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Third Hankel determinant for reciprocal of
bounded turning function has a positive real
part of order alpha
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Abstract. The objective of this paper is to obtain an upper bound to the third
Hankel determinant denoted by |H3(1)| for certain subclass of univalent functions,
using Toeplitz determinants.
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1. Introduction

Let A denote the class of all functions f(z) of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions. For a univalent function in the class A, it is well known that the
nth coefficient is bounded by n. The bounds for the coefficients give information about
the geometric properties of these functions In particular, the growth and distortion
properties of a normalized univalent function are determined by the bound of its
second coefficient. The Hankel determinant of f for q ≥ 1 and n ≥ 1 was defined by
Pommerenke [12] as

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

.
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This determinant has been considered by many authors in the literature. For example,
Noor [10] determined the rate of growth of Hq(n) as n → ∞ for the functions in S
with bounded boundary. Ehrenborg [4] studied the Hankel determinant of exponential
polynomials. The Hankel transform of an integer sequence and some of its properties
were discussed by Layman in [7]. In the recent years several authors have investigated
bounds for the Hankel determinant of functions belonging to various subclasses of
univalent and multivalent analytic functions. In particular for, q = 2, n = 1, a1 = 1
and q = 2, n = 2, a1 = 1, the Hankel determinant simplifies respectively to

H2(1) =
a1 a2
a2 a3

= a3 − a22, and H2(2) =
a2 a3
a3 a4

= a2a4 − a23.

For our discussion in this paper, we consider the Hankel determinant in the case of
q = 3 and n = 1, denoted by H3(1), given by

H3(1) =
a1 a2 a3
a2 a3 a4
a3 a4 a5

. (1.2)

For f ∈ A, a1 = 1, so that, we have

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22)

and by applying triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (1.3)

The sharp upper bound to the second Hankel functional |H2(2)| for the subclass
RT of S, consisting of functions whose derivative has a positive real part, studied
by Mac Gregor [9] was obtained by Janteng [6]. It was known that if f ∈ RT then
|ak| ≤ 2

k , for k ∈ {2, 3, ....}. Further, the best possible sharp upper bound for the

functional |a2a3− a4| and |a3− a22| was obtained by Babalola [2] and hence the sharp
inequality for |H3(1)|, for the class RT. For f ∈ RT (α), the sharp upper bound to
second Hankel [14] and |H3(1)| were obtained by Vamshee Krishna et al.[15]. The

sharp upper bound to H3(1) for the subclass of R̃T of S consisting of a function
whose reciprocal derivative has a positive real part was obtained by Venkateswarlu
[16].

Motivated by the result obtained by Babalola [2], we obtain an upper bound
to the functional second Hankel determinant, |a2a3 − a4| and hence |H3(1)|, for the

function f given in (1.1), when it belongs to the class R̃T (α), defined as follows.

Definition 1.1. A function f(z) ∈ A is said to be function whose reciprocal derivative
has a positive real part of order α, (also called reciprocal of bounded turning function

of order α), denoted by f ∈ R̃T (α) (0 ≤ α < 1), if and only if

Re
( 1

f ′(z)

)
> α,∀z ∈ E. (1.4)

Observe that for α = 0, we obtain R̃T (0) = R̃T . Some preliminary lemmas required
for proving our results are as follows:
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2. Preliminary results

Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... =

[
1 +

∞∑
n=1

cnz
n

]
, (2.1)

which are regular in the open unit disc E and satisfy Re{p(z)} > 0 for any z ∈ E.
Here p(z) is called the Caratheòdory function [3].

Lemma 2.1. [11, 13] If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality is
sharp for the function 1+z

1−z .

Lemma 2.2. [5] The power series for p(z) = 1 +
∞∑
n=1

cnz
n given in (2.1) converges in

the open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2
...

...
...

...
...

c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3, · · ·

and c−k = ck, are all non-negative. They are strictly positive except for

p(z) =

m∑
k=1

ρkp0(eitkz),

ρk > 0, tk real and tk 6= tj , for k 6= j, where p0(z) = 1+z
1−z ; in this case Dn > 0 for

n < (m− 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in [5] is due to Caratheòdory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2.2, for
n = 2, we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2 | c2 |2 − 4|c1|2] ≥ 0,

which is equivalent to

2c2 = c21 + x(4− c21), for some x, |x| ≤ 1. (2.2)

For n = 3,

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

≥ 0

and is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (2.3)
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From the relations (2.2) and (2.3), after simplifying, we get

4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z, (2.4)

for some z, with |z| ≤ 1.

To obtain our result, we refer to the classical method initiated by Libera and
Zlotkiewicz [8] and used by several authors in the literature.

3. Main result

Theorem 3.1. If f(z) ∈ R̃T (α) (0 ≤ α ≤ 1√
2
) then

| a2a4 − a23| ≤
[ 2

3(α− 1)

]2
and the inequality is sharp.

Proof. For

f(z) = z +

∞∑
n=2

anz
n ∈ R̃T (α),

there exists an analytic function p ∈ P in the open unit disc E with p(0) = 1 and
Re{p(z)} > 0 such that

1− αf ′(z)
(1− α)f ′(z)

= p(z) ⇔ 1− αf ′(z) = (1− α)f ′(z)p(z). (3.1)

Replacing f ′(z) and p(z) with their equivalent series expressions in (3.1) , we have

1− α
(

1 +

∞∑
n=2

nanz
n−1
)

= (1− α)
(

1 +

∞∑
n=2

nanz
n
)(

1 +

∞∑
n=1

cnz
n
)
.

Upon simplification, we obtain

(1− α)− 2αa2z − 3αa3z
2 − 4αa4z

3 − 5a5z
4 − · · · = (1− α)

+ z(1− α)[2a2 + c1] + z2(1− α)[c2 + 2a2c1 + 3a3] + z3(1− α)

[c3 + 2a2c2 + 3a3c1 + 4a4] + z4(1− α)[c4 + 2a2c3 + 3a3c2 + 4a4c1 + 5a5] + · · · .
(3.2)

Equating the coefficients of like powers of z, z2, z3 and z4 respectively on both sides
of (3.2), after simplifying, we get

a2 = −1− α
2

c1; a3 = −1− α
3

[
c2 − (1− α)c21

]
;

a4 = −1− α
4

[
c3 − 2(1− α)c1c2 + (1− α)2c31

]
;

a5 = −1− α
5

[
c4 − 2(1− α)c1c3 + 3(1− α)2c21c2 − (1− α)c22 − (1− α)3c41

]
. (3.3)
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Substituting the values of a2, a3 and a4 from (3.3) in the functional

|a2a4 − a23| for the function f ∈ R̃T (α), upon simplification, we obtain

| a2a4 − a23| =
(1− α)2

72

∣∣9c1c3 − 2(1− α)c21c2 − 8c22 + (1− α)2c41
∣∣

which is equivalent to

| a2a4 − a23| =
(1− α)2

72

∣∣d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1

∣∣ , (3.4)

where d1 = 9; d2 = −2(1− α); d3 = −8; d4 = (1− α)2. (3.5)

Substituting the values of c2 and c3 given in (2.2) and (2.4) respectively from Lemma
2.2 on the right-hand side of (3.4), we have

|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| =

∣∣∣d1c1
4
{c31 + 2c1(4− c21)x− c1(4− c21)x2

+ 2(4− c21)(1− |x|2)z}+
d2c

2
1

2
{c21 + x(4− c21)}

+
d3
4
{c21 + x(4− c21)}2 + d4c

4
1

∣∣∣. (3.6)

Using triangle inequality and the fact that |z| < 1, we get

4 | d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1 | ≤

∣∣∣(d1 + 2d2 + d3 + 4d4)c41 + 2d1c1(4− c21)

+ 2(d1 + d2 + d3)c21(4− c21)|x|

−
{

(d1 + d3)c21 + 2d1c1 − 4d3
}

(4− c21)|x|2
∣∣∣. (3.7)

From (3.5), we can now write

d1 + 2d2 + d3 + 4d4 = 4α2 − 4α+ 1; 2(d1 + d2 + d3) = −2(1− 2α); (3.8)

(d1 + d3)c21 + 2d1c1 − 4d3 = c21 + 18c1 + 32 = (c1 + 16)(c1 + 2). (3.9)

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0 in
(3.9), we can have

−{(d1 + d3)c21 + 2d1c1 − 4d3} ≤ −(c21 − 18c1 + 32). (3.10)

Substituting the calculated values from (3.8) and (3.10) on the right-hand side of
(3.7), we have

4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

∣∣∣(4α2 − 4α+ 1)c41 + 18c1(4− c21)

− 2(1− 2α)c21(4− c21)|x| − (c21 − 18c1 + 32)(4− c21)|x|2
∣∣∣. (3.11)
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Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by µ on the
right-hand side of the above inequality, we get

4 |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

[
(4α2 − 4α+ 1)c4 + 18c(4− c2)

+ 2(1− 2α)c2(4− c2)µ+ (c2 − 18c+ 32)(4− c2)µ2
]

= F (c, µ) , 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2. (3.12)

We next maximize the function F (c, µ) on the closed region [0, 2]× [0, 1].
Differentiating F (c, µ) given in (3.12) partially with respect to µ, we obtain

∂F

∂µ
= 2[(1− 2α)c2 + (c2 − 18c+ 32)µ](4− c2). (3.13)

For 0 < µ < 1 and for fixed c with 0 < c < 2, from (3.13), we observe that ∂F
∂µ > 0.

Therefore, F (c, µ) becomes an increasing function of µ and hence it cannot have a
maximum value at any point in the interior of the closed region [0, 2]×[0, 1]. Moreover,
for a fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

Therefore, replacing µ by 1 in F (c, µ), upon simplification, we obtain

G(c) = 2
[
− c4(1− 2α2)− 2c2(4α+ 5) + 64)

]
. (3.14)

G′(c) = −8c
[
c2(1− 2α2) + (4α+ 5)

]
. (3.15)

From (3.15), we observe that G′(c) ≤ 0, for every c ∈ [0, 2]. Therefore, G(c) is a
decreasing function of c in the interval [0, 2], whose maximum value occurs at c = 0
only. From (3.14), the maximum value of G(c) at c = 0 is given by

Gmax = G(0) = 128. (3.16)

Simplifying the expressions (3.12) and (3.16), we get

|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤ 32. (3.17)

From the relations (3.4) and (3.17), upon simplification, we obtain

| a2a4 − a23| ≤
[2

3
(1− α)

]2
. (3.18)

By setting c1 = c = 0 and selecting x = 1 in the expressions (2.2) and (2.4), we find
that c2 = 2 and c3 = 0 respectively. Substituting these values in (3.17) together with
the values in (3.4), we observe that equality is attained, which shows that our result
is sharp. The extremal function in this case is given by

1− αf ′(z)
(1− α)f ′(z)

= 1 + 2z2 + 2z4 + · · · =
1 + z2

1− z2
.

This completes the proof of our Theorem. �
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Remark 3.2. It is observed that the sharp upper bound to the second Hankel deter-
minant of a function whose derivative has a positive real part of order α, obtained by
Vamshee Krishna et al. [14] and a function whose reciprocal derivative has a positive

real part of order α is the same. Further, for the choice of α = 0, we get R̃T (0) = R̃T ,
for which from (3.18), we obtain |a2a4 − a23| ≤ 4

9 . This inequality is sharp and this
result coincides with that of Janteng et al. [6] and Venkateswarlu et al. [16]. From
this we conclude that the sharp upper bound to the second Hankel determinant of
a function whose derivative has a positive real part of order α and a function whose
reciprocal derivative has a positive real part of order α is the same.

Theorem 3.3. If f(z) ∈ R̃T (α) (0 ≤ α ≤ 5
8 ) then | a2a3 − a4| ≤ 1

6

[
5−8α

3

] 3
2

.

Proof. Substituting the values of a2, a3 and a4 from (3.3) in the determinant

| a2a3 − a4 | for the function f ∈ R̃T (α), after simplifying, we get

| a2a3 − a4| =
(1− α)

12

∣∣∣3c3 − 4(1− α)c1c2 + (1− α)2c31

∣∣∣. (3.19)

Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from Lemma
2.2 on the right-hand side of (3.19), and using the fact that |z| < 1, we have

4
∣∣3c3 − 4(1− α)c1c2 + (1− α)2c31

∣∣ ≤ ∣∣∣− c31(1− 4α2) + 6(4− c21)

− 2c1(4− c21)|x|(1− 4α)− 3(4− c21)|x|2(c1 + 2)
∣∣∣.

Since c1 = c ∈ [0, 2], using the result (c1+a) ≥ (c1−a), where a ≥ 0, applying triangle
inequality and replacing |x| by µ on the right-hand side of the above inequality, we
have

4|3c3 − 4c1c2 + c31| ≤
∣∣∣c3(1− 4α2) + 6(4− c2)

+ 2(1− α)c(4− c2)µ+ 3(c− 2)(4− c2)µ2
∣∣∣

= F (c, µ) , 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2. (3.20)

Next, we maximize the function F (c, µ) on the closed square [0, 2]× [0, 1].
Differentiating F (c, µ) given in(3.20) partially with respect to µ, we get

∂F

∂µ
= 2(4− c2)[(1− 4α)c+ 3(c− 2)µ] > 0. (3.21)

As described in Theorem 3.1, further we obtain

G(c) = −4c3(1− α)2 + 4(5− 8α)c. (3.22)

G′(c) = −12c2(1− α)2 + 4(5− 8α)c. (3.23)

G′′(c) = −24c(1− α)2. (3.24)

For optimum value of G(c), consider G′(c) = 0, From (3.23), we get

c2 =
5− 8α

3(1− α)2
, for 0 ≤ α < 5

8
.
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Using the obtained value of c =
√

5−8α
3(1−α)2 ∈ [0, 2] in (3.24). In which simplifies to

give

G′′(c) = −24

√
5− 8α

3
(1− α) < 0, for 0 ≤ α < 5

8
.

Therefore, by the second derivative test, G(c) has maximum value at c =
√

5−8α
3(1−α)2 .

Substituting the value of c in the expression (3.22), upon simplification, we obtain
the maximum value of G(c) at c, as

Gmax =
8

1− α

[5− 8α

3

] 3
2

. (3.25)

From the expressions (3.20) and (3.25), after simplifying, we get

|3c3 − 4(1− α)c1c2 + (1− α)2c31| ≤
2

1− α

[5− 8α

3

] 3
2

. (3.26)

Simplifying the relations (3.19) and (3.26), upon simplification, we obtain

|a2a3 − a4| ≤
1

6

[5− 8α

3

] 3
2

. (3.27)

This completes the proof of our Theorem. �

Remark 3.4. For the choice of α = 0, from (3.27), we obtain |a2a3 − a4| ≤ 1
6

(
5
3

) 3
2 .

This inequality is sharp and this result coincides with that of obtained by Babalola
[2] and Venkateswarlu et al. [16]. From this we conclude that for α = 0, the sharp
upper bound to the |a2a3− a4| of a function whose derivative has a positive real part
of order alpha and a function whose reciprocal derivative has a positive real part or
order alpha is the same.

The following theorem is a straight forward verification on applying the same
procedure as described in Theorems 3.1 and 3.3 and the result is sharp for the values
c1 = 0, c2 = 2 and x = 1.

Theorem 3.5. If f ∈ R̃T (α) (0 ≤ α < 1) then |a3 − a22| ≤ 2
3 [1− α].

Using the fact that |cn| ≤ 2, n ∈ N = {1, 2, 3, · · · }, with the help of c2 and c3
values given in (2.2) and (2.4) respectively together with the values in (3.3), we obtain
|ak| ≤ 2

k (1− α)(1− 2α)k−2, for k ∈ {2, 3, 4, 5, · · · }.
Substituting the results of Theorems 3.1, 3.3, 3.5 and |ak| ≤

2
k (1 − α)(1 − 2α)k−2, for k ∈ {2, 3, 4, 5, · · · }, for the function f ∈ R̃T (α) in the
inequality (1.3), upon simplification, we obtain the following corollary.

Corollary 3.6. If f(z) ∈ R̃T (α) (0 ≤ α ≤ 1√
2
) then

|H3(1)| ≤ (1− α)(1− 2α)

3

[
4(1− α)(36α2 − 46α+ 19)

45
+

(1− 2α)

4

(5− 8α

3

) 3
2

]
.

(3.28)
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Remark 3.7. We choose α = 0, from the expressions (3.28), we obtain |H3(1)| ≤
0.742. These inequalities are sharp and coincide with the results of Babalola [2] and
Venkateswarlu et al. [16]. From this we conclude that for α = 0, the sharp upper
bound to the third Hankel determinant of a function whose derivative has a positive
real part or order alpha and a function whose reciprocal derivative has a positive real
part of order alpha is the same.
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