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Oscillatory behavior of a fifth-order differential
equation with unbounded neutral coefficients

John R. Graef, Hakan Avcı, Osman Özdemir and Ercan Tunç

Abstract. The authors study the oscillatory behavior of solutions to a class of
fifth-order differential equations with unbounded neutral coefficients. The results
are obtained by a comparison with first-order delay differential equations whose
oscillatory characters are known. Two examples illustrating the results are pro-
vided, one of which is applied to Euler type equations.
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1. Introduction

In this paper, we are concerned with the oscillatory behavior of all solutions of
the fifth-order neutral differential equation

z(5)(t) + q(t)x(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)), and the following conditions are assumed to hold
throughout:

(C1) p, q : [t0,∞) → R are continuous functions with p(t) ≥ 1, p(t) 6≡ 1 for all large
t, q(t) ≥ 0, and q(t) is not identically zero for all large t;

(C2) τ , σ : [t0,∞) → R are continuous functions such that τ(t) ≤ t, σ(t) ≤ t, τ is
strictly increasing, and limt→∞ τ(t) = limt→∞ σ(t) =∞;

(C3) h(t) := τ−1(σ(t)) ≤ t and limt→∞ h(t) = ∞, where τ−1 is the inverse function
of τ .
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By a solution of equation (1.1), we mean a function x ∈ C ([tx,∞),R) for some
tx ≥ t0 such that z ∈ C5 ([tx,∞),R) and x satisfies (1.1) on [tx,∞). We only consider
those solutions of (1.1) that exist on some half-line [tx,∞) and satisfy the condition

sup {|x(t)| : T1 ≤ t <∞} > 0 for any T1 ≥ tx,

and moreover, we tacitly assume that (1.1) possesses such solutions. Such a solution
x(t) of (1.1) is said to be oscillatory if it has arbitrarily large zeros on [tx,∞), i.e.,
for any t1 ∈ [tx,∞) there exists t2 ≥ t1 such that x(t2) = 0; otherwise it is called
nonoscillatory, i.e., if it is eventually positive or eventually negative. Equation (1.1)
is termed oscillatory if all its solutions are oscillatory.

Recently there has been a great deal of work on the oscillation of solutions of
neutral differential equations. A neutral differential equation is a differential equation
in which the highest order derivative of the unknown function is evaluated both at the
present state t and at one or more past or future states. Besides its theoretical interest,
the study of neutral equations has some importance in applications; for example, see
Hale’s monograph [15] for some applications in science and technology.

Among numerous papers dealing with the oscillation of the solutions of third
and higher odd-order neutral differential equations, we refer the reader to the papers
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 13, 16, 17, 21, 22, 23, 25, 26, 27, 28, 29, 30] and the
references cited therein as examples of recent results on this topic. However, except
for the papers [3, 4, 14, 30] in which third order equations are studied, the results
obtained in these other papers are for the case where p is bounded, i.e., the cases
0 ≤ p(t) ≤ p0 < 1, −1 < p0 ≤ p(t) ≤ 0, or 0 ≤ p(t) ≤ p0 < ∞. To the best
of our knowledge, there appears to be no results for fifth and/or higher odd-order
differential equations with unbounded neutral coefficients. The aim of the present
paper is to initiate the study of the oscillatory behavior of (1.1) and to provide new
results that can be applied not only to the case where p(t)→∞ as t→∞ but also to
the case where p(t) is a bounded function. Since the equation considered here is linear,
it is possible to extend our results to more general differential equations (see Remark
2.8 below). It is our belief that the present paper will contribute significantly to the
study of oscillatory behavior of solutions of fifth and higher odd-order differential
equations with unbounded neutral coefficients.

In the sequel, all functional inequalities are supposed to hold for all t large
enough. Without loss of generality, we deal only with positive solutions of (1.1), since
if x(t) is a solution of (1.1), then −x(t) is also a solution.

2. Main results

We begin with the following auxiliary lemmas that are essential in the proofs of
our main results.

Lemma 2.1 ([1, Lemma 2.2.3]). Let f ∈ Cn ([t0,∞), (0,∞)) such that f (n)(t)f (n−1)(t)
≤ 0 for t ≥ tx for some tx ≥ t0, and assume that limt→∞ f(t) 6= 0. Then for every
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λ ∈ (0, 1), there exists a tλ ∈ [tx,∞) such that, for all t ∈ [tλ,∞),

f(t) ≥ λ

(n− 1)!
tn−1

∣∣∣f (n−1)(t)∣∣∣ .
Lemma 2.2. (Kiguradze and Chanturia [19]). Let the function f satisfy f (i)(t) > 0,
i = 0, 1, 2, . . . ,m and f (m+1)(t) ≤ 0 eventually. Then, for every l ∈ (0, 1),

f(t)

f ′(t)
≥ lt

m

eventually.

To prove our results we will make use of the additional hypothesis:

(C4) There exist real numbers l1, l2 ∈ (0, 1) such that

ψ1(t) :=
1

p(τ−1(t))

[
1−

(
τ−1(τ−1(t))

τ−1(t)

)4/l1 1

p(τ−1(τ−1(t)))

]
≥ 0, (2.1)

ψ2(t) :=
1

p(τ−1(t))

[
1−

(
τ−1(τ−1(t))

τ−1(t)

)2/l2 1

p(τ−1(τ−1(t)))

]
≥ 0, (2.2)

and

ψ3(t) :=
1

p(τ−1(t))

(
1− 1

p(τ−1(τ−1(t)))

)
≥ 0, (2.3)

for all sufficiently large t.

The following lemma is a consequence of a well known result of Kiguradze [18].

Lemma 2.3. Let conditions (C1)–(C3) be satisfied and assume that x is an eventu-
ally positive solution of equation (1.1). Then, there exists t1 ∈ [t0,∞) such that the
corresponding function z satisfies one of the following three cases:

(I) z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) > 0, z′′′′(t) > 0, and z(5)(t) ≤ 0,
(II) z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) < 0, z′′′′(t) > 0, and z(5)(t) ≤ 0,

(III) z(t) > 0, z′(t) < 0, z′′(t) > 0, z′′′(t) < 0, z′′′′(t) > 0, and z(5)(t) ≤ 0,

for t ≥ t1.

Theorem 2.4. Let conditions (C1)–(C4) hold and assume that there exists a function
η ∈ C([t0,∞),R) such that h(t) ≤ η(t) ≤ t for t ≥ t0. If there exist constants
λ1, λ2 ∈ (0, 1) such that the first-order delay differential equations

w′(t) +
λ1
24
q(t)ψ1(σ(t))h4(t)w(h(t)) = 0, (2.4)

y′(t) +
λ2
24
q(t)ψ2(σ(t))h4(t)y(h(t)) = 0, (2.5)

and

ϕ′(t) +
1

24
q(t)ψ3(σ(t))(η(t)− h(t))4ϕ(η(t)) = 0 (2.6)

are oscillatory, then equation (1.1) is oscillatory.
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Proof. Let x(t) be a nonoscillatory solution of equation (1.1), say x(t) > 0, x(τ(t)) >
0, and x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, from Lemma 2.3, z(t) satisfies
one of cases (I)-(III) for t ≥ t1.

First, we consider case (I). From the definition of z, we have

x(t) =
1

p(τ−1(t))

[
z(τ−1(t))− x(τ−1(t))

]
≥ z(τ−1(t))

p(τ−1(t))
− 1

p(τ−1(t))p(τ−1(τ−1(t)))
z(τ−1(τ−1(t))). (2.7)

Now τ(t) ≤ t and τ is strictly increasing, so τ−1 is increasing and t ≤ τ−1(t). Thus,

τ−1(t) ≤ τ−1(τ−1(t)). (2.8)

In view of (I) and Lemma 2.2 with m = 4, there exists t2 ∈ [t1,∞) such that, for
every l1 ∈ (0, 1),

z(t)

z′(t)
≥ l1

t

4
for t ≥ t2,

which yields (
z(t)

t4/l1

)′
=
z′(t)− 4

l1t
z(t)

t4/l1
≤ 0,

i.e, z(t)/t4/l1 is nonincreasing for t ≥ t2. Using the monotonicity of z(t)/t4/l1 , it
follows from (2.8) that

z
(
τ−1(τ−1(t))

)
≤
(
τ−1(τ−1(t))

)4/l1
z(τ−1(t))

(τ−1(t))
4/l1

. (2.9)

Using (2.9) in (2.7) yields

x(t) ≥ ψ1(t)z(τ−1(t)) for t ≥ t2. (2.10)

Since limt→∞ σ(t) = ∞, we can choose t3 ≥ t2 such that σ(t) ≥ t2 for all t ≥ t3.
Thus, from (2.10) we have

x(σ(t)) ≥ ψ1(σ(t))z(τ−1(σ(t))) for t ≥ t3. (2.11)

Using (2.11) in (1.1) gives

z(5)(t) + q(t)ψ1(σ(t))z(τ−1(σ(t))) ≤ 0. (2.12)

Now z(t) > 0 and z′(t) > 0 on [t3,∞) ⊆ [t2,∞), so

lim
t→∞

z(t) 6= 0,

and hence by Lemma 2.1 with n = 5 and case (I), for every λ, 0 < λ < 1, there exists
tλ ≥ t3 such that

z(t) ≥ λ

24
t4z′′′′(t) for t ≥ tλ, (2.13)

from which we see that

z(τ−1(σ(t))) ≥ λ

24
(τ−1(σ(t)))4z′′′′(τ−1(σ(t))) for t ≥ t5, (2.14)
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where τ−1(σ(t)) ≥ tλ for t ≥ t5 for some t5 ≥ tλ. Using (2.14) in (2.12) yields

z(5)(t) +
λ

24
q(t)ψ1(σ(t))(τ−1(σ(t)))4z′′′′(τ−1(σ(t))) ≤ 0, (2.15)

for every λ with 0 < λ < 1. Letting w(t) = z′′′′(t), we see that w is a positive solution
of the first-order delay differential inequality

w′(t) +
λ

24
q(t)ψ1(σ(t))h4(t)w(h(t)) ≤ 0 for t ≥ t5. (2.16)

It follows from [24, Theorem 1] that the delay differential equation (2.4) corresponding
to (2.16) also has a positive solution for all λ1 ∈ (0, 1), but this contradicts our
assumption on Eq. (2.4).

Next, we consider case (II). Since z(t) > 0, z′(t) > 0, z′′(t) > 0, and z′′′(t) < 0,
by Lemma 2.2 with m = 2, there exists t2 ∈ [t1,∞) such that, for every l2 ∈ (0, 1),

z(t)

z′(t)
≥ l2

t

2
for t ≥ t2,

which yields (
z(t)

t2/l2

)′
=
z′(t)− 2

l2t
z(t)

t2/l2
≤ 0,

i.e, z(t)/t2/l2 is nonincreasing for t ≥ t2. Using the fact that z(t)/t2/l2 is nonincreasing,
it follows from (2.8) that

z
(
τ−1(τ−1(t))

)
≤
(
τ−1(τ−1(t))

)2/l2
z(τ−1(t))

(τ−1(t))
2/l2

. (2.17)

Using (2.17) in (2.7) yields

x(t) ≥ ψ2(t)z(τ−1(t)). (2.18)

Using (2.18) in (1.1) gives

z(5)(t) + q(t)ψ2(σ(t))z(τ−1(σ(t))) ≤ 0 (2.19)

for t ≥ t3 for some t3 ≥ t2. Now z(t) > 0 and z′(t) > 0 on [t3,∞) ⊆ [t2,∞), so

lim
t→∞

z(t) 6= 0,

and hence by Lemma 2.1 with n = 5 and case (II), for every λ, 0 < λ < 1, there exists
tλ ≥ t3 such that

z(t) ≥ λ

24
t4z′′′′(t) for t ≥ tλ, (2.20)

so

z(τ−1(σ(t))) ≥ λ

24
(τ−1(σ(t)))4z′′′′(τ−1(σ(t))) for t ≥ t5, (2.21)

where τ−1(σ(t)) ≥ tλ for t ≥ t5 for some t5 ≥ tλ. Using (2.21) in (2.19) gives

z(5)(t) +
λ

24
q(t)ψ2(σ(t))(τ−1(σ(t)))4z′′′′(τ−1(σ(t))) ≤ 0, (2.22)
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for every λ with 0 < λ < 1. Letting y(t) = z′′′′(t), we see that y is a positive solution
of the first-order delay differential inequality

y′(t) +
λ

24
q(t)ψ2(σ(t))h4(t)y(h(t)) ≤ 0 for t ≥ t5. (2.23)

As in case (I), we conclude that there exists a positive solution y(t) of (2.5) for all
λ2 ∈ (0, 1), which contradicts the fact that equation (2.5) is oscillatory.

Finally, we consider case (III). Since z′(t) < 0, it follows from (2.8) that

z(τ−1(t)) ≥ z(τ−1(τ−1(t))),

and so inequality (2.7) takes the form

x(t) ≥ ψ3(t)z(τ−1(t)). (2.24)

Using (2.24) in (1.1) gives

z(5)(t) + q(t)ψ3(σ(t))z(h(t)) ≤ 0 (2.25)

for t ≥ t2 for some t2 ≥ t1. Since (−1)kz(k)(t) > 0 for k = 0, 1, 2, 3, 4 and z(5)(t) ≤ 0,
for t2 ≤ u ≤ v, we can easily see that

z(u) ≥ (v − u)4

24
z′′′′(v). (2.26)

Letting u = h(t) and v(t) = η(t) in (2.26), we obtain

z(h(t)) ≥ (η(t)− h(t))4

24
z′′′′(η(t)),

and using this in (2.25), we arrive at

z(5)(t) +
1

24
q(t)ψ3(σ(t))(η(t)− h(t))4z′′′′(η(t)) ≤ 0.

With ϕ(t) = z′′′′(t), we see that ϕ is a positive solution of the first-order delay
differential inequality

ϕ′(t) +
1

24
q(t)ψ3(σ(t))(η(t)− h(t))4ϕ(η(t)) ≤ 0. (2.27)

As before, we conclude that equation (2.6) has a positive solution, which is a contra-
diction. This completes the proof of the theorem. �

It is well known from [20] (see also [1, Lemma 2.2.9] that if

lim inf
t→∞

∫ t

g(t)

a(s)ds >
1

e
, (2.28)

then the first-order delay differential equation

x′(t) + a(t)x(g(t)) = 0 (2.29)

is oscillatory, where a, g ∈ C([t0,∞),R) with a(t) ≥ 0, g(t) < t, and limt→∞ g(t) =∞.

Thus, from Theorem 2.4, we have the following oscillation result for equation (1.1).
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Corollary 2.5. Let conditions (C1)–(C4) hold and assume that there exists a function
η ∈ C([t0,∞),R) such that h(t) < η(t) < t for t ≥ t0. If

lim inf
t→∞

∫ t

h(t)

q(s)ψ1(σ(s))h4(s)ds >
24

e
, (2.30)

lim inf
t→∞

∫ t

h(t)

q(s)ψ2(σ(s))h4(s)ds >
24

e
, (2.31)

and

lim inf
t→∞

∫ t

η(t)

q(s)ψ3(σ(s))(η(s)− h(s))4ds >
24

e
, (2.32)

then equation (1.1) is oscillatory.

Proof. From (2.30), one can choose a positive constant λ1 with 0 < λ1 < 1 such that

lim inf
t→∞

λ1

∫ t

h(t)

q(s)ψ1(σ(s))h4(s)ds >
24

e
. (2.33)

Now, in view of (2.28)–(2.29), inequality (2.33) ensures that equation (2.4) is oscil-
latory. Again, in view of (2.28)–(2.29), inequalities (2.31) and (2.32) guarantee that
equations (2.5) and (2.6) are oscillatory, respectively. So, by Theorem 2.4, the con-
clusion of Corollary 2.5 holds. �

We conclude this paper with the following examples and remarks to illustrate
the above results. Our first example is concerned with an equation with bounded
neutral coefficients in the case where p is a constant function; the second example is
for an equation with unbounded neutral coefficients where p(t)→∞ as t→∞.

Example 2.6. Consider the fifth-order differential equation of Euler type

[x(t) + 128x(t/2)](5) +
q0
t5
x(t/6) = 0, t ≥ 1. (2.34)

Here p(t) = 128, q(t) = q0/t
5, τ(t) = t/2, and σ(t) = t/6. Then, it is easy to see that

conditions (C1)–(C3) hold, and

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, and h(t) = t/3.

Choosing l1 = l2 = 2/3, we see that

ψ1(t) = 1/28, ψ2(t) = 15/211 and ψ3(t) = 127/214,

i.e., condition (C4) holds. With η(t) = t/2, we have h(t) < η(t) < t for t ≥ 1. Then,
by Corollary 2.5, Eq. (2.34) is oscillatory for

q0 > max

{
21135

e ln 3
,

21434

5e ln 3
,

22135

127e ln 2

}
=

22135

127e ln 2
≈ 2.1297× 106.

Example 2.7. Consider the equation

[x(t) + tx(t/2)](5) +
q0
t4
x(t/4) = 0, t ≥ 128. (2.35)
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Here p(t) = t, q(t) = q0/t
4, τ(t) = t/2, and σ(t) = t/4. Then, it is easy to see that

conditions (C1)–(C3) hold, and

τ−1(t) = 2t, τ−1(τ−1(t)) = 4t, and h(t) = t/2.

Choosing l1 = l2 = 1/2, we see that

ψ1(t) ≥ 1/4t, ψ2(t) ≥ 31/64t and ψ3(t) ≥ 511/210t,

so (C4) holds. With η(t) = 2t/3, it is easy to see that all conditions of Corollary 2.5
hold, and so Eq. (2.35) is oscillatory if

q0 > max

{
3 · 27

e ln 2
,

3 · 211

31e ln 2
,

35 · 215

511e ln 3
2

}
=

215 · 35

511e ln 3
2

≈ 14138.

Remark 2.8. The results of this paper can be extended to the fifth-order differential
equation with unbounded neutral coefficients(

r(t) (z′′′′(t))
γ)′

+ q(t)xβ(σ(t)) = 0, t ≥ t0 > 0,

under each of the conditions ∫ ∞
t0

r−1/γ(t)dt =∞

or ∫ ∞
t0

r−1/γ(t)dt <∞,

where r ∈ C ([t0,∞), (0,∞)), γ and β are the ratios of odd positive integers, and the
other functions in the equation are defined as in this paper.

Remark 2.9. Since it is known that p(t) ≡ −1 is a bifurcation point for the behavior
of solutions of neutral differential equations (see [12, 13]), it would be of interest to
study the oscillatory behavior of all solutions of (1.1) for p(t) ≤ −1 with p(t) 6≡ −1
for large t.
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[25] Saker, S.H., Graef, J.R., Oscillation of third-order nonlinear neutral functional dynamic
equations on time scales, Dynam. Syst. Appl., 21(2012), 583-606.

[26] Sun, Y., Hassan, T.S., Comparison criteria for odd order forced nonlinear functional
neutral dynamic equations, Appl. Math. Comput., 251(2015), 387-395.

[27] Sun, Y., Zhao, Y., Oscillatory behavior of third-order neutral delay differential equations
with distributed deviating arguments, J. Inequal. Appl., 2019(2019), Article ID 207, 1-16.

[28] Thandapani, E., Li, T., On the oscillation of third-order quasi-linear neutral functional
differential equations, Arch. Math. (Brno), 47(2011), 181-199.

[29] Thandapani, E., Padmavathy, S., Pinelas, S., Oscillation criteria for odd-order nonlinear
differential equations with advanced and delayed arguments, Electron. J. Differ. Equ.,
2014(2014), no. 174, 1-13.
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