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Radius problems for certain classes of analytic
functions

Yao Liang Chung, Maisarah Haji Mohd and Shamani Supramaniam

Abstract. Radius constants for functions in three classes of analytic functions
to be a starlike function of order α, parabolic starlike function, starlike func-
tion associated with lemniscate of Bernoulli, exponential function, cardioid, sine
function, lune, a particular rational function, and reverse lemniscate are obtained.
One of these classes are characterized by the condition Re g/(zez) > 0. The other
two classes are defined by using the function g and they consist respectively of
functions f satisfying Re f/g > 0 and |f/g − 1| < 1.
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1. Introduction

Let A denote the class of all analytic functions f in the unit disk D := {z ∈ C :
|z| < 1} with normalization f(0) = 0 and f ′(0) = 1. The subclass of A consisting of
univalent functions is denoted by S. Let P be the class of functions with positive real
part consisting of all analytic functions p : D→ C satisfying p(0) = 1 and Re (p(z)) >
0. For 0 ≤ α < 1, let S∗(α) be the subclasses of S consisting of starlike functions
of order α. Analytically, we have f ∈ S∗(α) if and only if Re (zf ′(z)/f(z)) > α. For
α = 0, we have S∗(0) := S∗ which is the starlike functions. For analytic functions
f and g on D, we say that f is subordinate to g, denoted f ≺ g, if there exists
a Schwarz function ω in D such that f(z) = g(ω(z)), z ∈ D. Several subclasses of
starlike functions defined by subordination were discussed in the literature. We shall
be interested in the following classes:
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• S∗L :=
{
f ∈ A : zf

′(z)
f(z) ≺

√
1 + z, z ∈ D

}
,

• S∗p :=

{
f ∈ A : zf

′(z)
f(z) ≺ 1 + 2

π2

(
log 1+

√
z

1−
√
z

)2
, z ∈ D

}
,

• S∗e :=
{
f ∈ A : zf

′(z)
f(z) ≺ e

z, z ∈ D
}

,

• S∗c :=
{
f ∈ A : zf

′(z)
f(z) ≺ 1 + 4

3z + 2
3z

2, z ∈ D
}
,

• S∗sin :=
{
f ∈ A : zf

′(z)
f(z) ≺ 1 + sin z, z ∈ D

}
,

• S∗m :=
{
f ∈ A : zf

′(z)
f(z) ≺ z +

√
1 + z2, z ∈ D

}
,

• S∗R :=
{
f ∈ A : zf

′(z)
f(z) ≺ 1 + z

k

(
k+z
k−z

)
, k =

√
2 + 1, z ∈ D

}
,

• S∗RL :=
{
f ∈ A : zf

′(z)
f(z) ≺

√
2− (

√
2− 1)

√
1−z

1+2(
√
2−1)z , z ∈ D

}
.

For more information on the subclasses, refer [1, 2, 4, 6, 10, 11, 12, 13, 17, 18].
The radius problems is an important area of study in geometric function theory

(see [1, 9]). Let F and G be two subclasses of A. If for every f ∈ F, r−1f(rz) ∈ G for
r ≤ r0, and r0 is the largest number for which this holds, then r0 is the G radius (or the
radius of the property connected to G) in F . For example, the radius of starlikeness
for the class S is tanh(π/4). Recently, Asha and Ravichandran [14] consider some
analytic functions and obtained the radii for these functions to belong to various
subclasses of starlike functions. See also [3, 5, 7, 8]. Motivated by the aforementioned
works, three subclasses of analytic functions are introduced below:

E1 = {f ∈ A : f/g ∈ P for some g ∈ A with g/(zez) ∈ P},
E2 = {f ∈ A : |f/g − 1| < 1 for some g ∈ A with g/(zez) ∈ P},
E3 = {f ∈ A : f/(zez) ∈ P}.

The main objective of the paper is to compute radius constants of the above functions
for several subclasses of A such as starlike functions of order α, parabolic starlike func-
tions, starlike functions associated with lemniscate of Bernoulli, exponential function,
cardioid, sine function, lune, a particular rational function, and reverse lemniscate.

2. Main results

Our first theorem gives several radius results for the class E1. Recall that E1 is
defined by

E1 =

{
f ∈ A : Re

f(z)

g(z)
> 0 for some g ∈ A with Re

g(z)

zez
> 0, z ∈ D

}
.

The function f1 : D→ C defined by

f1(z) =

(
1 + z

1− z

)2

zez (2.1)
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belongs to E1 and acts as an extremal function.

Theorem 2.1. For the class E1, the following results hold:

(i) For 0 ≤ α < 1, the S∗α radius is the smallest positive real root of the equation

r3 − αr2 − 5r + α = 0.

(ii) The S∗L-radius is the smallest positive real root of the equation

r3 + (1−
√

2)r2 − 5r +
√

2− 1 = 0, i.e. RS∗L ≈ 0.0824.

(iii) The S∗p -radius is the smallest positive real root of the equation

2r3 − r2 − 10r + 1 = 0 i.e. RS∗p ≈ 0.09921.

(iv) The S∗e -radius is the smallest positive root of the equation

er3 + (1− e)r2 − 5er + e− 1 = 0 i.e. RS∗e ≈ 0.1248.

(v) The S∗c -radius is the smallest positive root of the equation

3r3 − 2r2 − 15r + 2 = 0 i.e. RS∗c ≈ 0.13148.

(vi) The S∗sin-radius is the smallest positive root of the equation

r3 − r2 sin 1− 5r + sin 1 = 0 i.e. RS∗sin ≈ 0.1646.

(vii) The S∗m-radius is the smallest positive root of the equation

r3 − r2(2−
√

2)− 5r + 2−
√

2 = 0 i.e. RS∗m ≈ 0.1159.

(viii) The S∗R-radius is the smallest positive root of the equation

r3 − r2(2− 2
√

2)− 5r + 3− 2
√

2 = 0 i.e. RS∗R ≈ 0.0345.

(ix) The S∗RL-radius is RS∗RL
which is root of the equation

(5r − r3)2

(1− r2)2
= (1− (

√
2− (1 + r2)/(1− r2))2)1/2 − (1− (

√
2− (1 + r2)/(1− r2))2).

Proof. Let f ∈ E1 and g : D→ C be chosen such that

Re
f(z)

g(z)
> 0 and Re

g(z)

zez
> 0 for all z ∈ D. (2.2)

Define the functions p1, p2 : D→ C by

p1(z) =
f(z)

g(z)
and p2(z) =

g(z)

zez
. (2.3)

By equations (2.2) and (2.3), we have p1 and p2 are in P. Also, equation (2.3) yields

f(z) = zezp1(z)p2(z).

Further computations then yields

zf ′(z)

f(z)
= 1 + z +

zp′1(z)

p1(z)
+
zp′2(z)

p2(z)
. (2.4)
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For p ∈ P(α) := {p ∈ P : Re (p(z)) > α, z ∈ D}, by [15, Lemma 2], we have∣∣∣∣zp′(z)p(z)

∣∣∣∣ ≤ 2(1− α)r

(1− r)(1 + (1− 2α)r)
, |z| ≤ r. (2.5)

By using (2.4) and setting α = 0 in (2.5), we have∣∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣∣ ≤ 5r − r3

1− r2
. (2.6)

Hence, by (2.6), we have

Re
zf ′(z)

f(z)
≥ 1− 5r − r2 + r3

1− r2
≥ 0.

Thus the function f ∈ E1 is starlike in |z| ≤ 0.1939. Hence, all the radius estimate
here will be less than 0.1939.

(i) The function m(r) = (1 − 5r − r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing
function. Let % = RS∗(α) be the smallest positive root of the equation m(r) = α.
From (2.6), it follows that

Re
zf ′(z)

f(z)
≥ 1− 5r − r2 + r3

1− r2
= m(r) ≥ m(%) = α.

This shows that RS∗(α) is at least %. At z = RS∗(α) = %, the function f1 defined
in (2.1) satisfies

Re
zf ′1(z)

f1(z)
=

1− 5ρ− ρ2 + ρ3

1− ρ2
= α.

Thus the radius is sharp.
(ii) The function m(r) = (5r−r3)(1−r2)−1 +1, 0 ≤ r < 1 is an increasing function.

Let % = RS∗L be the root of the equation m(r) =
√

2. For 0 < r ≤ RS∗L , we have

m(r) ≤
√

2. That is,

5r − r3

1− r2
+ 1 ≤

√
2 = m(%).

For the class E1, the centre of the disc in (2.6) is 1. Using [1, Lemma 2.2], the
disc obtained in (2.6) is contained in the region bounded by lemniscate. For the
function f1 defined in (2.1), at z = RS∗L = −ρ,∣∣∣∣∣

(
zf ′1(z)

f1(z)

)2

− 1

∣∣∣∣∣ =

∣∣∣∣∣
(

1 + 5ρ− ρ2 + ρ3

1− ρ2

)2

− 1

∣∣∣∣∣ =
∣∣∣(√2)2 − 1

∣∣∣ = 1.

(iii) The function m(r) = (1 − 5r − r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing
function. Let % = RS∗p be the root of the equation m(r) = 1/2. For 0 < r ≤ RS∗p ,

we have m(r) ≥ 1/2. That is,

5r − r3

1− r2
≤ 1

2
= m(ρ).
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Using [16, Lemma 1], we see that the disc obtained in (2.6) is contained in the
region bounded by parabola. For the function f1 defined in (2.1), at z = RS∗p = ρ,

Re
zf ′1(z)

f1(z)
=

1− 5ρ− ρ2 + ρ3

1− ρ2
=

1

2
=

∣∣∣∣zf ′1(z)

f1(z)
− 1

∣∣∣∣ .
(iv) The function m(r) = (1 − 5r − r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing

function. Let % = RS∗e be the root of the equation m(r) = 1/e. For 0 < r ≤ RS∗e ,
we have m(r) ≥ 1/e. That is,

5r − r3

1− r2
≤ 1− 1

e
.

Using [11, Lemma 2.2], the disc obtained in (2.6) is contained in the region
bounded by exponential function. For the function f1 defined in (2.1), at z =
RS∗e = ρ, ∣∣∣∣log

zf ′1(z)

f1(z)

∣∣∣∣ =

∣∣∣∣log
1− 5ρ− ρ2 + ρ3

1− ρ2

∣∣∣∣ = 1.

(v) The function m(r) = (1 − 5r − r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing
function. Let % = RS∗c be the root of the equation m(r) = 1/3. For 0 < r ≤ RS∗c ,
we have m(r) ≥ 1/3. That is,

5r − r3

1− r2
≤ 1− 1

3
.

Using [17, Lemma 2.5], the disc obtained in (2.6) is contained in the region
bounded by the cardioid. For the function f1 defined in (2.1), at z = RS∗c = ρ,

zf ′1(z)

f1(z)
=

1− 5ρ− ρ2 + ρ3

1− ρ2
=

1

3
= hc(−1),

where hc(z) = 1 + (4/3)z+ (2/3)z2 is the superordinate function in the class S∗c .
(vi) The function m(r) = (1 − 5r − r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing

function. Let % = RS∗sin be the root of the equation m(r) = 1 − sin 1. For
0 < r ≤ RS∗sin , we have m(r) ≥ 1− sin 1. That is,

5r − r3

1− r2
≤ sin 1.

Using [2, Lemma 3.3], the disc obtained in (2.6) is contained in the region
Ωs bounded by the sine function. For the function f1 defined in (2.1), at
z = −RS∗sin = −ρ,

zf ′1(z)

f1(z)
=

1− 5ρ− ρ2 + ρ3

1− ρ2
= 1 + sin 1 = hs(1),

where hs(z) = 1 + sin z is the superordinate function in the class S∗sin.
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(vii) The function m(r) = (1 − 5r − r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing

function. Let % = RS∗m be the root of the equation m(r) =
√

2− 1. For 0 < r ≤
RS∗m , we have m(r) ≥

√
2− 1. That is,

5r − r3

1− r2
≤ 2−

√
2.

Using [4, Lemma 2.1], the disc obtained in (2.6) is contained in the region

bounded by the intersection of disk
{
w : |w − 1| <

√
2
}

and
{
w : |w + 1| <

√
2
}

.
For the function f1 defined in (2.1), at z = −RS∗m = −ρ,∣∣∣∣∣
(
zf ′1(z)

f1(z)

)2

− 1

∣∣∣∣∣ =

∣∣∣∣∣
(

1− 5ρ− ρ2 + ρ3

1− ρ2

)2

− 1

∣∣∣∣∣ = 2

∣∣∣∣1− 5ρ− ρ2 + ρ3

1− ρ2

∣∣∣∣ .
(viii) The function m(r) = (1 − 5r − r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing

function. Let % = RS∗R be the root of the equation m(r) = 2(
√

2 − 1). For

0 < r ≤ RS∗R , we have m(r) ≥ 2(
√

2− 1). That is,

5r − r3

1− r2
≤ 1− 2(

√
2− 1).

Using [6, Lemma 2.2], the disc obtained in (2.6) is contained in the region
bounded by the rational function. For the function f1 defined in (2.1), at
z = −RS∗R = −ρ,

zf ′1(z)

f1(z)
=

1− 5ρ− ρ2 + ρ3

1− ρ2
= 2(
√

2− 1) = hR(−1)

where hR(z) = 1 + (zk+ z2)/(k2−kz), k = 1 +
√

2 is the superordinate function
in the class S∗R.

(ix) The function m(r) = ((5r − r3)(1 − r2)−1) + 1, 0 ≤ r < 1 is an increasing
function. Let % = RS∗RL

be the root of the equation

m(r) = ((1− (
√

2− 1)2)1/2 − (1− (
√

2− 1)2))1/2.

Using [10, Lemma 3.2], the disc obtained in (2.6) is contained in the region

{w : |(w −
√

2)2 − 1| < 1}.
For the function f1 defined in (2.1), at z = −RS∗RL

= −ρ,∣∣∣∣∣
(
zf ′1(z)

f1(z)

)2

− 1

∣∣∣∣∣ =

∣∣∣∣∣
(

1− 5ρ− ρ2 + ρ3

1− ρ2
−
√

2

)2

− 1

∣∣∣∣∣ = 1. �

Recall that the class E2 was defined by

E2 =

{
f ∈ A :

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1 for some g ∈ A with Re
g(z)

zez
> 0, z ∈ D

}
.

The function f2 defined by

f2(z) =
(1 + z)2

1− z
zez (2.7)

belongs to the class E2 and is an extremal function.
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Theorem 2.2. For the class E2, the following results hold:

(i) For 0 ≤ α < 1, the S∗α-radius is the smallest positive real root of the equation

r3 − (α+ 1)r2 − 4r + α = 0.

(ii) The S∗L-radius is the smallest positive root of the equation

r3 + r2(2−
√

2)− 4r +
√

2− 1 = 0 i.e. RS∗L ≈ 0.1055.

(iii) The S∗p -radius is the smallest positive root of the equation

2r3 − 3r2 − 8r + 1 = 0 i.e. RS∗p ≈ 0.1200.

(iv) The S∗e -radius is the smallest positive root of the equation

er3 + r2(1− 2e)− 4er + e− 1 = 0 i.e. RS∗e ≈ 0.1497.

(v) The S∗C-radius is the smallest positive root of the equation

3r3 − 5r2 − 12r + 2 = 0 i.e. RS∗C ≈ 0.1573.

(vi) The S∗sin-radius the smallest positive root of the equation

r3 − r2 sin 1− 5r + sin 1 = 0 i.e. RS∗sin ≈ 0.00349.

(vii) The S∗m-radius is the smallest positive root of the equation

r3 − r2(3−
√

2)− 4r + 2−
√

2 = 0 i.e. RS∗m ≈ 0.1394.

(viii) The S∗R-radius is the smallest positive root of the equation

r3 − r2(3− 2
√

2)− 4r + 3− 2
√

2 = 0 i.e. RS∗R ≈ 0.0428.

(ix) The S∗RL-radius is RS∗RL
which is root of the equation

(r2 + 4r − r3)2

(1− r2)2
= ((1− (

√
2− (1+ r2)/(1− r2)2))1/2− (1− (

√
2− (1+ r2)/(1− r2))2).

Proof. Let f ∈ E2 and g : D→ C such that∣∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣∣ < 1 and Re
g(z)

zez
> 0. (2.8)

Using the fact |w − 1| < 1 if and only if Re (1/w) > 1/2, it follows that
Re (g(z)/f(z)) > 1/2. Define the functions p1, p2 : D→ C by

p1(z) =
g(z)

zez
and p2(z) =

g(z)

f(z)
. (2.9)

By (2.8) and (2.9), we have p1 ∈ P and p2 ∈ P(1/2). Also, from (2.9), we have

f(z) =
zezp1(z)

p2(z)
.

and eventually
zf ′(z)

f(z)
= 1 + z +

zp′1(z)

p1(z)
− zp′2(z)

p2(z)
.
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Hence, ∣∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣∣ ≤ r2 + 4r − r3

1− r2
(2.10)

and

Re
zf ′(z)

f(z)
≥ 1− 4r − 2r2 + r3

1− r2
≥ 0.

Thus the function f ∈ E2 is starlike in |z| ≤ 0.2271. Hence, all the radius estimate
here will be less than 0.2271.

(i) The function m(r) = (1 − 4r − 2r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing
function. Let % = RS∗(α) is the smallest positive root of the equation m(r) = α.
From (2.10), it follows that

Re
zf ′(z)

f(z)
≥ 1− 4r − 2r2 + r3

1− r2
= m(r) ≥ m(%) = α.

This shows that RS∗(α) is at least %. At z = RS∗(α) = %, the function f2 defined
in (2.7) satisfies

Re
zf ′2(z)

f2(z)
=

1− 4ρ− 2ρ2 + ρ3

1− ρ2
= α.

Thus the radius is sharp.
(ii) The function m(r) = (4r + r2 − r3)(1 − r2)−1 + 1, 0 ≤ r < 1 is an increasing

function. Let % = RS∗L be the root of the equation m(r) =
√

2. For 0 < r ≤ RS∗L ,

we have m(r) ≤
√

2. That is,

4r + r2 − r3

1− r2
+ 1 ≤

√
2 = m(%).

For the class E2, the centre of the disc in (2.10) is 1. Using [1, Lemma 2.2], the
disc obtained in (2.10) is contained in the region bounded by lemniscate. For the
function f2 defined in (2.7), at z = RS∗L = −ρ,∣∣∣∣∣

(
zf ′2(z)

f2(z)

)2

− 1

∣∣∣∣∣ =

∣∣∣∣∣
(

1 + 4ρ− 2ρ2 + ρ3

1− ρ2

)2

− 1

∣∣∣∣∣ = |(
√

2)2 − 1| = 1.

(iii) The function m(r) = (1 − 4r − 2r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing
function. Let % = RS∗p be the root of the equation m(r) = 1/2. For 0 < r ≤ RS∗p ,

we have m(r) ≥ 1/2. That is,

4r + r2 − r3

1− r2
≤ 1

2
= m(ρ).

Using [16, Lemma 1], we see that the disc obtained in (2.10) is contained in the
region bounded by parabola. For the function f2 defined in (2.7), at z = RS∗p = ρ,

Re
zf ′2(z)

f2(z)
=

1− 4ρ− 2ρ2 + ρ3

1− ρ2
=

1

2
=

∣∣∣∣zf ′2(z)

f2(z)
− 1

∣∣∣∣ .
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(iv) The function m(r) = (1 − 4r − 2r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing
function. Let % = RS∗e be the root of the equation m(r) = 1/e. For 0 < r ≤ RS∗e ,
we have m(r) ≥ 1/e. That is,

4r + r2 − r3

1− r2
≤ 1− 1

e
.

Using [11, Lemma 2.2], it follow that the disc obtained in (2.10) is contained in
the region bounded by exponential function. For the function f2 defined in (2.7),
at z = RS∗e = ρ,∣∣∣∣log

zf ′2(z)

f2(z)

∣∣∣∣ =

∣∣∣∣log
1− 4ρ− 2ρ2 + ρ3

1− ρ2

∣∣∣∣ = 1.

(v) The function m(r) = (1 − 4r − 2r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing
function. Let % = RS∗c be the root of the equation m(r) = 1/3. For 0 < r ≤ RS∗c ,
we have m(r) ≥ 1/3. That is,

4r + r2 − r3

1− r2
≤ 1− 1

3
.

Using [17, Lemma 2.5], we see that the disc obtained in (2.10) is contained in
the region bounded by the cardioid. For the function f2 defined in (2.7), at
z = RS∗c = ρ,

zf ′2(z)

f2(z)
=

1− 4ρ− 2ρ2 + ρ3

1− ρ2
=

1

3
= hc(−1),

where hc(z) = 1 + (4/3)z+ (2/3)z2 is the superordinate function in the class S∗c .
(vi) The function m(r) = (1 − 4r − 2r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing

function. Let % = RS∗sin be the root of the equation m(r) = 1 − sin 1. For
0 < r ≤ RS∗sin , we have m(r) ≥ 1− sin 1. That is,

4r + r2 − r3

1− r2
≤ sin 1.

Using [2, Lemma 3.3], the disc obtained in (2.10) is contained in the region
Ωs bounded by the sine function. For the function f2 defined in (2.7), at z =
−RS∗sin = −ρ,

zf ′2(z)

f2(z)
=

1− 4ρ− 2ρ2 + ρ3

1− ρ2
= 1 + sin 1 = hs(1),

where hs(z) = 1 + sin z is the superordinate function in the class S∗sin.
(vii) The function m(r) = (1 − 4r − 2r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing

function. Let % = RS∗m be the root of the equation m(r) =
√

2− 1. For 0 < r ≤
RS∗m , we have m(r) ≥

√
2− 1. That is,

4r + r2 − r3

1− r2
≤ 2−

√
2.
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Using [4, Lemma 2.1], the disc obtained in (2.10) is contained in

the region bounded by the intersection of disks
{
w : |w − 1| <

√
2
}

and{
w : |w + 1| <

√
2
}

. For the function f2 defined in (2.7), at z = −RS∗m = −ρ,∣∣∣∣∣
(
zf ′2(z)

f2(z)

)2

− 1

∣∣∣∣∣ =

∣∣∣∣∣
(

1− 4ρ− 2ρ2 + ρ3

1− ρ2

)2

− 1

∣∣∣∣∣ = 2

∣∣∣∣1− 4ρ− 2ρ2 + ρ3

1− ρ2

∣∣∣∣ .
(viii) The function m(r) = (1 − 4r − 2r2 + r3)(1 − r2)−1, 0 ≤ r < 1 is a decreasing

function. Let % = RS∗R be the root of the equation m(r) = 2(
√

2 − 1). For

0 < r ≤ RS∗R , we have m(r) ≥ 2(
√

2− 1). That is,

4r + r2 − r3

1− r2
≤ 1− 2(

√
2− 1).

Using [6, Lemma 2.2], the disc obtained in (2.10) is contained in the region
bounded by the rational function. For the function f2 defined in (2.7), at z =
−RS∗R = −ρ,∣∣∣∣zf ′2(z)

f2(z)

∣∣∣∣ =

∣∣∣∣1− 4ρ− 2ρ2 + ρ3

1− ρ2

∣∣∣∣ = 2(
√

2− 1) = hR(−1),

where hR(z) = 1 + (zk+ z2)/(k2−kz), k = 1 +
√

2 is the superordinate function
in the class S∗R.

(ix) The function m(r) = ((4r + r2 − r3)(1− r2)−1) + 1, 0 ≤ r < 1 is an increasing
function. Let % = RS∗RL

be the root of the equation

m(r) = ((1− (
√

2− 1)2)1/2 − (1− (
√

2− 1)2))1/2.

Using [10, Lemma 3.2], the disc obtained in (2.10) is contained in the region {w :

|(w −
√

2)2 − 1| < 1}. For the function f2 defined in (2.7), at z = −RS∗RL
= −ρ,∣∣∣∣∣

(
zf ′2(z)

f2(z)

)2

− 1

∣∣∣∣∣ =

∣∣∣∣∣
(

1− 4ρ− 2ρ2 + ρ3

1− ρ2
−
√

2

)2

− 1

∣∣∣∣∣ = 1. �

Recall that the class E3 is defined by

E3 =

{
f : A : Re

f(z)

zez
> 0, z ∈ D

}
.

An extremal function in the class E3 is

f(z) =
zez(1 + z)

1− z
.

For this class E3, we have the following result:

Theorem 2.3. For the class E3, the following results hold:

(i) For 0 ≤ α < 1, the S∗α-radius is the smallest positive real root of the equation

r3 + (α− 1)r2 − 4r + α = 0.

(ii) The S∗L-radius is the smallest positive root of the equation

r3 + r2(1−
√

2)− 3r +
√

2− 1 = 0 i.e. RS∗L ≈ 0.1363.
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(iii) The S∗p -radius is the smallest positive root of the equation

2r3 − r2 − 6r + 1 = 0 i.e. RS∗p ≈ 0.1637.

(iv) The S∗e -radius is the smallest positive root of the equation

er3 + r2(1− e)− 3er + e− 1 = 0 i.e. RS∗e ≈ 0.2047.

(v) The S∗C-radius is the smallest positive root of the equation

3r3 − 2r2 − 9r + 2 = 0 i.e. RS∗C ≈ 0.2153.

(vi) The S∗sin-radius the smallest positive root of the equation

r3 − r2 sin 1− 3r + sin 1 = 0 i.e. RS∗sin ≈ 0.005817.

(vii) The S∗m-radius is the smallest positive root of the equation

r3 − r2(2−
√

2)− 3r + 2−
√

2 = 0 i.e. RS∗m ≈ 0.1905.

(viii) The S∗R-radius is the smallest positive root of the equation

r3 − r2(2− 2
√

2)− 3r + 3− 2
√

2 = 0 i.e. RS∗R ≈ 0.0428.

(ix) The S∗RL-radius is RS∗RL
which is root of the equation

(3r − r3)2

(1− r2)2
= ((1− (

√
2− (1 + r2)/(1− r2)2))1/2 − (1− (

√
2− (1 + r2)/(1− r2))2).

Proof. We can conclude the hypothesis appropriately adopting the similar technique
as in the previous proof. �
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