# Existence of solutions for a biharmonic equation with gradient term 

Ahmed Hamydy, Mohamed Massar and Hilal Essaouini


#### Abstract

In this paper, we mainly study the existence of radial solutions for a class of biharmonic equation with a convection term, involving two real parameters $\lambda$ and $\rho$. We mainly use a combination of the fixed point index theory and the Banach contraction theorem to prove that there are $\lambda_{0}>0$ and $\rho_{0}>0$ such the equation admits at least one radial solution for all $(\lambda, \rho) \in\left[-\lambda_{0}, \infty\left[\times\left[0, \rho_{0}\right]\right.\right.$.


Mathematics Subject Classification (2010): 35K55, 35K65.
Keywords: Radial solution, biharmonic equation, index theory, existence.

## 1. Introduction and the main result

In the present paper, we mainly investigate the existence of radial solutions for the following biharmonic problems

$$
\left(P_{\lambda, \rho}\right) \begin{cases}\Delta(\Delta u)+\lambda|\nabla u|^{q}=\rho f(u) & \text { in } \quad B_{1} \\ u=0, \quad \Delta u=0 & \text { in } \partial B_{1},\end{cases}
$$

where $B_{1}=\left\{x \in \mathbb{R}^{N}:|x| \leq 1\right\}$ is the unit ball in $\mathbb{R}^{N}(N \geq 2),(\lambda, \rho) \in \mathbb{R} \times \mathbb{R}^{+}, q \geq 1$ and $f \in C^{1}(\mathbb{R}] 0,, \infty[)$. Fourth-order equations are derived as models of different engineering and physical phenomena, such as the motion of fluid, static deflection of an elastic plate in a fluid [2, 4], epitaxial growth of nanoscale thin films [10, 14] and traveling waves in suspension bridges [5, 12]. Due to their several applications, both quasilinear and semilinear biharmonic equations have attracted much attention and many papers appeared in the literature studying existence and the multiplicity

[^0]@๑ఆ囚 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
of solutions, see for instance $[9,15,14,6,7,11]$ and the references therein. In [11], L. Kong studied the following boundary value problem
\[

$$
\begin{cases}\Delta\left(|\Delta u|^{p-2} \Delta u\right)=\rho g(x) f(u)+h(x) & \text { in } \quad B_{1}  \tag{1.1}\\ u=\Delta u=0 & \text { in } \partial B_{1}\end{cases}
$$
\]

and by Schauder's fixed point, introduced some sufficient conditions for existence of radial solutions. In particular, Guo et al. [7] considered the above problem with $h=0$, and by using the fixed point index theory and the upper-lower solutions method, proved that for some $\rho^{*}>0$, problem (1.1) has no positive radial solution if $\rho>\rho^{*}$; while if $\rho<\rho^{*}$, (1.1) has at least two positive radial solutions. Motivated by the above results, especially [7,11], the purpose of this work is to prove the existence of radial solutions for the biharmonic problem $\left(P_{\lambda, \rho}\right)$ by combining the fixed point index theory and the Banach contraction theorem. By changing the variable $u(x)=u(|x|)$, $r=|x|$, we transform problem $\left(P_{\lambda, \rho}\right)$ to the following problem

$$
\left\{\begin{array}{l}
\mathcal{L}(\mathcal{L}(u))+\lambda\left|u^{\prime}\right|^{q}=\rho f(u) \text { in }(0,1)  \tag{1.2}\\
u(1)=\mathcal{L}(u)(1)=0
\end{array}\right.
$$

where $\mathcal{L}$ denotes the polar form of the Laplacian operator given by

$$
\mathcal{L}:=\frac{1}{r^{N-1}} \frac{d}{d r}\left(r^{N-1} \frac{d}{d r}\right)
$$

We notice that any solution $u$ of the ordinary equation $(1.2), u(|x|)$ is a radial solution of problem $\left(P_{\lambda, \rho}\right)$. Similar to in [7, Pages 4-5] with $p=q=2$, we see that problem (1.2) has an integral formulation given by

$$
\begin{equation*}
u(t)=\int_{0}^{1} \int_{0}^{1} K(t, \tau) K(\tau, s)\left(-\lambda\left|u^{\prime}(s)\right|^{q}+\rho f(u(s)) d s d t\right. \tag{1.3}
\end{equation*}
$$

where, for $0 \leq t, s \leq 1$,

$$
K(t, s):= \begin{cases}\frac{1}{N-2} s^{N-1}\left(\max \{t, s\}^{2-N}-1\right), & \text { if } N>2 \\ -s \ln (\max \{t, s\}), & \text { if } N=2\end{cases}
$$

Define operators $T$ and $\widetilde{T}$ in $C^{1}([0,1])$ as follows

$$
\begin{equation*}
T(u)(t)=T_{\lambda, \rho}(u)(t):=\int_{0}^{1} \int_{0}^{1} K(t, \tau) K(\tau, s)\left(-\lambda\left|u^{\prime}(s)\right|^{q}+\rho f(u(s))\right) d s d t \tag{1.4}
\end{equation*}
$$

and for $(h, \beta) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
\widetilde{T}(u)(t)=K_{\beta, h}+\int_{0}^{1} \int_{0}^{1} K(1-t, \tau) K(\tau, 1-s)\left(-\lambda\left|u^{\prime}(s)\right|^{q}+\rho f(u(s))\right) d s d t \tag{1.5}
\end{equation*}
$$

where

$$
K_{\beta, h}(t):=h+\beta \int_{0}^{1}\left(k(t, s)+\frac{t}{N}\right) d t
$$

Remark 1.1. From [7] and [13], we have
(i) $K(t, s)>0$ for all $(t, s) \in(0,1)^{2}$;
(ii) $K(t, s) \leq K(s, s)$ for all $(t, s) \in[0,1]^{2}$.
(iii) $K(t, s) \leq K_{\infty}$, for all $(t, s) \in[0,1]^{2}$,
with $K_{\infty}:=\frac{1}{e}$ if $n=2$ and $K_{\infty}:=(n-2)(n-1)^{-\frac{(n-1)}{n-2}}$ if $n \geq 3$.
We are now in position to present the main results.
Theorem 1.2. Let $f:(-\infty, \infty) \longrightarrow \mathbb{R}^{+}$be a nondecreasing continuous function such that $\inf f>0$. Then there are $\lambda_{0}>0$ and $\rho_{0}>0$ such that problem $\left(P_{\lambda, \rho}\right)$ has at least one radial solution for any $(\lambda, \rho) \in\left[-\lambda_{0}, \infty\right) \times\left[0, \rho_{0}\right]$. Moreover, for all $0<\rho \leq \rho_{0}$,

$$
\lambda_{\infty}:=\sup \{\lambda /(\lambda, \rho) \in S\}<\infty
$$

and for all $0>\lambda \geq-\lambda_{0}$,

$$
\rho_{\infty}:=\sup \{\rho /(\lambda, \rho) \in S\}<\infty
$$

where

$$
S:=\left\{(\lambda, \rho) \in \mathbb{R}^{2} / \text { every } \sigma, \mu \in \mathbb{R}, \sigma \geq-\lambda, 0 \leq \mu \leq \rho, P_{\sigma, \mu} \text { has a radial sol }\right\}
$$

## 2. Preliminary results and proof of Theorem 1.2

We now introduce some basic technical lemmas that will be necessary to prove the main result. Let's start with a result introduced in [3], [7] and [1].

Lemma 2.1. Let $E$ be a Banach space, and $P$ be a cone in $E$, and $\Omega$ be a boundary open set in $E$. Suppose that $T: \overline{\Omega \cap P} \rightarrow P$ is a completely continuous operator. If $T u \neq \nu u$, for all $u \in \partial(\Omega \bigcap P)$ and all $\nu>1$, then the fixed point index $i(T, \Omega, P)=1$.

Lemma 2.2. If $g \in C[0,1]$, we have that there exists $c_{a}(t) \in[a, 1]$, independent of $t$, such that

$$
\begin{equation*}
\int_{0}^{t} \tau^{n-1} \int_{a}^{1} K(\tau, s)|g(s)| d s d \tau=\left|g\left(c_{a}(t)\right)\right| \int_{0}^{t} \tau^{n-1} \int_{a}^{1} K(\tau, s) d s d \tau \tag{2.1}
\end{equation*}
$$

for all $t \geq a \geq 0$.
Proof. By Fubini's theorem we obtain

$$
\int_{0}^{t} \tau^{n-1} \int_{a}^{1} K(\tau, s)|g(s)| d s d t=\int_{a}^{1}|g(s)| h(s, t) d s
$$

where $h(s, t):=\int_{0}^{t} \tau^{n-1} K(\tau, s) d \tau$. It is easy to see that

$$
\min _{[a, 1]}|g| \leq \frac{\int_{a}^{1}|g(s)| h(s, t) d s}{\int_{a}^{1} h(s, t) d s} \leq \max _{[a, 1]}|g|
$$

Thus, there exists $a \leq c_{a}(t) \leq 1$, such that

$$
\int_{a}^{1}|g(s)| h(s, t) d s=\left|g\left(c_{a}(t)\right)\right| \int_{a}^{1} h(s, t) d s
$$

This completes the proof.
Let us stress that in addition to the properties of function $K$ presented in Remark 1.1, we will give another property in the following lemma.

Lemma 2.3. Function $K(t, s)$ verifies the following assertion

$$
\int_{0}^{1} K(1-t, s) d s=\frac{2 t-1}{2 N}+\int_{0}^{1} K(t, s) d s
$$

for all $t \in[0,1]$ and $N \geq 2$.
Proof. Let

$$
\varphi(t)=\int_{0}^{1} K(1-t, s) d s
$$

Then

$$
\varphi(t)=\int_{0}^{1-t} K(1-t, s) d s+\int_{1-t}^{1} K(1-t, s) d s=: \varphi_{0}(t)+\varphi_{1}(t)
$$

Note that

$$
\varphi_{1}(t)=\int_{1-t}^{1} K(1-t, s) d s=\int_{1-t}^{1} K(s, s) d s
$$

thus $\varphi_{1}^{\prime}(t)=K(1-t, 1-t)$. We also have

$$
\varphi_{0}^{\prime}(t)=\frac{1-t}{N}-K(1-t, 1-t)
$$

Therefore $\varphi^{\prime}(t)=\frac{1-t}{N}$. Similarly, we have

$$
\psi^{\prime}(t)=\frac{-t}{N}, \psi(t):=\int_{0}^{1} K(t, s) d s
$$

If we set $\phi(t)=\varphi(t)-\psi(t)-\frac{t}{N}$, we obtain $\phi^{\prime}(t)=0$ for all $t \in[0,1]$, which implies

$$
\phi(t)=\phi(0)=-\int_{0}^{1} K(0, s) d s=-\int_{0}^{1} K(s, s) d s=\frac{1}{2 N}
$$

this completes the proof of the lemma.
Lemma 2.4. Let $(\alpha, \beta) \in \mathbb{R}^{*} \times \mathbb{R}^{*}$. Suppose that $\widetilde{T}$ has a fixed point in $C^{1}([0,1])$. Then the following problem

$$
\left(P^{\alpha, \beta}\right) \begin{cases}\Delta(\Delta u)+\lambda|\nabla u|^{q}=\rho f(u) & \text { in } B_{1} \\ u=\alpha, \quad \Delta u=-\beta & \text { in } \partial B_{1}\end{cases}
$$

has at least one solution.
Proof. Let $\bar{u}$ be a fixed point of $\widetilde{T}$ in $C^{1}([0,1])$ and let $v(r)=\bar{u}(1-r)$ for all $r \in[0,1]$. By the change of variable $\tau=1-s$, we get

$$
v(r)=K_{\beta, h}(r)+\int_{0}^{1} \int_{0}^{1} K(r, t) K(t, \tau)\left(-\lambda\left|v^{\prime}(\tau)\right|^{q}+\rho f(v(\tau)) d \tau d t\right.
$$

It follows, from Lemma 2.3, that $v(r)=K_{\beta}(t)+T(v)(r)$. By a straightforward computation, we have

$$
\mathcal{L}(\mathcal{L}(T(v)))=-\lambda\left|v^{\prime}\right|^{q}+f(v) .
$$

Since $\mathcal{L}\left(\mathcal{L}\left(\int_{0}^{1} K(., t) d t\right)\right)=0$, we deduce that $\mathcal{L}(\mathcal{L}(v))=-\lambda\left|v^{\prime}\right|^{q}+\rho f(v)$. Furthermore, we have $v(1)=h+\frac{\beta}{2 N}, \mathcal{L}(v)(1)=-\beta$. Therefore, by taking $h=\alpha-\frac{\beta}{2 N}$, we obtain that $u(x)=v(|x|)$ is a solution of problem $\left(P^{\alpha, \beta}\right)$.

Lemma 2.5. There are $\beta_{0}, \lambda_{0}>0$ and $\rho_{0}>0$ such that $\check{T}$ has a fixed point, for all $|\lambda| \leq \lambda_{0}$ and all $|\rho| \leq \rho_{0}$, with

$$
\lambda_{0}=\left\{\begin{array}{lll}
\lambda_{0}\left(\beta_{0}\right) & \text { if } & |\beta| \leq \beta_{0} \\
\lambda_{0}(\beta) & \text { if } & |\beta|>\beta_{0}
\end{array} \quad \text { and } \quad \rho_{0}=\left\{\begin{array}{lll}
\rho_{0}\left(\beta_{0}\right) & \text { if } & |\beta| \leq \beta_{0} \\
\rho_{0}(\beta) & \text { if } & |\beta|>\beta_{0}
\end{array}\right.\right.
$$

Proof. We argue as [8], to prove the above lemma. Let $c>0$ be fixed. By the continuity of $f^{\prime}$ on $[0,1]$, we can find $\lambda_{0}^{(1)}, \rho_{0}^{(1)}, \beta_{0}>0$ depended on $c$ and sufficiently small such that

$$
\frac{\beta_{0}}{N}+\left(\rho_{0}^{(1)} \sup _{0<|t|<\frac{\beta_{0}}{2 N}+|h|} f(t)+\rho_{0}^{(1)} c \sup _{0<|t|<c+\frac{\beta_{0}}{2 N}+|h|}\left|f^{\prime}(t)\right|+\lambda_{0}^{(1)} c^{q}\right) K_{\infty}<c
$$

Thus for all $|\beta| \leq \beta_{0},|\lambda| \leq \lambda_{0}^{(1)}$ and $|\rho| \leq \rho_{0}^{(1)}$, we have

$$
\begin{equation*}
\frac{|\beta|}{N}+\left(\rho f\left(\frac{\beta}{2 N}+h\right)+|\rho| c \sup _{\left[0, c+\frac{\beta_{0}}{2 N}+|h|\right]}\left|f^{\prime}\right|+|\lambda| c_{\beta}^{q}\right) K_{\infty}<c . \tag{2.2}
\end{equation*}
$$

Let $|\beta|>\beta_{0}$, there are $c_{\beta}, \lambda_{\beta}, \rho_{\beta}>0$ such that for all $|\lambda| \leq \lambda_{\beta}$ and $\rho \leq \rho_{\beta}$,

$$
\begin{equation*}
\frac{|\beta|}{N}+\left(\rho f\left(\frac{\beta}{2 N}+h\right)+\rho c_{\beta} \sup _{\left[0, c_{\beta}+\frac{|\beta|}{2 N}+|h|\right]}\left|f^{\prime}\right|+|\lambda| c_{\beta}^{q}\right) K_{\infty}<c_{\beta} . \tag{2.3}
\end{equation*}
$$

Consider

$$
E_{\beta}:=\left\{u \in C([0,1]):\left\|u-\frac{\beta}{2 N}-h\right\| \leq M\right\}
$$

where $\|u\|:=\max \left\{|u|_{\infty},\left|u^{\prime}\right|_{\infty}\right\}$ and $M=c$ if $|\beta| \leq \beta_{0}, M=c_{\beta}$ if $|\beta|>\beta_{0}$. For all $u \in E_{\beta}$, from $\int_{0}^{1} K(r, t) d t \leq \int_{0}^{1} K(t, t) d t$ (see Remark 1.1) and as $\int_{0}^{1} K(t, t) d t=\frac{1}{2 N}$, we have that

$$
\begin{equation*}
\widetilde{T}(u)(r)-A \geq-\frac{|\beta|}{2 N}+\int_{0}^{1} \int_{0}^{1} K(1-r, t) K(t, 1-s) F_{\lambda, \rho}(s) d s d t \tag{2.4}
\end{equation*}
$$

where

$$
F_{\lambda, \rho}(s):=-\lambda\left|u^{\prime}(s)\right|^{q}+\rho f(u(s)), A:=\frac{\beta}{2 N}+h
$$

. It is easy to check that if $u \in E_{\beta}$, we have

$$
\rho f(u)<\rho f\left(\frac{\beta}{2 N}+h\right)+\rho L M
$$

with $L:=\sup _{|t|<M+\frac{\max \left\{|\beta|, \beta_{0}\right\}}{2 N}+|h|}\left|f^{\prime}(t)\right|$. It follows, from $u \in E_{\beta}$ and (2.4), that

$$
\begin{equation*}
\widetilde{T}(u)(r)-A \geq-\frac{|\beta|}{2 N}-C \int_{0}^{1} \int_{0}^{1} K(1-r, t) K(t, 1-s) d s d t \tag{2.5}
\end{equation*}
$$

where $C=|\lambda| M^{q}+\rho f(A)+\rho L M$. Since

$$
\begin{equation*}
0<K_{\infty}<1 \text { and } \int_{0}^{1} \int_{0}^{1} K(1-r, t) K(t, 1-s) d s d t \leq K_{\infty}^{2} \tag{2.6}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
\widetilde{T}(u)(r)-\frac{\beta}{2 N}-h \geq-\frac{|\beta|}{2 N}-\left(|\lambda| M^{q}+\rho f\left(\frac{\beta}{2 N}+h\right)+\rho L M\right) K_{\infty}^{2}>-M \tag{2.7}
\end{equation*}
$$

From $\int_{0}^{1} K(t, r) d r \leq \int_{0}^{1} K(r, r) d r=\frac{1}{2 N}$ and (2.6), we have

$$
\begin{equation*}
\widetilde{T}(u)(r)-\frac{\beta}{2 N}-h \leq \frac{|\beta|}{N}+\left(|\lambda| M^{q}+\rho f\left(\frac{\beta}{2 N}+h\right)+\rho L M\right) K_{\infty}^{2}<M \tag{2.8}
\end{equation*}
$$

It follows that

$$
\left|\widetilde{T}(u)(r)-\frac{\beta}{2 N}-h\right|<M
$$

for all $|\lambda| \leq \lambda_{0}^{(1)}$ and all $0 \leq \rho \leq \rho_{0}^{(1)}$. Now we are able to show that $\left|\widetilde{T}(u)^{\prime}(r)\right|<M$. Indeed, a straightforward computations show that

$$
\begin{aligned}
\left|\tilde{T}(u)^{\prime}(r)\right| & =\left|K_{\beta}^{\prime}+\int_{0}^{1} \int_{0}^{1-r}\left(\frac{t}{1-r}\right)^{N-1} K(t, 1-s) F_{\lambda, \rho}(s)\right| \\
& \leq\left(\frac{|\beta|}{N}+|\lambda| M^{q}+\rho f\left(\frac{\beta}{2 N}+h\right)+\rho L M\right) K_{\infty}
\end{aligned}
$$

Since $0<K_{\infty}<1$, we deduce that $\left|\widetilde{T}(u)^{\prime}(r)\right|<M$. On the other hand, for $u$ and $v \in E_{\beta}$, we obtain that

$$
\begin{aligned}
&|\widetilde{T}(u)(r)-\widetilde{T}(v)(r)| \leq|\lambda| \int_{0}^{1} \int_{0}^{1} K(1-r, t) K(t, 1-s) q M^{q-1}\left|v^{\prime}-u^{\prime}\right| \\
&+\rho \sup _{|t|<M+\frac{\beta}{2 N}+h}\left|f^{\prime}(t)\right| \int_{0}^{1} \int_{0}^{1} K(1-r, t) K(t, 1-s)|u-v| d s d t
\end{aligned}
$$

We deduce that

$$
|\widetilde{T}(u)(r)-\widetilde{T}(v)(r)| \leq D\left|\int_{0}^{1} \int_{0}^{1} K(1-r, t) K(t, 1-s) d s d t\right|\|u-v\|
$$

where

$$
D=|\lambda| q M^{q-1}+\rho \sup _{|t|<M+\frac{|\beta|}{2 N}+|h|}\left|f^{\prime}(t)\right| .
$$

From (2.6), there are $\lambda_{0}^{(2)}>0$ and $\rho_{0}^{(2)}>0$ such that, for all $|\lambda|<\lambda_{0}^{(2)}$ and all $0 \leq \rho<\rho_{0}^{(2)}$,

$$
\begin{aligned}
|\tilde{T}(u)(r)-\tilde{T}(v)(r)| & \leq K_{\infty}^{2} D_{0}\|u-v\| \\
& \leq \frac{1}{2}\|u-v\|
\end{aligned}
$$

with

$$
D_{0}:=|\lambda| q M^{q-1}+\rho \underset{|t|<M+\left|\frac{\sup _{\max \left\{\beta_{\beta}, \beta_{0}\right\}}^{2 N}}{}\right|+|h|}{ }\left|f^{\prime}(t)\right| .
$$

On the other hand, we have

$$
\begin{aligned}
& \left|\tilde{T}^{\prime}(u)(r)-\widetilde{T}^{\prime}(v)(r)\right| \\
\leq & \left|\int_{0}^{1} \int_{0}^{1-r}\left(\frac{t}{1-r}\right)^{N-1} K(t, 1-s)\left(\lambda\left|v^{\prime}(s)\right|^{q}-\lambda\left|u^{\prime}(s)\right|^{q}\right)\right| \\
+ & \left|\int_{0}^{1} \int_{0}^{1-r}\left(\frac{t}{1-r}\right)^{N-1} K(t, 1-s) \rho(f(u(s))-f(v(s))) d s d t\right|
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\widetilde{T}^{\prime}(u)(r)-\widetilde{T}^{\prime}(v)(r)\right| & \leq D_{0} K_{\infty}\|u-v\| \\
& \leq \frac{1}{2}\|u-v\|
\end{aligned}
$$

for all $0 \leq \rho<\rho_{0}^{(2)}$ and $|\lambda|<\lambda_{0}^{(2)}$.
Therefore, for all

$$
|\lambda|<\lambda_{0}=\min \left\{\lambda_{0}^{(2)}, \lambda_{0}^{(1)}\right\}, 0 \leq \rho<\rho_{0}=\min \left\{\rho_{0}^{(2)}, \rho_{0}^{(1)}\right\}
$$

we obtain that

$$
\|\widetilde{T}(u)(r)-\widetilde{T}(v)(r)\| \leq \frac{1}{2}\|u-v\|
$$

According to the Banach contraction theorem, $\widetilde{T}$ has a fixed point in $E_{\beta}$.

### 2.1. Proof of Theorem $\mathbf{1 . 2}$

Let $P$ be a cone defined as

$$
P:=\{u \in C[0,1], u \geq 0\}
$$

The proof is done in five steps.
Step 1. Case $-\lambda_{0} \leq \lambda \leq 0$. Consider the following operator

$$
\begin{equation*}
\widetilde{T}_{\beta}(u)(t):=K_{\beta, 0}(t)+\int_{0}^{1} \int_{0}^{1} K(t, \tau) K(\tau, s)\left(-\lambda\left|u^{\prime}(s)\right|^{q}+\rho f(u(s))\right) d s d t \tag{2.9}
\end{equation*}
$$

In view of Lemma 2.5, we obtain that $\widetilde{T}_{\beta}$ has a fixed point in $C[0,1]$. Then, by Lemma
2.5 , for all $|\beta|<\beta_{0}$ and $|\lambda|<\lambda_{0}$ there exists $v_{\beta}$ in $C[0,1]$ such that $\widetilde{T}_{\beta}\left(v_{\beta}\right)=v_{\beta}$. Taking $W_{\beta}:=-v_{\beta}+\frac{t \beta}{N}$, we get

$$
\begin{aligned}
W_{\beta}(t) & =-\int_{0}^{1} \int_{0}^{1} K(t, \tau) K(\tau, s)\left(-\lambda\left|W^{\prime}\right|^{q}+\rho f\left(-W_{\beta}+\frac{t \beta}{N}\right)\right) d s d \tau \\
& -\beta \int_{0}^{1} K(t, s) d s \\
& =: \tilde{L}\left(W_{\beta}\right)(t)
\end{aligned}
$$

Then

$$
\begin{aligned}
W_{\beta}^{\prime} & =\frac{t \beta}{N}+\int_{0}^{t}\left(\frac{\tau}{t}\right)^{N-1} \int_{0}^{1} K(\tau, s)\left(-\lambda\left|W^{\prime}\right|^{q}+\rho f\left(\int_{s}^{1} W_{\beta}^{\prime} d \xi+\frac{t \beta}{N}\right)\right) \\
& =\widetilde{L}\left(W_{\beta}\right)^{\prime}(t)
\end{aligned}
$$

Let $X=C[0,1]$, with norm $\|u\|=|u|_{\infty}$ and consider

$$
L(u)(t):= \begin{cases}\int_{0}^{t}\left(\frac{r}{t}\right)^{N-1} \int_{0}^{1} K(r, s)\left(-\lambda|u|^{q}+\rho f\left(\int_{s}^{1} u(s) d s\right)\right) d s d r, t \neq 0 \\ 0, & t=0\end{cases}
$$

for $u \in X$. Clearly, $(X,\|\|$.$) is a Banach space. On other hand, L: P \longrightarrow P$ is completely continuous. Indeed, by Hospital's rule, we obtain that for all $u \in X$, $L(u) \in X$. It is easy to see that $L(u) \geq 0$. We deduce that $L(P) \subset P$. By AscoliArzela theorem and absolute continuity of integral, we obtain that $L$ is completely continuous. Let us consider the set $\Omega:=\left\{u \in X, u<W_{\beta}^{\prime}\right\}$. For $u \in \partial \Omega \cap P$, we have

$$
-\lambda|u|^{q} \leq-\lambda\left|W_{\beta}^{\prime}\right|^{q} \text { and } \int_{s}^{1} u d s<\int_{s}^{1} W_{\beta}^{\prime} d s
$$

Using $f$ is nondecreasing and $u \in \partial \Omega$ and by choosing $\beta>0$, we have

$$
L(u)(t) \leq L\left(W_{\beta}^{\prime}\right)(t)<\widetilde{L}\left(W_{\beta}\right)^{\prime}(t)=W_{\beta}^{\prime}(t)=u(t)
$$

Then $L(u)(t) \neq \nu u(t)$, for all $\nu>1$. Moreover, from $f(0)>0$, we have that $L(0)(t) \neq$ 0 . Then $L(u)(t) \neq \nu u(t)$, for all $u \in \partial(\Omega \bigcap P)$ and for all $\nu>1$. It follows, from Lemma 2.3, that $i(L, \Omega, P)=1$. Thus, there exits $u \in \Omega$ such that $L(u)=u$. Let

$$
W(r):=\int_{r}^{1} u(s) d s
$$

Then, we have

$$
\begin{aligned}
W(r) & =\int_{r}^{1} u(s) d s=\int_{r}^{1} L(u)(s) d s \\
& =\left[-\int_{0}^{1} \int_{0}^{1} K(t, \tau) K(\tau, s)\left(-\lambda|u|^{q}+\rho f\left(\int_{s}^{1} u(\xi) d \xi\right)\right) d s d t\right]_{r}^{1} \\
& =\int_{0}^{1} \int_{0}^{1} K(t, \tau) K(\tau, s)\left(-\lambda\left|W^{\prime}(s)\right|^{q}+\rho f(W(s))\right) d s d t
\end{aligned}
$$

This implies that $W=T(W)$. Therefore, the function $W: B(0,1) \rightarrow \mathbb{R}, x \rightarrow W(|x|)$ is a solution of problem $\left(P_{\lambda, \rho}\right)$, for all $-\lambda_{0} \leq \lambda \leq 0$ and for all $0<\rho \leq \rho_{0}$.
Step 2. Case $\lambda_{0}^{\prime}>\lambda>0$ ( $\lambda_{0}^{\prime}$ will be defined below ). By taking $\lambda=0$ in step 1, we obtain that there exists $V_{\beta} \in C[0,1]$ such that

$$
\begin{aligned}
V_{\beta} & =K_{\beta,-\beta / N}(t)+\rho \int_{0}^{1} \int_{0}^{1} K(t, \tau) K(\tau, s) f\left(V_{\beta}\right) d s d t \\
& =: \tilde{L}_{0}\left(V_{\beta}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
V_{\beta}^{\prime} & =\beta \frac{(1-t)}{t N}-\int_{0}^{t}\left(\frac{r}{t}\right)^{N-1} \int_{0}^{1} K(r, s) \rho f\left(V_{\beta}\right) d s d r \\
& =\left(\widetilde{L}_{0}\left(V_{\beta}\right)\right)^{\prime}
\end{aligned}
$$

Let us consider the set

$$
\Omega^{\prime}:=\left\{u \in X, u<-V_{\beta}^{\prime}-\frac{\beta}{N}\right\},
$$

for $\beta<0$. Then, for $u \in \Omega^{\prime} \cap P$, we have $0<u<-V_{\beta}^{\prime}-\frac{\beta}{N}$. This implies that $\|u\| \leq\left\|V_{\beta}^{\prime}\right\|$. So, if we take

$$
0 \leq \lambda \leq \lambda_{0}^{\prime}:=\rho \min \left\{\frac{\inf f(t)}{\left\|-V_{\beta}^{\prime}-\frac{\beta}{N}\right\|^{q}}, \lambda_{0}\right\}
$$

we obtain

$$
-\lambda|u(s)|^{q}+\rho f\left(\int_{r}^{1} u(s) d s\right) \geq 0
$$

Therefore, $L\left(\Omega^{\prime} \cap P\right) \subset P$. Now, let $u \in \partial \Omega^{\prime} \cap P$. We have

$$
\begin{aligned}
L(t) & :=\int_{0}^{t}\left(\frac{r}{t}\right)^{N-1} \int_{0}^{1} K(r, s)\left(-\lambda|u(s)|^{q}+\rho f\left(\int_{s}^{1} u(\xi) d \xi\right)\right) d s d r \\
& <\int_{0}^{t}\left(\frac{r}{t}\right)^{N-1} \int_{0}^{1} K(r, s) \rho f\left(-\int_{s}^{1} V_{\beta}(\xi)^{\prime} d \xi-\frac{\beta}{N}+\frac{\beta s}{N}\right) d s d r \\
& <\int_{0}^{t}\left(\frac{r}{t}\right)^{N-1} \int_{0}^{1} K(r, s) \rho f\left(V_{\beta}(s)+\frac{\beta s}{N}\right) d s d r
\end{aligned}
$$

By using $\beta<0$ and the fact that $f$ is nondecreasing, we get

$$
L(t)<-\left(\tilde{L}_{0}\left(V_{\beta}\right)\right)^{\prime}(t)=-V_{\beta}^{\prime}(t)=u(t)+\frac{\beta}{N}<u(t)
$$

Then $L(t) \neq \nu u(t)$ for all $\nu>1$ and for all $u \in \partial \Omega^{\prime} \cap P$. Moreover, $L(0)(t) \neq 0$. Thus, $L(u)(t) \neq \nu u(t)$ for all $\nu>1$ and for all $u \in \partial\left(\Omega^{\prime} \cap P\right)$. Therefore, from Lemma 2.1, $i\left(L, \Omega^{\prime}, P\right)=1$. Then, there exists $u \in C[0,1]$ such that $L(u)=u$. We deduce that

$$
W: X \rightarrow \mathbb{R}, t \rightarrow \int_{t}^{1} u(s) d s
$$

satisfies $T(W)=W$. So, we obtain that problem $\left(P_{\lambda, \rho}\right)$ has a radial solution for all $0 \leq \lambda \leq \lambda_{0}^{\prime}$ and for all $0<\rho \leq \rho_{0}$.
Step 3. For every $(\lambda, \rho) \in\left[\lambda_{0}^{\prime}, \infty\left[\times\left[0, \rho_{0}\right]\right.\right.$, the problem $\left(P_{\lambda, \rho}\right)$ has a radial solution. Indeed, let $(\lambda, \rho) \in\left[\lambda_{0}^{\prime}, \infty\left[\times\left[0, \rho_{0}\right]\right.\right.$. From Step 3, problem $\left(P_{0, \rho_{0}}\right)$ has a radial solution. Then, there exists $u_{0} \in C[0,1]$ such that $T_{0, \rho_{0}}\left(u_{0}\right)=u_{0}$. Consider the cone

$$
P:=\{u \in X, u \geq 0\}
$$

and the set $\Omega:=\left\{u \in X, u<u_{0}\right\}$. Then, we have

$$
\Omega \cap P=\left\{u \in X, 0 \leq u<u_{0}\right\}
$$

So, $\partial(\Omega \cap P)=\{0\} \cup\left\{u=u_{0}\right\}$. Since $f$ is nondecreasing, we get

$$
T_{\lambda, \rho}(u)(t)<T_{0, \rho_{0}}(u)(t)<T_{0, \rho_{0}}\left(u_{0}\right)(t)=u_{0}(t)=u(t)
$$

for $u \in \partial \Omega$. We also have $T_{\lambda, \rho}(0)(t)>0$. Therefore, $T_{\lambda, \rho}(u)(t) \neq \nu u(t)$, for all $\nu \geq 1$ and for all $u \in \partial(\Omega \cap P)$. So, from Lemma 2.1, $i\left(T_{\lambda, \rho}, \Omega, P\right)=1$. Consequently, $\left(P_{\lambda, \rho}\right)$ has a least one radial solution.
Step 4. $\lambda_{\infty}(\rho)<\infty$ and $\rho_{\infty}(\lambda)<\infty$. Let $0 \leq \rho \leq \rho_{0}$. Suppose that $\lambda_{\infty}(\rho)=-\infty$. Then, there exits $\left(\lambda_{n}, \rho\right) \in S$, with $\lambda_{n} \rightarrow-\infty$ and let $u_{n}$ be a solution radial of problem ( $P_{\lambda_{n}, \rho}$ ). Then

$$
\begin{equation*}
u_{n}(t)^{\prime}=-\int_{0}^{t}\left(\frac{\tau}{t}\right)^{N-1} \int_{0}^{1} K(\tau, s)\left(-\lambda_{n}\left|u_{n}^{\prime}(s)\right|+\rho f\left(u_{n}(s)\right)\right) d s d \tau<0 \tag{2.10}
\end{equation*}
$$

since $f>0$, we get

$$
\left|u_{n}(t)^{\prime}\right|>-\lambda_{n} \int_{0}^{t}\left(\frac{\tau}{t}\right)^{N-1} \int_{\frac{1}{2}}^{1} K(\tau, s)\left|u_{n}(s)^{\prime}\right|^{q} d s d \tau
$$

In view of Lemma 2.2, there exists $1 / 2 \leq c_{1 / 2}(t) \leq 1$ such that

$$
\left|u_{n}(t)^{\prime}\right|>-\lambda_{n}\left|u_{n}\left(c_{1 / 2}(t)\right)^{\prime}\right|^{q} \int_{0}^{t}\left(\frac{\tau}{t}\right)^{N-1} \int_{\frac{1}{2}}^{1} K(\tau, s) d s d \tau
$$

From (2.10), we have $0<\left|u_{n}^{\prime}(1 / 2)\right| \leq\left|u_{n}^{\prime}\left(c_{1 / 2}(t)\right)\right|$. By taking $t=\frac{1}{2}$, we get

$$
1>-\lambda_{n}\left|u_{n}(1 / 2)^{\prime}\right|^{q-1} \int_{0}^{1 / 2}(2 \tau)^{N-1} \int_{0}^{1} K(\tau, s) d s d \tau
$$

By (2.10) and $\epsilon_{0}:=\inf f>0$, we get

$$
\begin{aligned}
\left|u_{n}^{\prime}(1 / 2)\right| & =\int_{0}^{1 / 2}(2 \tau)^{N-1} \int_{0}^{1} K(\tau, s) \rho f\left(u_{n}(s)\right) d s d \tau \\
& >\epsilon_{0} \int_{0}^{\frac{1}{2}}(2 \tau)^{N-1} \int_{0}^{1} K(\tau, s) \rho d s d \tau
\end{aligned}
$$

It follows that

$$
1>-\lambda_{n}\left(\rho \epsilon_{0}\right)^{q-1}\left(\int_{0}^{1 / 2} 2 \tau^{N-1} \int_{\frac{1}{2}}^{1} K(\tau, s) d s d \tau\right)^{q}
$$

Letting $n \longrightarrow \infty$, we obtain a contradiction. On other hand, let $-\lambda_{0}<\lambda \leq 0$. Suppose that $\rho_{\infty}(\lambda)=\infty$. Then, there exits $\left(\lambda, \rho_{n}(\lambda)\right) \in S$ such that $\rho_{n}(\lambda) \rightarrow \infty$. If we follow the same way as above, we obtain

$$
\begin{equation*}
1>-\lambda\left(\rho_{n} \epsilon_{0}\right)^{q-1}\left(\int_{0}^{1 / 2} 2 \tau^{N-1} \int_{\frac{1}{2}}^{1} K(\tau, s) d s d \tau\right)^{q} \tag{2.11}
\end{equation*}
$$

Letting $n \rightarrow \infty$, we obtain a contradiction. This concludes the proof of Theorem 1.2.

Acknowledgments. The authors warmly thank the anonymous referee for her/his useful comments on the paper.

## References

[1] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM. Rev., 18(1976), 620-709.
[2] Ball, J.M., Initial-boundary value problems for an extensible beam, Math. Anal. Appl., 42(1973), 61-90.
[3] Barrow, J., Deyeso III, R., Kong, L., Petronella, F., Positive radially symmetric solutions for a system of quasilinear biharmonic equation in the plane, Electron. J. Differential Equations, 30(2015), 1-11.
[4] Berger, H.M., A new approach to the analysis of large deflections of plates, Appl. Mech., 22(1955), 465-472.
[5] Chen, Y., Mckenna, P.J., Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations, J. Differential Equations, 136(1997), no. 2, 325-355.
[6] Escudero, C., Peral, I., Some fourth order nonlinear elliptic problems related to epitaxial growth, J. Differential Equations, 254(2013), 2515-2531.
[7] Guo, Z., Yin, J., Ke, Y., Multiplicity of positive radially symmetric solutions for a quasilinear biharmonic equation in the plane, Nonlinear Anal., 74(2011), 1320-1330.
[8] Hamydy, A., Massar, M., Tsouli, N., Existence of blow-up solutions for a non-linear equation with gradient term in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 377(2011), 161-169.
[9] Huang, X., Ye, D., Zhou, F., Stability for entire radial solutions to the biharmonic equation with negative exponents, C.R. Acad. Sci. Paris, Ser. I, 356(2018), 632-636.
[10] King, B.B., Stein, O., Winkler, M., A fourth-order parabolic equation modeling epitaxial thin film growth, Journal of Mathematical Analysis and Applications, 286(2003), no. 2, 459-490.
[11] Kong, L., Positive radial solutions for quasilinear biharmonic equations, Computers \& Mathematics with Applications, 72(2016), 2878-2886.
[12] Lazer, A.C., Mckenna, P.J., Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32(1990), no. 4, 537-578.
[13] Li, S., Hui, X., Multiplicity of radially symmetric solutions for a p-harmonic equation in $\mathbb{R}^{N}$, J. Inequal. Appl., 588(2013), 1-15.
[14] Sun, J., Wu, T., The Nehari manifold of biharmonic equations with -Laplacian and singular potential, Applied Mathematics Letters, 88(2019), 156-163
[15] Zhang, H., Lia, T., Wub, T., Existence and multiplicity of nontrivial solutions for biharmonic equations with singular weight functions, Applied Mathematics Letters, 105(2020), 106335.

Ahmed Hamydy
"Abdelmalek Essaadi" University, CRMEFTTH of Tetuan,
Department of Mathematics, Morocco
e-mail: a.hamydy@yahoo.fr

Mohamed Massar
"Abdelmalek Essaadi" University, Faculty of Technical Sciences of Alhoceima, Department of Mathematics, Morocco
e-mail: massarmed@hotmail.com
Hilal Essaouini
"Abdelmalek Essaadi" University, Faculty of Sciences of Tetuan, Department of Physics, Energy Laboratory, Morocco
e-mail: hilal_essaouini@yahoo.fr


[^0]:    Received 13 November 2020; Accepted 10 January 2021.
    (C) Studia UBB MATHEMATICA. Published by Babeş-Bolyai University

