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Nonlinear elliptic equations by topological degree
in Musielak-Orlicz-Sobolev spaces
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Abstract. We prove by using the topological degree theory the existence of at
least one weak solution for the nonlinear elliptic equation

− div a1(x,∇u) + a0(x, u) = f(x, u,∇u)

with homogeneous Dirichlet boundary condition in Musielak-Orlicz-Sobolev
spaces.
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1. Introduction

Recently, there has been an increasing interest in the study of elliptic and para-
bolic mathematical problems in Musielak-Orlicz-Sobolev spaces. This setting includes
and generalizes variable exponent, anisotropic and classical Orlicz settings.

The interest brought to the study of such differential equations comes for example
from applications to non-Newtonian fluids (see [12, 13] for a wide expository) and
other physics phenomena. We refer to some results on existence of solutions for Leray-
Lions problems studied in variable exponent Sobolev (see, e.g., [3, 19, 23]) or Orlicz-
Sobolev spaces (see, e.g., [1, 10]).

Let Ω be a bounded domain in RN , N ≥ 2. let us suppose that the boundary of
Ω denoted ∂Ω is C1. We consider a class of nonlinear Dirichlet problems of the form:{

− div a1(x,∇u) + a0(x, u) = f(x, u,∇u) in Ω,
u = 0 on ∂Ω,

(1.1)
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


860 Mustapha Ait Hammou and Badr Lahmi

The right-hand side f is a Carathéodory function which depend on the solution u and
on its gradient ∇u satisfying a growth condition and where
a1 : Ω × RN → RN and a0 : Ω × R → R are Carathéodory functions satisfy-
ing Leray-Lions-like conditions which generate an operator of the monotone type
− div a1(x,∇u) + a0(x, u) defined on W 1

0LΦ(Ω) with values in its dual (W 1
0LΦ(Ω))′.

Here Φ is a Musielak-Orlicz function satisfying Some sufficient conditions, namely
∆2-condition which assure the reflexivity of such spaces.

The authors in [7] studied the problem (1.1) and proved the existence of weak
solutions by using a linear functional analysis and sub-supersolution methods. In the
case when a0 = 0, the authors in [20] obtained the existence of weak solutions for (1.1).
Bisedes, for a0 6= 0 verifying suitable conditions, the author in [8] proved the existence
of weak solution with homogeneous Neumann or Dirichlet boundary condition by a
sub-supersolution method.

The aim of this paper is to prove the existence result that is found in [7] by
using a different approach opening new perspectives: we apply the degree theory in
[4, 16] to give a result about existence of nonzero solutions of operator equations of
the abstract Hammerstein equation in reflexive Banach spaces X

u+ STu = 0, u ∈ X,

where S : X ′ → X and S : X → X ′ two mappings [4, 16].

The approach considered here require the reflexivity of the spaces. For that, we
suppose that the Musielak-Orlicz functions satisfy suitable conditions (see condition
(E) below). The principal prototype that we have in mind is the Φ-Laplacian equation,
i.e.

-div

(
a(x,∇u)

|∇u|
· ∇u

)
= f(x, u,∇u)

The Musielak-Orlicz setting generalize both Sobolev with variable exponent and
Orlicz spaces. Typical examples of equations involving the Musielak-Orlicz setting
include models of electrorheological fluids [22], elasticity [17], non-Newtonian fluids
[11], the theory of potential [14] and harmonic analysis [6].

The plan of paper is as follows: in section 2, some fundamental properties con-
cerning the Musielak and Musielak-Orlicz-Sobolev spaces spaces are given. Section 3
deals with the properties and the existence of the topological degree for some classes
of operators. In section 4, we give some auxiliary results and the main result and its
proof.

2. Musielak and Musielak-Orlicz-Sobolev spaces

Standard references on Musielak-Orlicz-Sobolev spaces and their properties in-
clude [15, 21, 9] and references therein.

Definition 2.1. Let Ω be an open subset of RN . A function M : Ω × R+ → R+ is
called a Musielak-Orlicz function if
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1. M(x, ·) is an N -function, i.e. convex, nondecreasing, continuous,
M(x, 0) = 0,M(x, t) > 0 (∀t > 0),

lim
t→0+

sup
x∈Ω

M(x, t)

t
= 0 and lim

t→+∞
inf
x∈Ω

M(x, t)

t
= +∞,

2. M(·, t) is a measurable function.

For each x ∈ Ω, the inverse of function M(x, ·) is denoted by M−1
x (x, ·) or for

simplicity M−1(x, ·) and then M−1(x,Φ(x, s)) = s and M(x,M−1(x, s)) = s for all
s ≥ 0.

Remark 2.2. M admits the representation

M(x, t) =

∫ t

0

m(x, s) ds, for all t ≥ 0,

where m(x, ·) is the right-hand derivative of M(x, ·) for a fixed x ∈ Ω. We recall
that for every x in Ω, the function m(x, ·) is a right-continuous and nondecreasing
verifying for all s ≥ 0: m(x, 0) = 0, m(x, s) > 0 for s > 0, lim

s→+∞
inf
x∈Ω

m(x, s) = +∞
and M(x, s) ≤ sm(x, s) ≤M(x, 2s).

The complementary function M to a Musielak-Orlicz function M is defined as
follows:

M(x, r) = sup
s≥0

(
sr −M(x, s)

)
, for x ∈ Ω, r ≥ 0.

Note that M is a Musielak-Orlicz function which admits a similar representation
where m is defined as above or by

m(x, s) = sup{δ; m(x, δ) ≤ s}.
We recall Young’s inequality

r · s ≤M(x, s) +M(x, r), ∀r, s ∈ R+, x ∈ Ω,

Note that when M satisfy the ∆2-condition, a variant of Young’s inequality holds,
i.e.,

r · s ≤ εM(x, s) + c(ε)M(x, r), ∀r, s ∈ R+, x ∈ Ω,

where ε ∈]0, 1[ and c(ε) a constant depending of ε.
For u : Ω → R measurable function, we define the modular %M,Ω or %M induced by
the positive Musielak-Orlicz function M as

%M (u) =

∫
Ω

M(x, |u(x)|) dx

Let us consider the Musielak-Orlicz class

KM (Ω) = {u : Ω→ R measurable; %M (u) <∞}.
The Orlicz space LM (Ω) is defined as the linear hull of KM (Ω) and it is a Banach
space with respect to the Luxemburg norm

‖u‖M = inf

{
k > 0;

∫
Ω

M

(
x,
|u(x)|
k

)
≤ 1

}
.
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Or the equivalent norm called Orlicz norm

‖u‖(M) = sup

{∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ; v ∈ KM (Ω), %M (v) ≤ 1

}
.

One has a Hölder’s type inequality : if u ∈ LM (Ω) and v ∈ LM (Ω), then uv ∈ L1(Ω)
and ∣∣∣∣∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤ 2‖u‖M‖v‖M .

The closure in LM (Ω) of the bounded measurable functions with compact support in
Ω is denoted by EM (Ω). It is a separable space and (EM (Ω))′ = LM (Ω). Generally
KM (Ω) ⊂ LM (Ω) but we can obtain EM (Ω) = LM (Ω) = KM (Ω) if and only if M
satisfies the ∆2-condition, i.e. there is a constant k > 1 independent of x ∈ Ω and a
nonnegative function h ∈ L1(Ω) such that

M(x, 2s) ≤ kM(x, s) + h(x), for all s ≥ 0, a.e. x ∈ Ω.

Note also that under this condition, the space LM (Ω) is reflexive.
Let M and P two Musielak-Orlicz functions, M � P means that M is weaker than P ,
i.e. there is two positive constants k1 and k2 and a nonnegative function H ∈ L1(Ω)
such that

M(x, s) ≤ k1P (x, k2s) +H(x), for all s ≥ 0, a.e. x ∈ Ω.

Remark 2.3. [21, 15]
Let M and P two Musielak-Orlicz functions such that M � P . Then P � M ,
LP (Ω) ↪→ LM (Ω) and LM (Ω) ↪→ LP (Ω).

We say that the sequence (un)n ⊂ LM (Ω) converges to u ∈ LM (Ω) in the
modular sense if there exists λ > 0 such that

%M

(
un − u
λ

)
→ 0, when n→ +∞.

In any Musielak-Orlicz space, norm convergence implies the modular convergence and
the modular convergence implies the weak convergence.

Proposition 2.4. [21, 15, 8] Let M be a Museilak-Orlicz function satisfy ∆2-condition.
Let u ∈ LM (Ω) and (un)n ⊂ LM (Ω). Then the following assertions hold.

1.

∫
Ω

M(x, un) dx > 1 ( resp = 1;< 1)⇔ ‖u‖M > 1 ( resp = 1;< 1),

2.

∫
Ω

M(x, un) dx →
n→∞

0 (resp = 1; +∞)⇔ ‖un‖M →
n→∞

0

(resp = 1; +∞),

3. un →
n→∞

u in LM (Ω) ⇒
∫

Ω

M(x, un) dx →
n→∞

∫
Ω

M(x, u) dx,

4. ‖u‖M ≤ %M (u) + 1,

5. m(·, u(·)) ∈ LM (Ω) ( the function m is defined in remark 2.2).
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The Musielak-Orlicz-Sobolev space W 1LM (Ω) is the space of all u ∈ LM (Ω)
whose distributional derivatives Dαu are in LM (Ω) for any α, with |α| ≤ 1. Let

%1,M =
∑
|α|≤1

%M (Dαu)

the convex modular on W 1LM (Ω). The space W 1LM (Ω) equipped with the norm

‖u‖1,(M) := ‖u‖W 1LM (Ω) = inf
{
λ > 0; %1,M

(u
λ

)
≤ 1
}
,

or the equivalent norm

‖u‖1,M := ‖u‖M + ‖∇u‖M .
This space is a Banach space if and only if there is a constant c such that
infx∈ΩM(x, 1) > c (see [21]). The space W 1

0LM (Ω) is defined as the norm-closure
of D(Ω) in W 1LM (Ω). Moreover if this condition is satisfied, then W 1LM (Ω) and
W 1

0LM (Ω) are separable Banach spaces and W 1
0LM (Ω) ↪→W 1LM (Ω) ↪→W 1,1(Ω).

We say that the sequence (un)n ⊂ LM (Ω) converges to u ∈W 1LM (Ω) in the modular
sense if there exists λ > 0 such that

%1,M

(
un − u
λ

)
→ 0, when n→ +∞.

Suppose also that

lim
t→0

∫ 1

t

M−1
x (τ)

τ
N+1
N

dτ <∞, lim
t→∞

∫ t

1

M−1
x (τ)

τ
N+1
N

dτ =∞. (2.1)

With (2.1) satisfied, we define the Sobolev conjugate M∗ of M as the reciprocal func-
tion of F with respect to t where

F (x, t) =

∫ t

0

M−1
x (τ)

τ
N+1
N

dτ, t ≥ 0.

Proposition 2.5. [2] If the Musielak-Orlicz function M satisfies (2.1), then

W 1
0LM (Ω) ↪→ LM (Ω).

Moreover, if Ω0 is a bounded subdomain of Ω, then the imbeddings

W 1
0LM (Ω) ↪→↪→ LP (Ω0)

exist and are compact for any Musielak-Orlicz function P increasing essentially more
slowly than M near infinity (see proof of Theorem 4. in [2] for more informations).

We have the following result:

Lemma 2.6. Let Ω be a bounded domain in RN . Let ν a Musielak-Orlicz function
locally integrable satisfy ∆2-condition such that inf

x∈Ω
ν(x, 1) = c1 > 0. If (un)n ⊂ Lν(Ω)

with un → u in Lν(Ω), then there exists w̃ ∈ Lν(Ω) and a subsequence (unk
)nk

such
that:

|unk
(x)| ≤ w̃(x), and unk

(x)→ u(x) a.e. in Ω.
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Proof. Let (un) ⊂ Lν(Ω) such that un → u in Lν(Ω), we can suppose that

‖(un − u)‖M ≤
1

2
,

then by proposition 2.4∫
Ω

ν(x, 2(un(x)− u(x)) dx ≤ 2‖(un − u)‖M
∫

Ω

ν(x,
un(x)− u(x)

‖(un − u)‖M
) dx.

≤ 2‖(un − u)‖M .
Therefore ‖%ν(un − u)‖L1(Ω) → 0 as n → ∞. On other hand, since Ω has a finite

measure, the continous embedding Lν(Ω) ↪→ L1(Ω) hold (by using the generalized
Hölder’s inequality) then un → u in L1(Ω). We deduce that there exists w ∈ L1(Ω) and
a subsequence (unk

)nk
such that unk

(x) → u(x) a.e. in Ω and ν(x, unk
(x)− u(x)) ≤

w(x) a.e. in Ω. Since ν−1
x is a nondecreasing function, we obtain

| unk
(x) |≤| u(x) | +ν−1

x (x,w(x)).

Let w̃(x) =| u(x) | +ν−1(x,w(x)), then∫
Ω

ν(x, w̃(x)) dx ≤ 1

2

∫
Ω

ν(x, 2 | u(x) |) +

∫
Ω

w(x) dx.

Thus w̃ ∈ Kν(Ω) = Lν(Ω). �

2.1. Functional setting

Let Φ and Ψ are two Musielak-Orlicz functions defined on Ω× R+.
We say that Φ and Ψ satisfy the condition (E) if:

E1. Φ, Ψ, Φ and Ψ are locally integrable, uniformly convex and satisfy ∆2-
condition,

E2. Φ satisfy the condition (2.1),
E3. Φ � Ψ and the embedding W 1

0LΦ(Ω) ↪→ LΨ(Ω) is compact,
E4. Φ satisfies the following coerciveness condition:

there is a function ζ defined on (0; +∞) such that lim
s→+∞

ζ(s) = +∞ and

Φ(x, ts) ≥ ζ(s)sΦ(x, t) for x ∈ Ω, s > 0 and t ∈ R+.
E5. there is a constant c1 such that inf

x∈Ω
Φ(x, 1) = c1 > 0 and for every t0 > 0 there

exists c2 = c2(t0) such that inf
x∈Ω

Φ(x, t)

t
= c2 > 0 for every t ≥ t0.

Note that under the condition (E), the spaces LΦ(Ω), LΨ(Ω),W 1
0LΦ(Ω) and W 1LΦ(Ω)

are separable reflexive Banach spaces [21].

3. Topological degree

Degree theory has been developed as a tool for checking the solution existence of
nonlinear equations. A number of degree theories for various combinations of nonlinear
operators have been developed by various authors. References that contain the theory
of topological degree and historical information on the development of this theory
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include [4, 5, 16] and references therein.
Let X and Y be two real Banach spaces and Γ a nonempty subset of X.
An operator F : X → Y is said to be bounded if it takes any bounded set into a
bounded set.
F is said to be demicontinuous if for each u ∈ Γ and any sequence {un} in Γ, un → u
imply that F (un) ⇀ F (u).
F is said to be compact if is continuous and the image of any bounded set is relatively
compact. Let X be a real reflexive Banach space with dual X ′.
We say that an operator F : Γ ⊂ X → X ′ satisfies condition (S+) if for any sequence
(un) in Γ with un ⇀ u and lim sup〈Fun, un − u〉 ≤ 0 we have un → u.
F is said to be quasimonotone if for any sequence (un) in Γ with un ⇀ u, we have
lim sup〈Fun, un − u〉 ≥ 0.
For any operator F : Γ ⊂ X → X and any bounded operator
T : Γ1 ⊂ X → X ′ such that Γ ⊂ Γ1, we say that F satisfies condition (S+)T if for
any sequence(un) in Γ with un ⇀ u, yn := Tun ⇀ y and lim sup〈Fun, yn − y〉 ≤ 0,
we have un → u.

For any Γ ⊂ X, we consider the following classes of operators:

F1(Γ) := {F : Γ→ X ′ | F is bounded, demicontinuous and satisfies condition (S+)},
FT (Γ) := {F : Γ→ X | F is demicontinuous and satisfies condition (S+)T }.

For any Ω ⊂ DF , where DF denotes the domain of F , and any T ∈ F1(Ω), let

F(X) := {F ∈ FT (Ḡ) | G ∈ O, T ∈ F1(Ḡ)},

where O denotes the collection of all bounded open set in X. Here, T ∈ F1(Ḡ) is
called an essential inner map to F .

Lemma 3.1. [16, Lemma 2.3][4, Lemma 2.2] Suppose that T ∈ F1(Ḡ) is continuous
and S : DS ⊂ X ′ → X is demicontinuous such that T (Ḡ) ⊂ Ds, where G is a bounded
open set in a real reflexive Banach space X. Then the following statement are true:

(i). If S is quasimonotone, then I + SoT ∈ FT (Ḡ), where I denotes the identity
operator.

(ii). If S satisfies condition (S+), then SoT ∈ FT (Ḡ)

As in [16] and in [4], we introduce a suitable topological degree for the class
F(X):

Theorem 3.2. Let

M = {(F,G, h)|G ∈ O, T ∈ F1(Ḡ), F ∈ FT (Ḡ), h /∈ F (∂G)}.

There exists a unique degree function d :M→ Z that satisfies the following properties:

1. (Existence) if d(F,G, h) 6= 0 , then the equation Fu = h has a solution in G,
2. (Additivity) Let F ∈ FT (Ḡ). If G1 and G2 are two disjoint open subset of G

such that h 6∈ F (Ḡ \ (G1 ∪G2)), then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h),



866 Mustapha Ait Hammou and Badr Lahmi

3. (Homotopy invariance) Suppose that
H : [0, 1]× Ḡ→ X is an admissible affine homotopy with a common continuous
essential inner map and h : [0, 1] → X is a continuous path in X such that
h(t) /∈ H(t, ∂G) for all t ∈ [0, 1] ,then the value of d(H(t, .), G, h(t)) is constant
for all t ∈ [0, 1],

4. (Normalization) For any h ∈ G, we have

d(I,G, h) = 1,

5. (Boundary dependence) If F, S ∈ FT (Ḡ) coincide on ∂G and
h /∈ F (∂G), then

d(F,G, h) = d(S,G, h).

4. Main result

4.1. Basic assumptions and technical lemmas

Let Φ and Ψ satisfying the condition (E) and a1 : Ω×RN → RN , a0 : Ω×R→ R
Carathéodory functions which satisfies the growth, the coercivity and the monotony
conditions: for a.e. x ∈ Ω, for every ξ, ξ′ ∈ RN and t, t′ ∈ R there is two positive
constants C an C ′, a nonnegative function g in LΦ(Ω) and a nonnegative function h
in L1(Ω) such that

|a1(x, ξ)| ≤ CΦ
−1

(x,Φ(x, |ξ|)) + g(x), (4.1)

a1(x, ξ).ξ ≥ C ′Φ(x, |ξ|)− h(x), (4.2)(
a1(x, ξ)− a1(x, ξ′)

)
·
(
ξ − ξ′

)
> 0, ξ 6= ξ′, (4.3)

and

|a0(x, t)| ≤ CΦ
−1

(x,Φ(x, |t|)) + g(x), (4.4)

a0(x, t)t ≥ C ′Φ(x, |t|)− h(x), (4.5)(
a0(x, t)− a0(x, t′)

)(
t− t′

)
> 0, t 6= t′, (4.6)

f : Ω × R × RN → R is a Carathéodory function verifying the following growth
condition: there is a function q in LΦ(Ω) and two positives constants α and β such
that

|f(x, t, ξ)| ≤ q(x) + αΦ
−1

Φ(x, |t|) + βΦ
−1

Φ(x, |ξ|) (4.7)

for all t ∈ R, ξ ∈ RN and a.e. x ∈ Ω.
The Nemytsky operator F defined by f is given by

F (u)(x) = f(x, u(x),∇u(x)), x ∈ Ω.

Lemma 4.1. Let Φ a Musielak-Orlicz function such that both Φ and Φ satisfy the ∆2-
condition. Assume (4.7). Then F (W 1

0LΦ(Ω)) ⊂ LΨ(Ω) and moreover, F is continuous
from W 1

0LΦ(Ω) into LΨ(Ω) and maps bounded sets into bounded sets.
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Proof. Let u ∈W 1
0LΦ(Ω). For λ > max(3α; 3β) we have∫

Ω

Φ(x,
F (u)(x)

λ
) dx (4.8)

=

∫
Ω

Φ(x,
f(x, u(x),∇u(x))

λ
) dx

≤
∫

Ω

Φ(x,
1

λ
[q(x) + αΦ

−1
Φ(x, |u(x)|) + βΦ

−1
(x,Φ(x, |ξ|)]) dx

≤
∫

Ω

1

3
Φ(x,

3q(x)

λ
) +

1

3
Φ(x, |u(x)|) +

1

3
Φ(x, |∇u(x)|) dx

< +∞.

By condition (E) we have Φ ≺ Ψ then Ψ ≺ Φ and by consequent there is λ′ > 0 such
that ∫

Ω

Ψ(x,
F (u)(x)

λ′
) dx < +∞.

For the continuity of F , let us consider a sequence (un)n ⊂ W 1
0LΦ(Ω) such that

‖un−u‖1,Φ → 0 as n→ +∞ in W 1LΦ(Ω)( we mean by ‖.‖1,Φ the norm of W 1
0LΦ(Ω)

defined as the norm-closure of D(Ω)). Then ‖un − u‖Φ → 0 and ‖∇un −∇u‖Φ → 0
as n→ +∞. Applying Lemma 2.6 we can find w ∈ LΦ(Ω) and extract a subsquence
of (un)n still denoted (un)n such that

|un(x)| ≤ w(x), un(x)→ u(x) a.e. in Ω, (4.9)

|∇un(x)| ≤ w(x), ∇un(x)→ ∇u(x) a.e. in Ω.

Since f is a Carathéodory function, we obtain that

f(x, un,∇un)→ f(x, u,∇u) a.e. in Ω as n→ +∞

therefore,

Φ(x, F (un)(x)− F (u)(x))→ 0 a.e. in Ω as n→ +∞.

By using (4.7), (4.9) and a similar argument to that in (4.8), there is a positive
constant such that∫

Ω

Φ(x, F (un)(x)− F (u)(x)) dx

≤ c
∫

Ω

Φ(x, q(x)) + Φ(x,w(x)) + Φ(x, |u(x)|) + Φ(x, |∇u(x)|) dx

The right term of this inequality belongs to L1(Ω), then by applying Lebesgue’s
dominated convergence theorm it follows that

lim
n→+∞

∫
Ω

Φ(x, F (un)(x)− F (u)(x)) dx = 0

which implies by the continuous embedding LΦ ↪→ LΨ that

lim
n→+∞

∫
Ω

Ψ(x, F (un)(x)− F (u)(x)) dx = 0
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therefore the subsequence F (un) converges to F (u) in LΨ(Ω) for the modular con-
vergence. By applying proposition 2.4 we deduce that the sequence F (un) converges
in norm to F (u) in LΨ(Ω). The limit F (u) is independent of the subsequence, by
consequent this convergence hold true for the sequence (un)n. Thus F is continuous
from W 1

0LΦ(Ω) into LΨ(Ω).

The functions Ψ and Ψ satisfy ∆2-condition, then modular boundedness is equivalent
to the norm boundedness. Using arguments similar to those above, F maps bounded
sets of W 1

0LΦ(Ω) into bounded sets of LΨ(Ω). �

Define A1 and A0 : W 1
0LΦ(Ω)→ (W 1

0LΦ(Ω))′ respectively for all u, v ∈W 1
0LΦ(Ω) by

〈A1u, v〉 =

∫
Ω

a1(x,∇u)v dx,

〈A0u, v〉 =

∫
Ω

a0(x, u)v dx.

By the same way like in the proof of Theorem 2.2. an Theorem 2.3. in [8] we can proof
the following lemma

Lemma 4.2. Under the assumptions (E), (4.1),(4.2), (4.3), (4.4),(4.5) and (4.6) the
mapping A := A1 +A0 is bounded, continuous and strictly monotone homeomorphism
of type (S+).

Lemma 4.3. Suppose that the assupmtions (E),(4.2) and (4.5) hold. Then A is coer-
cive, i.e.,

〈Au, u〉
‖u‖1,Φ

→ +∞ as ‖u‖1,Φ → +∞.

Proof. Let u ∈ W 1
0LΦ(Ω) (u 6= 0) such that Φ verify the coerciveness condition (see

condition (E) below), by using (4.2) and (4.5) we have

〈Au, u〉 =

∫
Ω

a1(x,∇u) · ∇u+ a0(x, u)u dx

≥ 2C ′
( ∫

Ω

Φ(x, |∇u|) + Φ(x, |u|)− h(x) dx
)

≥ 2C ′
( ∫

Ω

Φ(x,
‖u‖1,Φ|∇u|
‖u‖1,Φ

) + Φ(x,
‖u‖1,Φ|u|
‖u‖1,Φ

) dx
)
− 2‖h‖L1(Ω)

≥ 2C ′ζ(‖u‖1,Φ)‖u‖1,Φ(

∫
Ω

Φ(x,
|∇u|
‖u‖1,Φ

) + Φ(x,
|u|
‖u‖1,Φ

) dx)− 2‖h‖L1(Ω)

We have ∥∥∥∥ |∇u|‖u‖1,Φ

∥∥∥∥
1,Φ

≤ 1,

∥∥∥∥ |u|
‖u‖1,Φ

∥∥∥∥
1,Φ

≤ 1

and

lim
‖u‖1,Φ→+∞

ζ(‖u‖1,Φ) = +∞,

therefore
〈Au, u〉
‖u‖1,Φ

→ +∞ as ‖u‖1,Φ → +∞. �
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By applying Minty-Browder theorem ( or Lemma 4.3 and Lemma 5.2. in [4]),
we deduce that the inverse operator T : (W 1

0LΦ(Ω))′ → W 1
0LΦ(Ω) of A is also

bounded, continuous and of type (S+). On other hand, by the condition (E), the
embedding I : W 1

0LΦ(Ω) → LΨ(Ω) is compact, by consequent the adjoint operator
I∗ :→ LΨ(Ω) → (W 1

0LΦ(Ω))′ is also compact. On other hand, the continuity and
boundedness of Nemytsky operator F proved in Lemma 4.1 implies that the compo-
sition S := −I∗oF is compact. Consequently we have the following lemma

Lemma 4.4. The mapping S : W 1
0LΦ(Ω) → (W 1

0LΦ(Ω))′ is continuous and compact,
in particular it is quasimonotone.

4.2. Existence result

Let us give a definition of a weak solution of problem (1.1):

Definition 4.5. A function u is called weak solution for (1.1) if u ∈W 1
0LΦ(Ω),

F (u) ∈ LΨ(Ω) and∫
Ω

a1(x,∇u)v dx +

∫
Ω

a0(x, u)v dx =

∫
Ω

f(x, u,∇u)v dx, for all v ∈W 1
0 LΦ(Ω). (4.10)

Theorem 4.6. Let Φ and Ψ satisfy the condition (E). Suppose that the assumptions
(4.1)–(4.7) hold true. Then there exists at least one weak solution of problem (1.1).

Proof. The weak formulation (4.10) is equivalent to the abstract Hammerstein equa-
tion

(I + SoT )v = 0, and u = Tv. (4.11)

and T are the maps defined in Lemme 4.2 and Lemma 4.4. To solve equation 4.11,
We can proceed with degree theoretic arguments, it suffices to prove the boundedness
of solution set of the homotopy equation

v + tSoTv = 0, v ∈ (W 1
0LΦ(Ω))′, t ∈ [0, 1],

Let

B = {v ∈ (W 1
0LΦ(Ω))′; v + tSoTv = 0, v ∈ X, for some t ∈ [0, 1]}

let v ∈ B and u ∈W 1
0LΦ(Ω) such that Tv = u, we have for some t in [0, 1]

〈v, Tv〉 = 〈Au, u〉
= −t〈SoTv, Tv〉

= t

∫
Ω

f(x, u,∇u)u dx

≤
∫

Ω

|f(x, u,∇u)||u| dx.

As in the proof of Lemma 4.3, there two positive constants C and C̃ such that

〈Au, u〉 ≥ Cζ(‖u‖1,Φ)‖u‖1,Φ − C̃ (4.12)

Let λ > max(3α; 3β). Since Φ satisfy the ∆2-condition, then by using proposition 2.3
in [7], there is a function γ ∈ L1(Ω) and a constant c such that

Φ(x, λ|u(x)|) ≤ cΦ(x, |u(x)|) + γ(x)
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which implies, by using the young’s inequality, that

|f(x, u,∇u)||u| ≤ Φ(x,
|f(x, u,∇u)|

λ
) + Φ(x, λ|u|)

≤ 1

3
Φ(x,

3q(x)

λ
) +

1

3
Φ(x, |u(x)|)

+
1

3
Φ(x, |∇u(x)|) + cΦ(x, |u(x)|) + γ(x).

by combining (4.12) and (4.13) we can find two constants C ′ and C̃ ′ such that

‖u‖1,Φ(ζ(‖u‖1,Φ)− C ′) ≤ C̃ ′

which implies that u = Tv remain bounded in W 1
0LΦ(Ω), consequently, there exists

R > 0 such that
‖v‖(W 1

0LΦ(Ω))′ ≤ R ∀v ∈ B.
We deduce that for all t ∈ [0, 1],

v + tSoTv 6= 0, ∀v ∈ ∂BR(0).

According to Lemma 3.1, the Hammersein operator I + SoT belongs to the class
FT (BR(0)).

Let us consider the homotopy H : [0, 1]×BR(0)→ (W 1
0LΦ(Ω))′ defined by

H(t, v) = v + tSoTv.

By invariance and normalisation properties of the degree d of the class FT
(see Theorem 3.2) we deduce that

d(I + SoT,BR(0), 0) = d(I,BR(0), 0) = 1.

By Theorem 3.2 we conclude that there is at least one v ∈ BR(0) verifying

v + SoTv = 0.

Thus u = Tv is a weak solution of problem (1.1). �

Example 4.7. Let x ∈ Ω and t ∈ R+. Set

Φ(x, t) = Ψ(x, t) =
1

p(x)
tp(x),

then ϕ(x, t) = tp(x)−1 where p : Ω→ R is a measurable function such that

2 ≤ p− ≤ p(x) ≤ p+ < N.

Put

a1(x, ξ) = ϕ(x, |ξ|) ξ
|ξ|

= |ξ|p(x)−2ξ, a0(x, t) = ϕ(x, |t|) = |t|p(x)−1

and
f(x, t, ξ) = α|t|p(x)−2t+ β|ξ|p(x)−1

for x ∈ Ω, t ∈ R and ξ ∈ RN where α and β are two positives constants. So, the
problem (1.1) becomes{

−∆p(x)u+ |u|p(x)−1 = α|u|p(x)−2u+ β|∇u|p(x)−1 in Ω,
u = 0 on ∂Ω,

(4.13)
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where ∆p(x)u = div(|∇u|p(x)−2∇u) is the p(x)-Laplace operator.

• It is clear that the assumptions (4.1)–(4.7) are verified.
• E1 and E5 are verified as in example 3.1 in [7].
• We have

lim
t→0

∫ 1

t

φ−1
x (τ)

τ
N+1
N

dτ =
p(x)

1
p(x)

1
p(x) −

1
N

<
p+

1

p−

1
p+ − 1

N

<∞

and

lim
t→∞

∫ t

1

φ−1
x (τ)

τ
N+1
N

dτ = lim
t→∞

p(x)
1

p(x)

1
p(x) −

1
N

(t
1

p(x)
− 1

N − 1) =∞

because p+ < N , then E2 is verified.
• Since Φ satisfies the ∆2-condition, then there is a constant k > 1 independent

of x ∈ Ω and a nonnegative function h ∈ L1(Ω) such that

Φ(x, s) ≤ kΦ(x,
1

2
s) + h(x) = kΨ(x,

1

2
s) + h(x)

for all s ≥ 0, a.e. x ∈ Ω. Therefore Φ � Ψ.

Furthermore we have W 1
0LΦ(Ω) = W

1,p(x)
0 (Ω) and Lp(x)(Ω) = LΨ(Ω). Since

W
1,p(x)
0 (Ω) ↪→ Lp(x)(Ω) with compact embedding (see [18]), then we have the

compact embedding W 1
0LΦ(Ω) ↪→ LΨ(Ω). So E3 is verified.

• Finally, E4 is verified for ζ(s) = sp(x)−1.

We deduce that the problem (4.13) admits at least one weak solution.
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