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Existence of solutions for a biharmonic equation
with gradient term

Ahmed Hamydy, Mohamed Massar and Hilal Essaouini

Abstract. In this paper, we mainly study the existence of radial solutions for a
class of biharmonic equation with a convection term, involving two real parame-
ters λ and ρ. We mainly use a combination of the fixed point index theory and
the Banach contraction theorem to prove that there are λ0 > 0 and ρ0 > 0 such
the equation admits at least one radial solution for all (λ, ρ) ∈ [−λ0,∞[× [0, ρ0].
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1. Introduction and the main result

In the present paper, we mainly investigate the existence of radial solutions for
the following biharmonic problems

(Pλ,ρ)

{
∆(∆u) + λ|∇u|q = ρf(u) in B1

u = 0, ∆u = 0 in ∂B1,

where B1 = {x ∈ RN : |x| ≤ 1} is the unit ball in RN (N ≥ 2), (λ, ρ) ∈ R×R+, q ≥ 1
and f ∈ C1 (R, ]0,∞[). Fourth-order equations are derived as models of different
engineering and physical phenomena, such as the motion of fluid, static deflection
of an elastic plate in a fluid [2, 4], epitaxial growth of nanoscale thin films [10, 14]
and traveling waves in suspension bridges [5, 12]. Due to their several applications,
both quasilinear and semilinear biharmonic equations have attracted much attention
and many papers appeared in the literature studying existence and the multiplicity
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of solutions, see for instance [9, 15, 14, 6, 7, 11] and the references therein. In [11], L.
Kong studied the following boundary value problem{

∆(|∆u|p−2∆u) = ρg(x)f(u) + h(x) in B1

u = ∆u = 0 in ∂B1,
(1.1)

and by Schauder’s fixed point, introduced some sufficient conditions for existence of
radial solutions. In particular, Guo et al. [7] considered the above problem with h = 0,
and by using the fixed point index theory and the upper-lower solutions method,
proved that for some ρ∗ > 0, problem (1.1) has no positive radial solution if ρ > ρ∗;
while if ρ < ρ∗, (1.1) has at least two positive radial solutions. Motivated by the
above results, especially [7, 11], the purpose of this work is to prove the existence of
radial solutions for the biharmonic problem (Pλ,ρ) by combining the fixed point index
theory and the Banach contraction theorem. By changing the variable u(x) = u(|x|),
r = |x|, we transform problem (Pλ,ρ) to the following problem{

L(L(u)) + λ|u′|q = ρf(u) in (0, 1)
u(1) = L(u)(1) = 0,

(1.2)

where L denotes the polar form of the Laplacian operator given by

L :=
1

rN−1
d

dr

(
rN−1

d

dr

)
.

We notice that any solution u of the ordinary equation (1.2), u(|x|) is a radial solution
of problem (Pλ,ρ). Similar to in [7, Pages 4-5] with p = q = 2, we see that problem
(1.2) has an integral formulation given by

u(t) =

∫ 1

0

∫ 1

0

K(t, τ)K(τ, s) (−λ|u′(s)|q + ρf(u(s)) dsdt, (1.3)

where, for 0 ≤ t, s ≤ 1,

K(t, s) :=

{
1

N−2s
N−1 (max{t, s}2−N − 1

)
, ifN > 2,

−s ln(max{t, s}), if N = 2.

Define operators T and
v
T in C1([0, 1]) as follows

T (u)(t) = Tλ,ρ(u)(t) :=

∫ 1

0

∫ 1

0

K(t, τ)K(τ, s) (−λ|u′(s)|q + ρf(u(s))) dsdt (1.4)

and for (h, β) ∈ R2,

v
T (u)(t) = Kβ,h +

∫ 1

0

∫ 1

0

K(1− t, τ)K(τ, 1− s) (−λ|u′(s)|q + ρf(u(s))) dsdt (1.5)

where

Kβ,h(t) := h+ β

∫ 1

0

(
k(t, s) +

t

N

)
dt.

Remark 1.1. From [7] and [13] , we have

(i) K(t, s) > 0 for all (t, s) ∈ (0, 1)2;
(ii) K(t, s) ≤ K(s, s) for all (t, s) ∈ [0, 1]2.
(iii) K(t, s) ≤ K∞, for all (t, s) ∈ [0, 1]2,
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with K∞ := 1
e if n = 2 and K∞ := (n− 2)(n− 1)−

(n−1)
n−2 if n ≥ 3.

We are now in position to present the main results.

Theorem 1.2. Let f : (−∞,∞) −→ R+ be a nondecreasing continuous function such
that inf f > 0. Then there are λ0 > 0 and ρ0 > 0 such that problem (Pλ,ρ) has at least
one radial solution for any (λ, ρ) ∈ [−λ0,∞)× [0, ρ0]. Moreover, for all 0 < ρ ≤ ρ0,

λ∞ := sup{λ/ (λ, ρ) ∈ S} <∞

and for all 0 > λ ≥ −λ0,

ρ∞ := sup{ρ/ (λ, ρ) ∈ S} <∞

where

S := {(λ, ρ) ∈ R2/every σ, µ ∈ R, σ ≥ −λ, 0 ≤ µ ≤ ρ, Pσ,µ has a radial sol}.

2. Preliminary results and proof of Theorem 1.2

We now introduce some basic technical lemmas that will be necessary to prove
the main result. Let’s start with a result introduced in [3], [7] and [1].

Lemma 2.1. Let E be a Banach space, and P be a cone in E, and Ω be a boundary
open set in E. Suppose that T : Ω ∩ P → P is a completely continuous operator. If
Tu 6= νu, for all u ∈ ∂(Ω

⋂
P ) and all ν > 1, then the fixed point index i(T,Ω, P ) = 1.

Lemma 2.2. If g ∈ C[0, 1], we have that there exists ca(t) ∈ [a, 1], independent of t,
such that∫ t

0

τn−1
∫ 1

a

K(τ, s)|g(s)|dsdτ = |g(ca(t))|
∫ t

0

τn−1
∫ 1

a

K(τ, s)dsdτ (2.1)

for all t ≥ a ≥ 0.

Proof. By Fubini’s theorem we obtain∫ t

0

τn−1
∫ 1

a

K(τ, s)|g(s)|dsdt =

∫ 1

a

|g(s)|h(s, t)ds

where h(s, t) :=
∫ t
0
τn−1K(τ, s)dτ . It is easy to see that

min
[a,1]
| g |≤

∫ 1

a
|g(s)|h(s, t)ds∫ 1

a
h(s, t)ds

≤ max
[a,1]
| g |

Thus, there exists a ≤ ca(t) ≤ 1, such that∫ 1

a

|g(s)|h(s, t)ds = |g(ca(t))|
∫ 1

a

h(s, t)ds.

This completes the proof. �

Let us stress that in addition to the properties of functionK presented in Remark
1.1, we will give another property in the following lemma.
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Lemma 2.3. Function K(t, s) verifies the following assertion∫ 1

0

K(1− t, s)ds =
2t− 1

2N
+

∫ 1

0

K(t, s)ds

for all t ∈ [0, 1] and N ≥ 2.

Proof. Let

ϕ(t) =

∫ 1

0

K(1− t, s)ds.

Then

ϕ(t) =

∫ 1−t

0

K(1− t, s)ds+

∫ 1

1−t
K(1− t, s)ds =: ϕ0(t) + ϕ1(t).

Note that

ϕ1(t) =

∫ 1

1−t
K(1− t, s)ds =

∫ 1

1−t
K(s, s)ds,

thus ϕ′1(t) = K(1− t, 1− t). We also have

ϕ′0(t) =
1− t
N
−K(1− t, 1− t).

Therefore ϕ′(t) = 1−t
N . Similarly, we have

ψ′(t) =
−t
N
, ψ(t) :=

∫ 1

0

K(t, s)ds.

If we set φ(t) = ϕ(t)− ψ(t)− t
N , we obtain φ′(t) = 0 for all t ∈ [0, 1], which implies

φ(t) = φ(0) = −
∫ 1

0

K(0, s)ds = −
∫ 1

0

K(s, s)ds =
1

2N
.

this completes the proof of the lemma. �

Lemma 2.4. Let (α, β) ∈ R∗×R∗. Suppose that T̃ has a fixed point in C1([0, 1]). Then
the following problem(

Pα,β
) { ∆(∆u) + λ|∇u|q = ρf(u) in B1

u = α, ∆u = −β in ∂B1,

has at least one solution.

Proof. Let u be a fixed point of T̃ in C1([0, 1]) and let v(r) = u(1−r) for all r ∈ [0, 1].
By the change of variable τ = 1− s, we get

v(r) = Kβ,h(r) +

∫ 1

0

∫ 1

0

K(r, t)K(t, τ) (−λ|v′(τ)|q + ρf(v(τ)) dτdt

It follows, from Lemma 2.3, that v(r) = Kβ(t) + T (v)(r). By a straightforward com-
putation, we have

L(L(T (v))) = −λ|v′|q + f(v).

Since L(L(
∫ 1

0
K(., t)dt)) = 0, we deduce that L(L(v)) = −λ|v′|q+ρf(v). Furthermore,

we have v(1) = h + β
2N , L(v)(1) = −β. Therefore, by taking h = α − β

2N , we obtain

that u(x) = v(|x|) is a solution of problem (Pα,β). �
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Lemma 2.5. There are β0, λ0 > 0 and ρ0 > 0 such that
v
T has a fixed point, for all

|λ| ≤ λ0 and all |ρ| ≤ ρ0, with

λ0 =

{
λ0(β0) if |β| ≤ β0
λ0(β) if |β| > β0

and ρ0 =

{
ρ0(β0) if |β| ≤ β0
ρ0(β) if |β| > β0.

Proof. We argue as [8], to prove the above lemma. Let c > 0 be fixed. By the continuity

of f ′ on [0, 1], we can find λ
(1)
0 , ρ

(1)
0 , β0 > 0 depended on c and sufficiently small such

that

β0
N

+

ρ(1)0 sup
0<|t|< β0

2N
+|h|

f(t) + ρ
(1)
0 c sup

0<|t|<c+ β0
2N

+|h|

|f ′(t)|+ λ
(1)
0 cq

K∞ < c.

Thus for all |β| ≤ β0, |λ| ≤ λ(1)0 and |ρ| ≤ ρ(1)0 , we have

| β |
N

+

ρf ( β

2N
+ h

)
+ |ρ|c sup

[0,c+
β0
2N+|h|]

|f ′|+ |λ|cqβ

K∞ < c. (2.2)

Let |β| > β0, there are cβ , λβ , ρβ > 0 such that for all |λ| ≤ λβ and ρ ≤ ρβ ,

|β|
N

+

ρf ( β

2N
+ h

)
+ ρcβ sup

[0,cβ+
|β|
2N+|h|]

|f ′|+ |λ|cqβ

K∞ < cβ . (2.3)

Consider

Eβ :=

{
u ∈ C([0, 1]) :

∥∥∥∥u− β

2N
− h
∥∥∥∥ ≤M} ,

where ||u|| := max{|u|∞, |u′|∞} and M = c if |β| ≤ β0, M = cβ if |β| > β0. For all

u ∈ Eβ , from
∫ 1

0
K(r, t)dt ≤

∫ 1

0
K(t, t)dt (see Remark 1.1) and as

∫ 1

0
K(t, t)dt = 1

2N ,
we have that

v
T (u)(r)−A ≥ − |β|

2N
+

∫ 1

0

∫ 1

0

K(1− r, t)K(t, 1− s)Fλ,ρ(s)dsdt (2.4)

where

Fλ,ρ(s) := −λ|u′(s)|q + ρf(u(s)), A :=
β

2N
+ h

. It is easy to check that if u ∈ Eβ , we have

ρf(u) < ρf(
β

2N
+ h) + ρLM,

with L := sup|t|<M+
max{|β|,β0}

2N +|h| |f
′(t)| . It follows, from u ∈ Eβ and (2.4), that

v
T (u)(r)−A ≥ − |β|

2N
− C

∫ 1

0

∫ 1

0

K(1− r, t)K(t, 1− s)dsdt. (2.5)

where C = |λ|Mq + ρf(A) + ρLM. Since

0 < K∞ < 1 and

∫ 1

0

∫ 1

0

K(1− r, t)K(t, 1− s)dsdt ≤ K2
∞ (2.6)
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we obtain that
v
T (u)(r)− β

2N
− h ≥ − |β|

2N
−
(
|λ|Mq + ρf(

β

2N
+ h) + ρLM

)
K2
∞ > −M. (2.7)

From
∫ 1

0
K(t, r)dr ≤

∫ 1

0
K(r, r)dr = 1

2N and (2.6), we have

v
T (u)(r)− β

2N
− h ≤ |β|

N
+

(
|λ|Mq + ρf(

β

2N
+ h) + ρLM

)
K2
∞ < M. (2.8)

It follows that ∣∣∣∣vT (u)(r)− β

2N
− h
∣∣∣∣ < M,

for all |λ| ≤ λ
(1)
0 and all 0 ≤ ρ ≤ ρ

(1)
0 . Now we are able to show that |

v
T (u)

′
(r)| < M.

Indeed, a straightforward computations show that∣∣∣∣vT (u)
′
(r)

∣∣∣∣ =

∣∣∣∣∣K ′β +

∫ 1

0

∫ 1−r

0

(
t

1− r

)N−1
K(t, 1− s)Fλ,ρ(s)

∣∣∣∣∣
≤

(
|β|
N

+ |λ|Mq + ρf(
β

2N
+ h) + ρLM

)
K∞.

Since 0 < K∞ < 1, we deduce that

∣∣∣∣vT (u)
′
(r)

∣∣∣∣ < M. On the other hand, for u and

v ∈ Eβ , we obtain that∣∣∣∣vT (u)(r)−
v
T (v)(r)

∣∣∣∣ ≤ |λ|∫ 1

0

∫ 1

0

K(1− r, t)K(t, 1− s)qMq−1 |v′ − u′|

+ρ sup
|t|<M+ β

2N+h

|f ′(t)|
∫ 1

0

∫ 1

0

K(1− r, t)K(t, 1− s)|u− v|dsdt.

We deduce that∣∣∣∣vT (u)(r)−
v
T (v)(r)

∣∣∣∣ ≤ D

∣∣∣∣∫ 1

0

∫ 1

0

K(1− r, t)K(t, 1− s)dsdt
∣∣∣∣ ||u− v||

where

D = |λ| qMq−1 + ρ sup
|t|<M+

|β|
2N+|h|

|f ′(t)| .

From (2.6), there are λ
(2)
0 > 0 and ρ

(2)
0 > 0 such that, for all |λ| < λ

(2)
0 and all

0 ≤ ρ < ρ
(2)
0 , ∣∣∣∣vT (u)(r)−

v
T (v)(r)

∣∣∣∣ ≤ K2
∞D0 ||u− v||

≤ 1

2
||u− v||

with

D0 := |λ| qMq−1 + ρ sup
|t|<M+|max{β,β0}

2N |+|h|
|f ′(t)| .



Existence of solutions for a biharmonic equation 879

On the other hand, we have∣∣∣∣vT ′(u)(r)−
v
T
′
(v)(r)

∣∣∣∣
≤

∣∣∣∣∣
∫ 1

0

∫ 1−r

0

(
t

1− r

)N−1
K(t, 1− s) (λ|v′(s)|q − λ|u′(s)|q)

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1

0

∫ 1−r

0

(
t

1− r

)N−1
K(t, 1− s)ρ (f(u(s))− f(v(s))) dsdt

∣∣∣∣∣ .
Thus ∣∣∣∣vT ′(u)(r)−

v
T
′
(v)(r)

∣∣∣∣ ≤ D0K∞ ||u− v||

≤ 1

2
||u− v||

for all 0 ≤ ρ < ρ
(2)
0 and |λ| < λ

(2)
0 .

Therefore, for all

|λ| < λ0 = min
{
λ
(2)
0 , λ

(1)
0

}
, 0 ≤ ρ < ρ0 = min

{
ρ
(2)
0 , ρ

(1)
0

}
,

we obtain that

‖
v
T (u)(r)−

v
T (v)(r)‖ ≤ 1

2
||u− v|| .

According to the Banach contraction theorem,
v
T has a fixed point in Eβ . �

2.1. Proof of Theorem 1.2

Let P be a cone defined as

P := {u ∈ C [0, 1] , u ≥ 0} .

The proof is done in five steps.
Step 1. Case −λ0 ≤ λ ≤ 0. Consider the following operator

T̃β(u)(t) := Kβ,0(t) +

∫ 1

0

∫ 1

0

K(t, τ)K(τ, s) (−λ|u′(s)|q + ρf(u(s))) dsdt. (2.9)

In view of Lemma 2.5, we obtain that
v
Tβ has a fixed point in C [0, 1] . Then, by Lemma

2.5, for all |β| < β0 and |λ| < λ0 there exists v
β

in C [0, 1] such that
v
Tβ(v

β
) = v

β
.

Taking Wβ := −v
β

+ tβ
N , we get

Wβ(t) = −
∫ 1

0

∫ 1

0

K(t, τ)K(τ, s)

(
−λ|W ′|q + ρf

(
−Wβ +

tβ

N

))
dsdτ

− β
∫ 1

0

K(t, s)ds

=:
v
L(Wβ)(t).
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Then

W ′β =
tβ

N
+

∫ t

0

(τ
t

)N−1 ∫ 1

0

K(τ, s)

(
−λ|W ′|q + ρf

(∫ 1

s

W ′βdξ +
tβ

N

))
=

v
L(Wβ)′(t).

Let X = C [0, 1] , with norm ||u|| =|u|∞ and consider

L(u)(t) :=

{ ∫ t
0

(
r
t

)N−1 ∫ 1

0
K(r, s)

(
−λ|u|q + ρf(

∫ 1

s
u(s)ds)

)
dsdr, t 6= 0

0, t = 0

for u ∈ X. Clearly, (X, ||.||) is a Banach space. On other hand, L : P −→ P is
completely continuous. Indeed, by Hospital’s rule, we obtain that for all u ∈ X,
L(u) ∈ X . It is easy to see that L(u) ≥ 0. We deduce that L(P ) ⊂ P. By Ascoli-
Arzela theorem and absolute continuity of integral, we obtain that L is completely

continuous. Let us consider the set Ω :=
{
u ∈ X, u < W

′

β

}
. For u ∈ ∂Ω∩P, we have

−λ |u|q ≤ −λ
∣∣∣W ′

β

∣∣∣q and ∫ 1

s

uds <

∫ 1

s

W
′

βds.

Using f is nondecreasing and u ∈ ∂Ω and by choosing β > 0, we have

L(u)(t) ≤ L(W
′

β)(t) <
v
L(Wβ)

′
(t) = W

′

β(t) = u(t)

Then L(u)(t) 6= νu(t), for all ν > 1. Moreover, from f(0) > 0, we have that L(0)(t) 6=
0. Then L(u)(t) 6= νu(t), for all u ∈ ∂(Ω

⋂
P ) and for all ν > 1. It follows, from

Lemma 2.3, that i(L,Ω, P ) = 1. Thus, there exits u ∈ Ω such that L(u) = u. Let

W (r) :=

∫ 1

r

u(s)ds.

Then, we have

W (r) =

∫ 1

r

u(s)ds =

∫ 1

r

L(u)(s)ds

=

[
−
∫ 1

0

∫ 1

0

K(t, τ)K(τ, s)

(
−λ|u|q + ρf(

∫ 1

s

u(ξ)dξ)

)
dsdt

]1
r

=

∫ 1

0

∫ 1

0

K(t, τ)K(τ, s)
(
−λ|W

′
(s)|q + ρf(W (s))

)
dsdt.

This implies that W = T (W ). Therefore, the function W : B(0, 1)→ R, x→W (|x|)
is a solution of problem (Pλ,ρ), for all −λ0 ≤ λ ≤ 0 and for all 0 < ρ ≤ ρ0.
Step 2. Case λ′0 > λ > 0 (λ′0 will be defined below ). By taking λ = 0 in step 1, we
obtain that there exists Vβ ∈ C [0, 1] such that

Vβ = Kβ,−β/N (t) + ρ

∫ 1

0

∫ 1

0

K(t, τ)K(τ, s)f(Vβ)dsdt

= :
v
L0(Vβ).
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Then

V ′β = β
(1− t)
tN

−
∫ t

0

(r
t

)N−1 ∫ 1

0

K(r, s)ρf (Vβ) dsdr

=

(
v
L0(Vβ)

)′
.

Let us consider the set

Ω′ :=

{
u ∈ X, u < −Vβ ′ −

β

N

}
,

for β < 0. Then, for u ∈ Ω′ ∩ P, we have 0 < u < −Vβ ′ − β
N . This implies that

‖u‖ ≤
∥∥∥V ′β∥∥∥ . So, if we take

0 ≤ λ ≤ λ′0 := ρmin

 inf f(t)∥∥∥−Vβ ′ − β
N

∥∥∥q , λ0


we obtain

−λ|u(s)|q + ρf

(∫ 1

r

u(s)ds

)
≥ 0.

Therefore, L(Ω′ ∩ P ) ⊂ P. Now, let u ∈ ∂Ω′ ∩ P. We have

L(t) :=

∫ t

0

(r
t

)N−1 ∫ 1

0

K(r, s)

(
−λ|u(s)|q + ρf

(∫ 1

s

u(ξ)dξ

))
dsdr

<

∫ t

0

(r
t

)N−1 ∫ 1

0

K(r, s)ρf

(
−
∫ 1

s

Vβ(ξ)′dξ − β

N
+
βs

N

)
dsdr

<

∫ t

0

(r
t

)N−1 ∫ 1

0

K(r, s)ρf

(
Vβ(s) +

βs

N

)
dsdr

By using β < 0 and the fact that f is nondecreasing, we get

L(t) < −
(

v
L0(Vβ)

)′
(t) = −V

′

β(t) = u(t) +
β

N
< u(t)

Then L(t) 6= νu(t) for all ν > 1 and for all u ∈ ∂Ω′ ∩P . Moreover, L(0)(t) 6= 0. Thus,
L(u)(t) 6= νu(t) for all ν > 1 and for all u ∈ ∂(Ω′ ∩ P ). Therefore, from Lemma 2.1,
i(L,Ω

′, P ) = 1. Then, there exists u ∈ C[0, 1] such that L(u) = u. We deduce that

W : X → R, t→
∫ 1

t

u(s)ds

satisfies T (W ) = W. So, we obtain that problem (Pλ,ρ) has a radial solution for all
0 ≤ λ ≤ λ′0 and for all 0 < ρ ≤ ρ0.
Step 3. For every (λ, ρ) ∈ [λ′0,∞[×[0, ρ0], the problem (Pλ,ρ) has a radial solution.
Indeed, let (λ, ρ) ∈ [λ′0,∞[×[0, ρ0]. From Step 3, problem (P0,ρ0) has a radial solution.
Then, there exists u0 ∈ C[0, 1] such that T0,ρ0(u0) = u0. Consider the cone

P := {u ∈ X, u ≥ 0}
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and the set Ω := {u ∈ X, u < u0} . Then, we have

Ω ∩ P = {u ∈ X, 0 ≤ u < u0} .

So, ∂(Ω ∩ P ) = {0} ∪ {u = u0}. Since f is nondecreasing, we get

Tλ,ρ(u)(t) < T0,ρ0(u)(t) < T0,ρ0(u0)(t) = u0(t) = u(t)

for u ∈ ∂Ω. We also have Tλ,ρ(0)(t) > 0. Therefore, Tλ,ρ(u)(t) 6= νu(t), for all ν ≥ 1
and for all u ∈ ∂(Ω∩P ). So, from Lemma 2.1, i(Tλ,ρ,Ω, P ) = 1. Consequently, (Pλ,ρ)
has a least one radial solution.
Step 4. λ∞(ρ) < ∞ and ρ∞(λ) < ∞. Let 0 ≤ ρ ≤ ρ0. Suppose that λ∞(ρ) = −∞.
Then, there exits (λn, ρ) ∈ S, with λn → −∞ and let un be a solution radial of
problem (Pλn,ρ). Then

un(t)′ = −
∫ t

0

(τ
t

)N−1 ∫ 1

0

K(τ, s) (−λn|u′n(s)|+ ρf(un(s))) dsdτ < 0 (2.10)

since f > 0, we get

|un(t)′| > −λn
∫ t

0

(τ
t

)N−1 ∫ 1

1
2

K(τ, s)|un(s)′|qdsdτ.

In view of Lemma 2.2, there exists 1/2 ≤ c1/2(t) ≤ 1 such that

|un(t)′| > −λn|un(c1/2(t))′|q
∫ t

0

(τ
t

)N−1 ∫ 1

1
2

K(τ, s)dsdτ.

From (2.10), we have 0 < |u′n(1/2)| ≤ |u′n(c1/2(t))|. By taking t = 1
2 , we get

1 > −λn|un(1/2)′|q−1
∫ 1/2

0

(2τ)N−1
∫ 1

0

K(τ, s)dsdτ.

By (2.10) and ε0 := inf f > 0, we get

|u′n(1/2)| =

∫ 1/2

0

(2τ)N−1
∫ 1

0

K(τ, s)ρf(un(s))dsdτ

> ε0

∫ 1
2

0

(2τ)
N−1

∫ 1

0

K(τ, s)ρdsdτ.

It follows that

1 > −λn(ρε0)q−1

(∫ 1/2

0

2τN−1
∫ 1

1
2

K(τ, s)dsdτ

)q
.

Letting n −→∞, we obtain a contradiction. On other hand, let −λ0 < λ ≤ 0. Suppose
that ρ∞(λ) =∞. Then, there exits (λ, ρn(λ)) ∈ S such that ρn(λ)→∞. If we follow
the same way as above, we obtain

1 > −λ(ρnε0)q−1

(∫ 1/2

0

2τN−1
∫ 1

1
2

K(τ, s)dsdτ

)q
. (2.11)

Letting n→∞ , we obtain a contradiction. This concludes the proof of Theorem 1.2.
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