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Multiplicity results for nonhomogenous
elliptic equation involving the generalized
Paneitz-Branson operator
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Abstract. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3
without boundary ∂M, we consider the multiplicity result of solutions of the
following nonhomogenous fourth order elliptic equation involving the generalized
Paneitz-Branson operator,

Pg (u) = f(x) |u|2
]−2 u + h(x).

Under some conditions and using critical points theory, we prove the existence
of two distinct solutions of the above equation. At the end, we give a geometric
example when the equation has negative and positive solutions.
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Keywords: Riemannian manifold, multiplicity result, nonhomogenous, Paneitz-
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1. Introduction and statement of the main result

Let (M, g) be an n (n ≥ 5)−dimensional compact Riemannian manifold without
boundary ∂M . In this decade, there has been extensive analyze of the relationship
between the conformally covariant operators which satisfy some invariance proper-
ties under conformal change of metric on M and their associated partial differential
equations. However, in 1983, Paneitz in [10] has introduced a conformally convari-
ant differential operator on 4−dimensional Riemannian manifolds. Branson in [4] has
generalized the definition to n−dimensional Riemannian manifolds.
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Moreover, for any Riemannian metric g on M , there exists a local differential
operator called Paneitz-Branson operator defined by:

Png : C∞(M)→ C∞(M)

such that for all u ∈ C∞ (M) :

Png (u) := ∆2
g (u) + divg

[
(anSgg − bnRicg)] du

]
+

(n− 4)

2
Qngu,

where ∆g := −divg(∇g) is the Laplace-Beltrami operator and

an :=
(n− 2)

2
+ 4

2 (n− 2) (n− 1)
, bn :=

4

(n− 2)
,

the symbol stands for the musical isomorphism (index are raised with the metric),
and

Qng :=
2

n− 4
Png (1).

This operator has a pertinent geometric behavior in the sense that: if g̃ := ϕ
4

n−4 g is
a conformal metric to g, then for all ϕ ∈ C∞(M),

Png (ϕu) = ϕ
n+4
n−4 .Png̃ (u).

Taking account u = 1, we find that

Png (ϕ) =
(n− 4)

2
Qng̃ϕ

2]−1,

such that 2] = 2n
n−4 . We are then naturally led to study extensions to the Paneitz-

Branson operator with general coefficients as an operator of the form:

Pg (u) := ∆2
g (u) + divg

(
A]du

)
+Bu,

where A ∈ Λ∞(2,0) (M) a smooth symmetric (2, 0)−tensor field, and B ∈ C∞ (M) .

In this paper, we consider the multiplicity results of solutions of the follow-
ing nonhomogenous fourth order elliptic equation involving the generalized Paneitz-
Branson operator:

Pg (u) = f(x) |u|2
]−2

u+ h(x), (1.1)

where f is a C∞-function on M with f > 0 and h belongs to Lm(M) such that

m :=
2]

2] − 1
=

2n

n+ 4
.

The main goal of this paper is to establish the existence and multiplicity of
solutions throughout the Ekeland’s Variational Principle in [8] and the Mountain-
Pass Theorem in [1] in the critical theory. This article is organized as follows: in
Section 2, we present some essential mathematical materials. In section 3, we recall
some auxiliary lemmas which are important for main theorem result. And in section
4, we give the proof of the main result and at the end, we give a geometric application
on Einsteinian Riemannian compact manifold. We prove the following theorem:
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Theorem 1.1. Let (M, g) be an n (n ≥ 5)−dimensional compact Riemannian manifold
without boundary ∂M . Let f is a C∞-function on M with f > 0 and h ∈ Lm(M) such
that h 6= 0 satisfying ‖h‖m < mo and supposing that the operator Pg(u) is coercive.
Then, the equation (1.1) has at least two nontrivial solutions v, w ∈ H2

2 (M) satisfying:

J(v) < 0 < J(w).

2. Preliminaries

We let H2
2 (M) be the standard Sobolev space consisting of the functions in

L2 (M) whose derivatives up the second order are in L2 (M) . The Sobolev embedding
theorem asserts that H2

2 (M) is continuously embedded in Lm (M) 1 < m ≤ 2], with
the property of this embedding is compact when m < 2]. We know from the work [9]

that K0 is the sharp and the best constant of the embedding H2
2 (Rn) in L

2n
n−4 (Rn)

by

K0 :=
16

n (n2 − 4) (n− 4) (wn)
4
n

,

where wn is the volume of the unit n−sphere (Sn, h) . Moreover, the Euclidian Sobolev
embedding has obtained by the extremal functions

uλ (x) := η

(
λ

1 + λ2 |x− xo|2

)n−4
2

where λ > 0, η ∈ R∗ and xo ∈ Rn.

3. Auxiliary and useful lemmas

Throughout this section, we consider the energy functional J , for each u ∈ H2
2 (M),

J(u) =
1

2

∫
M

Pg(u).udµ(g)−
∫
M

h(x).udµ(g)− 1

2]k

∫
M

f(x). |u|2
]
k dµ(g)

Define:
Φ(u) := 〈∇J(u), u〉

Φ(u) =

∫
M

Pg(u).udµ(g)−
∫
M

h(x).udµ(g)−
∫
M

f(x). |u|2
]

dµ(g)

and

〈∇Φ(u), u〉 = 2

∫
M

Pg(u).udµ(g)−
∫
M

h(x).udµ(g)− 2]
∫
M

f(x). |u|2
]

dµ(g)

It is well known that the solutions of (1.1) can be seen as critical points of the
functional J(u). We assume in what follows that Pg is coercive, in the since that
there exists Λ > 0 such that for all u ∈ H2

2 (M) :∫
M

Pg(u).udµ(g) ≥ Λ

∫
M

u2dµ(g).

Now, we use the following Sobolev inequalities proved in [7].
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Lemma 3.1. Let (M, g) be an n (n ≥ 5)−dimensional compact Riemannian manifold
without boundary ∂M . Then for any ε > 0, there exists Aε ∈ R such that for all
u ∈ H2

2 (M) :(∫
M

|u|2
]

dµ(g)

) 2

2]

≤ (K0 + ε)

∫
M

[
(∆gu)

2
+ (∇gu)

2
]
dµ(g) +Aε

∫
M

u2dµ(g).

The main tool to prove our result is the Montain-Pass Theorem of Ambrossetti-
Rabinowitz given by the following theorem:

Theorem 3.2. Let J ∈ C1
(
H2

2 (M);R
)

satisfies (P.S)c condition. We suppose:
(1). There exist α > 0, ρ > 0 such that

J(u) |∂B(0;β)≥ J(0) + α

Where

Bρ =
{
u ∈ H2

2 (M) : ‖u‖H2
2 (M) ≤ ρ

}
(2). There is an e ∈ H2

2 (M) and ‖ e ‖H2
2 (M)> ρ such that:

J(e) ≤ J(0)

Then, J(.) has a critical value c which can be characterized as

c := inf
γ∈Γ

max
t∈[0;1]

J(γ(t))

Where
Γ :=

{
γ ∈ C([0; 1];H2

2 (M)) : γ(0) = 0 and γ(1) = e
}
.

Then there is a sequence (um)m in H2
2 (M) such that:{

J(um)→ c in R
∇J(um)→ 0 in

(
H2

2 (M)
)∗
.

Now, to prove theorem 1, we need the following version of Ekeland Principle
which is the key for the existence of solution with bounded below functional J .

Lemma 3.3. (Ekeland Principle-weak form) Let (X, d) be a complete metric space.
Let J : X → R ∪ {+∞} be lower semicontinuous and bounded below. Then given any
ε > 0 there exists uε ∈ X such that

J (uε) ≤ inf
X
J + ε,

and
J (uε) < J (u) + εd (u, uε) , for all u ∈ X and u 6= uε.

First, we have the following lemma whose proof is easy and can be found in [8].

Lemma 3.4. The quantity ‖u‖Pg :=
(∫
M
Pg(u).udµ(g)

) 1
2 is an equivalent norm of the

usual one of H2
2 (M) if only if the operator Pg is coercive.

Our working norm as follow: for all u ∈ H2
2 (M) :

‖u‖Pg :=

(∫
M

Pg(u).udµ(g)

) 1
2

.
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Lemma 3.5. Let (M, g) be an n (n ≥ 5)−dimensional compact Riemannian manifold
without boundary ∂M . Let f is a C∞-function on M with f > 0 and h ∈ Lq(M) such
that h 6= 0, then there exists some constants α, ρ and mo > 0 such that J(u) ≥ α > 0
with ‖u‖Pg = ρ for all u ∈ H2

2 (M) and h satisfying ‖h‖q < mo.

Proof. Let u ∈ H2
2 (M) :

J(u) =
1

2
‖u‖2Pg −

1

2]

∫
M

f(x). |u|2
]

dµ(g)−
∫
M

h(x).udµ(g)

Using Hölder inequality, we have:

J(u) ≥ 1

2
‖u‖2Pg −

1

2]
max
x∈M

f(x) ‖u‖2
]

2] − ‖h‖q . ‖u‖2]

Using Sobolev inequality, we deduce:

J(u) ≥ 1

2
‖u‖2Pg −

1

2]
max
x∈M

f(x). (max ((K0 + ε) , Aε))
2]

2 . ‖u‖2
]

H2
2 (M)

−‖h‖q . (max ((K0 + ε) , Aε))
1
2 . ‖u‖H2

2 (M)

Again the coercivity of Pg implies that there is Λ > 0, such that:

J(u) ≥ 1

2
‖u‖2Pg −

1

2]
max
x∈M

f(x).

(
max ((K0 + ε) , Aε)

Λ

) 2]

2

. ‖u‖2
]

Pg

−‖h‖q .
(

max ((K0 + ε) , Aε)

Λ

) 1
2

. ‖u‖Pg
Thus,

J(u) ≥

1

2
‖u‖Pg −

1

2]
max
x∈M

f(x).

(
max ((K0 + ε) , Aε)

Λ

) 2]

2

. ‖u‖2
]−1
Pg

− ‖h‖q .
(

max ((K0 + ε) , Aε)

Λ

) 1
2

]
. ‖u‖Pg

Setting for t ≥ 0 :

F (t) :=
1

2
t− 1

2]
max
x∈M

f(x).

(
max ((K0 + ε) , Aε)

Λ

) 2]

2

.t2
]−1.

By continuity argument of the function F (.), we see that

max
t≥0

F (t) = F (ρ) > 0 where ρ2]−2 :=
1

2. (2] − 1)

(
Λ

max ((K0 + ε) , Aε)

) 2]

2

. (3.1)

Then, it follows from (3.1) that if ‖h‖q < mo such that

mo :=

(
max ((K0 + ε) , Aε)

Λ

)− 1
2

.F (ρ).
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Then, there exists α > 0 such that

J(u)|‖u‖Pg=ρ ≥ α > 0. �

Lemma 3.6. Let (M, g) be an n (n ≥ 5)−dimensional compact Riemannian manifold
without boundary ∂M . Let f is a C∞-function on M with f > 0 and h ∈ Lq(M)
such that h 6= 0 satisfying ‖h‖q < mo. Then there exists a function v ∈ H2

2 (M) with

‖v‖Pg > ρ such that J(v) < 0, where ρ is given by the previous lemma.

Proof. Let v ∈ H2
2 (M), for any t > 0 we have:

J(t.v) =
t2

2
‖v‖2Pg −

t2
]

2]

∫
M

f(x). |v|2
]

dµ(g)− t
∫
M

h(x).vdµ(g).

Since 2] > 2, so we deduce that,

lim
t→+∞

J(t.v) = −∞.

Consequently, there exists a point v ∈ H2
2 (M) with ‖u‖Pg > ρ such that J(v) < 0. �

Lemma 3.7. Let (M, g) be an n (n ≥ 5)−dimensional compact Riemannian manifold
without boundary ∂M . Let f is a C∞-function on M with f > 0 and h ∈ Lq(M) such
that h 6= 0 satisfying ‖h‖q < mo. Assume (um)m is (P.S)c sequence with

c <
k

n.K
n
4

0 . (max f(x))
2

2]

Then, (um)m is bounded in H2
2 (M).

Proof. Consider a sequence (um)m which satisfies

J(um)→ c
∇J(um)→ 0.

We obtain,

J(um)− 1

2]
〈∇J(um), um〉 =

2] − 2

2.2]
‖um‖2Pg −

2] − 1

2]

∫
M

h(x).umdµ(g) = c+ o (1)

Using Holder and Sobolev’s inequalities and by the coercivity of Pg implies that there
is Λ > 0, such that:

c+ o (1) ≥ 2] − 2

2.2]
‖um‖2Pg −

2] − 1

2]
‖h‖q .

(
max ((K0 + ε) , Aε)

Λ

) 1
2

‖um‖Pg .

If ‖um‖Pg > 1, then

c+ o (1) ≥

[
2] − 2

2.2]
− 2] − 1

2]
‖h‖q .

(
max ((K0 + ε) , Aε)

Λ

) 1
2

]
. ‖um‖Pg .

And since,

‖h‖q < mo :=
2] − 2

2. (2] − 1)

(
max ((K0 + ε) , Aε)

Λ

)− 1
2



Multiplicity results for nonhomogenous elliptic equation 937

Then the sequence (um)m is bounded in H2
2 (M). �

Lemma 3.8. Let (M, g) be an n (n ≥ 5)−dimensional compact Riemannian manifold
without boundary ∂M . Let f is a C∞-function on M with f > 0 and h ∈ Lq(M) such
that h 6= 0 satisfying ‖h‖q < mo. Assume (um)m is a bounded Palais-Smale sequence
at level c of J with

c <
2

n.K
n
2k (n, k). (max f(x))

2

2]

Then, (um)m has a strongly convergent sub-sequence in H2
2 (M).

Proof. Using the previous lemma, let (um)m be a bounded (P.S)c in H2
2 (M) and from

the reflexivity of H2
2 (M) and the compact embedding theorem, up to a subsequence

noted (um)m there exists u ∈ H2
2 (M) such that

(1). um → u weakly in H2
2 (M).

(2). um → u strongly in Lp(M) for 1 < p < 2].
(3). um → u a.e in M.
Then we deduce that:∣∣∣∣∫

M

h(x) (um − u) dµ(g)

∣∣∣∣ ≤ (∫
M

|h(x)|2 dµ(g)

) 1
2

.

(∫
M

(um − u)
2
dµ(g)

) 1
2

≤ ‖h‖2 . ‖um − u‖2 = o(1).

After these preliminaries, we can prove that wm := um− u converges to 0 strongly in
H2

2 (M).
Using Brézis-Lieb Lemma in [5], we obtain

‖um‖2Pg − ‖u‖
2
Pg

= ‖wm‖2Pg + o(1)

and ∫
M

f(x)
(
|um|2

]

− |u|2
]
)
dµ(g) =

∫
M

f(x) |wm|2
]

dµ(g) + o(1).

Then,

J(um)− J(u) =
1

2
‖wm‖2Pg −

1

2]

∫
M

f(x) |wm|2
]

dµ(g) + o(1).

We obtain

〈∇J(um)−∇J(u), (um − u)〉 = ‖wm‖2Pg −
∫
M

f(x) |wm|2
]

dµ(g) = o(1).

That is to say

‖wm‖2Pg =

∫
M

f(x) |wm|2
]

dµ(g) + o(1). (3.2)

Put

` := lim sup
m
‖wm‖Pg .
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Using Sobolev’s inequality, we have for all wm ∈ H2
2 (M) :∫

M

f(x) |wm|2
]

dµ(g) ≤ max
x∈M

f(x).

∫
M

|wm|2
]

dµ(g) = max
x∈M

f(x). ‖wm‖2
]

2]

≤ max
x∈M

f(x). [max ((K0 + ε) , Aε)]
2]

2 . ‖wm‖2
]

H2
2 (M) .

Taking account that Pg : C∞(M)→ C∞(M) is coercive, there exists a constant Λ > 0
such that:∫

M

f(x) |wm|2
]

dµ(g) ≤ max
x∈M

f(x). [Λ.max ((K0 + ε) , Aε)]
2]

2 . ‖wm‖2
]

Pg
. (3.3)

Consequently, we obtain from (3.2) and (3.3) that:

‖wm‖2Pg ≤ max
x∈M

f(x). [Λ.max ((K0 + ε) , Aε)]
2]

2 . ‖wm‖2
]

Pg
.

Letting n→ +∞, we get

` ≤ max
x∈M

f(x). [Λ.max ((K0 + ε) , Aε)]
2]

2 .`2
]

Then,

` = 0 or..` ≥ 1

[maxx∈M f(x)]
n−2k
n+2k . [Λ.max ((K0 + ε) , Aε)]

n
n+2k

.

We deduce that: ` = 0 and then wn → 0 strongly in H2
2 (M).

i.e. wn := un − u→ 0 in H2
2 (M). �

4. Main result

The following theorem is our main result.

Theorem 4.1. Let (M, g) be an n (n ≥ 5)−dimensional compact Riemannian manifold
without boundary ∂M . Let f is a C∞-function on M with f > 0 and h ∈ Lq(M) such
that h 6= 0 satisfying ‖h‖q < mo and supposing that the operator u → Pg(u) is

coercive. Then, the equation (1.1) has at least two nontrivial solutions v, w ∈ H2
2 (M)

satisfying:

J(v) < 0 < J(w).

The proof is based on The Mountain-Pass Theorem and Ekeland’s Variational
Principle.

Proof. We prove this theorem, by the following two steps:
Step 1: There exists w ∈ H2

2 (M) satisfies

J(w) > 0 and ∇J(w) = 0.

Using Lemmas 2 and 3 and The Mountain-Pass Theorem, there exists a sequence
(um)m ∈ H2

2 (M) satisfying:

J(um)→ c+ and ∇J(um) = 0.
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Then, it follows from Lemmas 3 and 4 that there exists w ∈ H2
2 (M) such that J(w) =

c > 0 and ∇J(w) = 0 if ‖h‖q < mo.

Consequently, w is a weak solution of the equation (1.1).
Step 2: There exists v ∈ H2

2 (M) such that: J(v) < 0 and ∇J(v) = 0. Since h ∈ Lq(M)
such that h 6= 0, we can choose a function ϕ ∈ H2

2 (M) such that:∫
M

h(x).ϕ(x)dµ(g) > 0

Letting t > 0, we have:

J(t.ϕ) =
t2

2
‖ϕ‖2Pg −

t2
]

2]

∫
M

f(x). |ϕ|2
]

dµ(g)− t
∫
M

h(x).ϕ(x)dµ(g)

Then for t > 0 small enough, we get J(t.ϕ) < 0.
Put

c− = inf
u∈Bρ

J(u)

Where

Bρ :=
{
u ∈ H2

2 (M) : ‖u‖Pg ≤ ρ
}

It seems that:

c− = inf
u∈Bρ

J(u) < 0

Now, applying Ekeland’s Variational Principle, there exists a (P.S)c− sequence
(vm)m ∈ B̄ρ satisfying:

J(vm)→ c− and ∇J(vm) = 0

Using Lemmas 2-7, we obtain a sub-sequence of (vm)m which converges strongly to
v ∈ H2

2 (M).
Consequently, w is a weak solution of the equation (1.1). �

5. Geometric application of the main theorem

Remark 5.1. When (M, g) is Einstein, the geometric Paneitz-Branson operator has
constant coefficient and reduces as:

Png (u) := ∆2
g (u) + cn∆g (u) + dnu,

where

cn := n2−2n−4
2n(n−1) Sg and dn :=

(n−4)(n2−4)
16n(n−1)2

S2
g .

In particular, when (M, g) = (Sn, h) is the unit n−sphere,

Pnh (u) := ∆2
g (u) + cn∆g (u) + dnu,

where

cn := n2−2n−4
2 and dn :=

(n−4)n(n2−4)
16 .

Notice that

(cn)
2 − 4dn =

S2
g

n2 (n− 1)
2 .
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Since (cn)
2 − 4dn ≥ 0, then

Png (u) =
(
∆g + a+

)
◦
(
∆g + a−

)
u,

with

a± :=
cn ±

√
(cn)

2 − 4dn

2
.

Remark 5.2. If Sg > 0, then Png is coercive.

In this part we consider the elliptic equation with the condition taken above:

Png (u) = f(x) |u|2
]−2

u+ h(x), (5.1)

Then we have the following result:

Theorem 5.3. Let (M, g) be an n (n ≥ 5)−dimensional compact Eisteinian Riemann-
ian manifold without boundary ∂M with its scalar curvature Sg > 0. Let f is a
C∞-function on M with f > 0 and h ∈ Lq(M) such that h > 0 satisfying ‖h‖q < mo

Then, the equation (5.1) has at least two nontrivial solutions v, w ∈ H2
2 (M) satisfying:

J(u−) < 0 < J(u+),

where
u− := min (u, o) u+ := max (u, 0) .

Proof. Define the two functionals in H2
2 (M) by

J+(u) =
1

2
‖u‖2Png −

∫
M

h(x).udµ(g)− 1

2]k

∫
M

f(x).
(
u+
)2]k dµ(g)

and

J−(u) =
1

2
‖u‖2Png −

∫
M

h(x).udµ(g)− 1

2]k

∫
M

f(x).
(
u−
)2]k dµ(g)

where
u− := min (u, o) u+ := max (u, 0) .

Applying the coercitivity of Png on Eisteinian manifold (M, g) and using the same

technique that relies on Mountain Pass Theorem for the energies J− and J+ for
solving the elliptic equation

Png (u) = f(x) |u|2
]−2

u+ h(x).

Since (M, g) has a positive scalar curvature Sg, we have(
∆g + a+

)
◦
(
∆g + a−

)
u = f(x) |u|2

]−2
u+ h(x),

with

a± :=
cn ±

√
(cn)

2 − 4dn

2
.

Applying the strong maximum principle two times to show that u−, u+ ∈ H2
2 (M) are

two nontrivial solutions satisfying:

J(u−) < 0 < J(u+). �
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