 + z + \frac{zp'_1(z)}{p_1(z)} - \frac{zp'_2(z)}{p_2(z)}$$

750 Yao Liang Chung, Maisarah Haji Mohd and Shamani Supramaniam

Hence,

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{r^2 + 4r - r^3}{1 - r^2} \tag{2.10}$$

and

Re
$$\frac{zf'(z)}{f(z)} \ge \frac{1 - 4r - 2r^2 + r^3}{1 - r^2} \ge 0.$$

Thus the function $f \in E_2$ is starlike in $|z| \leq 0.2271$. Hence, all the radius estimate here will be less than 0.2271.

(i) The function $m(r) = (1 - 4r - 2r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\rho = R_{\mathcal{S}^*(\alpha)}$ is the smallest positive root of the equation $m(r) = \alpha$. From (2.10), it follows that

$$\operatorname{Re}\frac{zf'(z)}{f(z)} \ge \frac{1 - 4r - 2r^2 + r^3}{1 - r^2} = m(r) \ge m(\varrho) = \alpha$$

This shows that $R_{\mathcal{S}^*(\alpha)}$ is at least ϱ . At $z = R_{\mathcal{S}^*(\alpha)} = \varrho$, the function f_2 defined in (2.7) satisfies

$$\operatorname{Re}\frac{zf_2'(z)}{f_2(z)} = \frac{1 - 4\rho - 2\rho^2 + \rho^3}{1 - \rho^2} = \alpha$$

Thus the radius is sharp.

(ii) The function $m(r) = (4r + r^2 - r^3)(1 - r^2)^{-1} + 1$, $0 \le r < 1$ is an increasing function. Let $\rho = R_{\mathcal{S}_L^*}$ be the root of the equation $m(r) = \sqrt{2}$. For $0 < r \le R_{\mathcal{S}_L^*}$, we have $m(r) \le \sqrt{2}$. That is,

$$\frac{4r + r^2 - r^3}{1 - r^2} + 1 \le \sqrt{2} = m(\varrho).$$

For the class E_2 , the centre of the disc in (2.10) is 1. Using [1, Lemma 2.2], the disc obtained in (2.10) is contained in the region bounded by lemniscate. For the function f_2 defined in (2.7), at $z = R_{S_L^*} = -\rho$,

$$\left| \left(\frac{zf_2'(z)}{f_2(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 + 4\rho - 2\rho^2 + \rho^3}{1 - \rho^2} \right)^2 - 1 \right| = \left| (\sqrt{2})^2 - 1 \right| = 1.$$

(iii) The function $m(r) = (1 - 4r - 2r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\varrho = R_{\mathcal{S}_p^*}$ be the root of the equation m(r) = 1/2. For $0 < r \le R_{\mathcal{S}_p^*}$, we have $m(r) \ge 1/2$. That is,

$$\frac{4r+r^2-r^3}{1-r^2} \le \frac{1}{2} = m(\rho).$$

Using [16, Lemma 1], we see that the disc obtained in (2.10) is contained in the region bounded by parabola. For the function f_2 defined in (2.7), at $z = R_{S_n^*} = \rho$,

$$\operatorname{Re}\frac{zf_2'(z)}{f_2(z)} = \frac{1-4\rho-2\rho^2+\rho^3}{1-\rho^2} = \frac{1}{2} = \left|\frac{zf_2'(z)}{f_2(z)} - 1\right|.$$

(iv) The function $m(r) = (1 - 4r - 2r^2 + r^3)(1 - r^2)^{-1}$, 0 < r < 1 is a decreasing function. Let $\varrho = R_{\mathcal{S}_e^*}$ be the root of the equation m(r) = 1/e. For $0 < r \le R_{\mathcal{S}_e^*}$, we have $m(r) \ge 1/e$. That is,

$$\frac{4r+r^2-r^3}{1-r^2} \le 1-\frac{1}{e}.$$

Using [11, Lemma 2.2], it follow that the disc obtained in (2.10) is contained in the region bounded by exponential function. For the function f_2 defined in (2.7), at $z = R_{\mathcal{S}^*_{\alpha}} = \rho$,

$$\left|\log \frac{zf_2'(z)}{f_2(z)}\right| = \left|\log \frac{1 - 4\rho - 2\rho^2 + \rho^3}{1 - \rho^2}\right| = 1.$$

(v) The function $m(r) = (1 - 4r - 2r^2 + r^3)(1 - r^2)^{-1}, 0 \le r < 1$ is a decreasing function. Let $\rho = R_{\mathcal{S}^*_{\alpha}}$ be the root of the equation m(r) = 1/3. For $0 < r \leq R_{\mathcal{S}^*_{\alpha}}$, we have $m(r) \ge 1/3$. That is,

$$\frac{4r+r^2-r^3}{1-r^2} \le 1-\frac{1}{3}.$$

Using [17, Lemma 2.5], we see that the disc obtained in (2.10) is contained in the region bounded by the cardioid. For the function f_2 defined in (2.7), at $z = R_{\mathcal{S}_c^*} = \rho,$

$$\frac{zf_2'(z)}{f_2(z)} = \frac{1 - 4\rho - 2\rho^2 + \rho^3}{1 - \rho^2} = \frac{1}{3} = h_c(-1),$$

where $h_c(z) = 1 + (4/3)z + (2/3)z^2$ is the superordinate function in the class S_c^* . (vi) The function $m(r) = (1 - 4r - 2r^2 + r^3)(1 - r^2)^{-1}, \ 0 \le r < 1$ is a decreasing

function. Let $\varrho = R_{S_{sin}^*}$ be the root of the equation $m(r) = 1 - \sin 1$. For $0 < r \leq R_{\mathcal{S}^*_{sin}}$, we have $m(r) \geq 1 - \sin 1$. That is,

$$\frac{4r+r^2-r^3}{1-r^2} \le \sin 1.$$

Using [2, Lemma 3.3], the disc obtained in (2.10) is contained in the region Ω_s bounded by the sine function. For the function f_2 defined in (2.7), at z = $-R_{\mathcal{S}^*_{sin}} = -\rho,$

$$\frac{zf_2'(z)}{f_2(z)} = \frac{1 - 4\rho - 2\rho^2 + \rho^3}{1 - \rho^2} = 1 + \sin 1 = h_s(1),$$

where $h_s(z) = 1 + \sin z$ is the superordinate function in the class S_{sin}^* . (vii) The function $m(r) = (1 - 4r - 2r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\rho = R_{\mathcal{S}_m^*}$ be the root of the equation $m(r) = \sqrt{2} - 1$. For $0 < r \leq r$ $R_{\mathcal{S}_m^*}$, we have $m(r) \geq \sqrt{2} - 1$. That is,

$$\frac{4r+r^2-r^3}{1-r^2} \le 2-\sqrt{2}.$$

Using [4, Lemma 2.1], the disc obtained in (2.10) is contained in the region bounded by the intersection of disks $\{w : |w-1| < \sqrt{2}\}$ and $\{w : |w+1| < \sqrt{2}\}$. For the function f_2 defined in (2.7), at $z = -R_{\mathcal{S}_m^*} = -\rho$,

$$\left| \left(\frac{zf_2'(z)}{f_2(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 - 4\rho - 2\rho^2 + \rho^3}{1 - \rho^2} \right)^2 - 1 \right| = 2 \left| \frac{1 - 4\rho - 2\rho^2 + \rho^3}{1 - \rho^2} \right|.$$

(viii) The function $m(r) = (1 - 4r - 2r^2 + r^3)(1 - r^2)^{-1}$, $0 \le r < 1$ is a decreasing function. Let $\varrho = R_{\mathcal{S}_R^*}$ be the root of the equation $m(r) = 2(\sqrt{2} - 1)$. For $0 < r \le R_{\mathcal{S}_R^*}$, we have $m(r) \ge 2(\sqrt{2} - 1)$. That is,

$$\frac{4r+r^2-r^3}{1-r^2} \le 1 - 2(\sqrt{2}-1).$$

Using [6, Lemma 2.2], the disc obtained in (2.10) is contained in the region bounded by the rational function. For the function f_2 defined in (2.7), at $z = -R_{\mathcal{S}_R^*} = -\rho$,

$$\left|\frac{zf_2'(z)}{f_2(z)}\right| = \left|\frac{1-4\rho-2\rho^2+\rho^3}{1-\rho^2}\right| = 2(\sqrt{2}-1) = h_R(-1),$$

where $h_R(z) = 1 + (zk + z^2)/(k^2 - kz)$, $k = 1 + \sqrt{2}$ is the superordinate function in the class \mathcal{S}_R^* .

(ix) The function $m(r) = ((4r + r^2 - r^3)(1 - r^2)^{-1}) + 1, \ 0 \le r < 1$ is an increasing function. Let $\rho = R_{\mathcal{S}_{RL}^*}$ be the root of the equation

$$m(r) = \left(\left(1 - (\sqrt{2} - 1)^2\right)^{1/2} - \left(1 - (\sqrt{2} - 1)^2\right)\right)^{1/2}$$

Using [10, Lemma 3.2], the disc obtained in (2.10) is contained in the region $\{w : |(w - \sqrt{2})^2 - 1| < 1\}$. For the function f_2 defined in (2.7), at $z = -R_{\mathcal{S}_{RL}^*} = -\rho$,

$$\left| \left(\frac{zf_2'(z)}{f_2(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 - 4\rho - 2\rho^2 + \rho^3}{1 - \rho^2} - \sqrt{2} \right)^2 - 1 \right| = 1.$$

Recall that the class E_3 is defined by

$$E_3 = \left\{ f : \mathcal{A} : \operatorname{Re} \, \frac{f(z)}{ze^z} > 0, \, z \in \mathbb{D} \right\}.$$

An extremal function in the class E_3 is

$$f(z) = \frac{ze^{z}(1+z)}{1-z}$$

For this class E_3 , we have the following result:

Theorem 2.3. For the class E_3 , the following results hold:

(i) For $0 \le \alpha < 1$, the S^*_{α} -radius is the smallest positive real root of the equation $r^3 + (\alpha - 1)r^2 - 4r + \alpha = 0.$

(ii) The \mathcal{S}_L^* -radius is the smallest positive root of the equation

$$r^{3} + r^{2}(1 - \sqrt{2}) - 3r + \sqrt{2} - 1 = 0$$
 i.e. $R_{\mathcal{S}_{L}^{*}} \approx 0.1363.$

(iii) The S_p^* -radius is the smallest positive root of the equation

$$2r^3 - r^2 - 6r + 1 = 0$$
 i.e. $R_{S_n^*} \approx 0.1637$.

(iv) The S_e^* -radius is the smallest positive root of the equation $er^3 + r^2(1-e) - 3er + e - 1 = 0$ i.e. $R_{S_*} \approx 0.2047$.

(v) The S_C^* -radius is the smallest positive root of the equation

 $3r^3 - 2r^2 - 9r + 2 = 0$ i.e. $R_{S_{C}^*} \approx 0.2153$.

(vi) The S_{sin}^* -radius the smallest positive root of the equation

$$r^{3} - r^{2} \sin 1 - 3r + \sin 1 = 0$$
 i.e. $R_{\mathcal{S}_{\text{int}}^{*}} \approx 0.005817$.

(vii) The \mathcal{S}_m^* -radius is the smallest positive root of the equation

$$r^3 - r^2(2 - \sqrt{2}) - 3r + 2 - \sqrt{2} = 0$$
 i.e. $R_{\mathcal{S}_m^*} \approx 0.1905.$

(viii) The \mathcal{S}_R^* -radius is the smallest positive root of the equation

$$r^{3} - r^{2}(2 - 2\sqrt{2}) - 3r + 3 - 2\sqrt{2} = 0$$
 i.e. $R_{\mathcal{S}_{R}^{*}} \approx 0.0428.$

(ix) The \mathcal{S}_{RL}^* -radius is $R_{\mathcal{S}_{RL}^*}$ which is root of the equation

$$\frac{(3r-r^3)^2}{(1-r^2)^2} = \left((1-(\sqrt{2}-(1+r^2)/(1-r^2)^2))^{1/2} - (1-(\sqrt{2}-(1+r^2)/(1-r^2))^2)\right).$$

Proof. We can conclude the hypothesis appropriately adopting the similar technique as in the previous proof. \Box

Acknowledgment. The research of the first and second authors is supported by the USM RUI grant 1001/PMATHS/8011015.

References

- Ali, R.M., Jain, N.K., Ravichandran, V., Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 218(2012), no. 11, 6557-6565.
- [2] Cho, N.E., Kumar, V., Sivaprasad Kumar, S., Ravichandran, V., Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc., 45(2019), no. 1, 213-232.
- [3] El-Faqeer, A.S.A., Mohd, M.H., Ravichandran, V., Supramaniam, S., Starlikeness of certain analytic functions, preprint.
- [4] Gandhi, S., Ravichandran, V., Starlike functions associated with a lune, Asian-Eur. J. Math., 10(2017), no. 4, 1750064, 12 pp.
- Kanaga, R., Ravichandran, V., Starlikeness for certain close-to-star functions, Hacett. J. Math. Stat., appeared online (https://dergipark.org.tr/en/download/articlefile/1003494).
- [6] Kumar, S., Ravichandran, V., A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math., 40(2016), no. 2, 199-212.
- [7] Lecko, A., Ravichandran, V., Sebastian, A., Starlikeness of certain non-univalent function, preprint.

- 754 Yao Liang Chung, Maisarah Haji Mohd and Shamani Supramaniam
- [8] Lee, S.K., Khatter, K., Ravichandran, V., Radius of starlikeness for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 43(2020), no. 6, 4469-4493.
- [9] Madaan, V., Kumar, A., Ravichandran, V., Radii of starlikeness and convexity of some entire functions, Bull. Malays. Math. Sci. Soc., 43(2020), no. 6, 4335-4359.
- [10] Mendiratta, R., Nagpal, S., Ravichandran, V., A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math., 25(2014), no. 9, 1450090, 17 pp.
- [11] Mendiratta, R., Nagpal, S., Ravichandran, V., On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38(2015), no. 1, 365-386.
- [12] Raina, R.K., Sokół, J., Some properties related to a certain class of starlike functions, C.R. Math. Acad. Sci. Paris, 353(2015), no. 11, 973-978.
- [13] Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196.
- [14] Sebastian, A., Ravichandran, V., Radius of starlikeness of certain analytic functions, Math. Slovaca, 71(2021), no. 1, 83-104.
- [15] Shah, G.M., On the univalence of some analytic functions, Pacific J. Math., 43(1972), 239-250.
- [16] Shanmugam, T.N., Ravichandran, V., Certain properties of uniformly convex functions, in: Computational methods and function theory, 1994 (Penang), 319-324, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ.
- [17] Sharma, K., Jain, N.K., Ravichandran, V., Starlike functions associated with a cardioid, Afr. Mat., 27(2016), no. 5-6, 923-939.
- [18] Sokół, J., Stankiewicz, J., Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19(1996), 101-105.

Yao Liang Chung School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia e-mail: chungyaoliang@gmail.com

Maisarah Haji Mohd School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia e-mail: maisarah_hjmohd@usm.my

Shamani Supramaniam School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia e-mail: shamani@usm.my