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Non-instantaneous impulsive fractional
integro-differential equations with proportional
fractional derivatives with respect to another
function
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Abstract. This paper concerns the existence and uniqueness of solutions of non-
instantaneous impulsive fractional integro-differential equations with propor-
tional fractional derivatives with respect to another function. By the aid of the
nonlinear alternative of Leray-Schauder type and the Banach contraction map-
ping principle, the main results are demonstrated. Two examples are inserted to
illustrate the applicability of the theoretical results.
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1. Introduction

The theory of fractional differential equations has recently acquired plentiful
circulation and great significance because of its rife applications in fields of science
and engineering, see, for example [10, 17, 18, 19] and references cited therein. The field
of fractional differential equations with instantaneous impulses has become a valuable
tool for the description of sudden changes or discontinuous jumps in the evolution
progress of dynamical systems such as the shocks, disturbance and natural disasters,
see [1, 2] and references cited therein. In the instantaneous impulses the duration of
impulsive effect is relatively short as compared to the overall duration of the whole
process, see [15]. But many times it has been observed that some certain dynamics of
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evolution processes cannot be described by instantaneous impulsive dynamic systems.
For example, the injecting drugs in the bloodstream, and the consequent absorption
for the body are gradual and continuous process. In this case the impulsive action
begins at any arbitrary fixed point and continues with a finite time interval. Such
types of systems are known as non-instantaneous impulsive systems which are more
suitable to study the dynamics of evolution processes. Hernándaz et al. [6] introduced
a new class of evolution equations with non-instantaneous impulses of the form

x′(t) = Ax(t) + f (t, x(t)) , t ∈ (sk, tk+1], k = 0, 1, · · · ,m,

y(t) = gk (t, x(t)) , t ∈ (tk, sk], k = 1, · · · ,m,

x(0) = x0,

(1.1)

where A : D(A) ⊆ E → E, is the generator of a C0-semigroup {T (t) : t ≥ 0} on a
Banach space E.

Recently, Agarwal et al. in [3] constructed monotone successive approximations
for solutions to initial value problems for a scalar nonlinear Caputo fractional differ-
ential equation with non-instantaneous impulses of the form

C
0 D

qx(t) = f (t, x(t)) , t ∈ (tk, sk], k = 0, 1, · · · , p, p+ 1

x(t) = φk (t, x(t), x(sk − 0)) , t ∈ (sk, tk+1], k = 1, · · · , p,

x(0) = x0,

(1.2)

where C
0 D

q is the Caputo fractional derivative of order 0 < q < 1.

In [12], Kumar et al. studied the sufficient conditions for the existence of mild
solution of Atangana-Baleanu fractional differential system with non-instantaneous
impulses of the form

ABCDρx(t) = Ax(t) + f (t, x(t)) , t ∈
⋃m
k=0(sk, tk+1],

x(t) = γk (t, x(t)) , t ∈
⋃m
k=1(tk, sk],

x(0) = x0 − g(x),

(1.3)

where ABCDρ is the Atangana-Baleanu-Caputo fractional derivative of order
0 < ρ < 1 and A : D(A) ⊆ X → X, is the generator of ρ-resolvent operator
{Sρ(t) : t ≥ 0}.

In [14], Luo et al. considered the existence of solutions for a kind of ψ-Hilfer
fractional differential inclusions involving non-instantaneous impulses of the form

HDα,β;ψ

t+0
x(t) ∈ A(t)x(t) +G (t, x(t)) , t ∈ (sk, tk+1] ∩ [t0, T ], k = 0, 1, · · · , p,

x(t) =
φk (t, x(t), x(tk − 0))

Γ(γ)Γ(2− γ)
, t ∈

⋃m
k=1(tk, sk] ∩ [t0, T ], k = 1, · · · , p,

x(t0) = x0,

(1.4)
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where HDα,β;ψ

t+0
is the ψ-Hilfer fractional derivative of order α ∈ (0, 1) and type

0 < β ≤ 1, with respect to function ψ, A(t) : D ⊆ X → X is a bounded opera-
tor and G : (sk, tk+1] ∩ [t0, T ] ×X → P (X) is a multi-valued mapping, P (X) is the
family of all nonempty subsets of a real separable Banach space X.
For more recent contributions relevant to non-instantaneous impulsive fractional dif-
ferential equations, we refer the reader to the papers [11, 13, 16, 20, 21] and references
cited therein.

Motivated by the above papers, we investigate the following non-instantaneous
impulsive fractional integro-differential equation:

aD
α,ρ,gy(t) = f

(
t, y(t), aI

β,ρ,gy(t)
)
, t ∈ (sk, tk+1] ⊂ J, k = 0, 1, · · · ,m,

y(t) = ψk
(
t, y
(
t+k
))
, t ∈ (tk, sk], k = 1, · · · ,m,

aI
1−α,ρ,gy(a) = y0 ∈ R,

(1.5)

where J = [a, T ], T > a, 0 < α ≤ 1, β, ρ > 0, aD
α,ρ,g is the proportional fractional

derivative with respect to another function g, aI
β,ρ,g is the proportional fractional

integral with respect to another function g, and f ∈ C(J × R2,R).
Here, a = t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tm−1 ≤ sm ≤ tm ≤ tm+1 = T are fixed
numbers, y

(
t+k
)

= limε→0+ y (tk + ε), and ψk ∈ C([tk, sk],R), k = 1, · · · ,m.

Remark 1.1.
• For the non-instantaneous impulsive fractional integro-differential equation (1.5),

the (tk, sk], k = 1, · · · ,m are called intervals of non-instantaneous impulses and
ψk (t, y) , k = 1, · · · ,m are called non-instantaneous impulsive functions.
• If tk = sk−1, k = 1, · · · ,m, then the non-instantaneous impulsive fractional

integro-differential equation (1.5) reduces to an impulsive fractional integro-
differential equation.

In recent years, there are various new definitions of fractional derivatives, among
these new definitions the so-called fractional conformable derivative, which is intro-
duced by Khalil et al. [9]. Unfortunately, this new definition has an obstacle that it
does not tend to the original function as the order ρ tends to zero. Anderson et al. [4]
were able to define the proportional (conformable) derivative of order ρ by

PDρ
t f(t) = κ1(ρ, t)f(t) + κ0(ρ, t)f ′(t),

where f is differentiable function and κ0, κ1 : [0, 1] × R → [0,∞) are continuous
functions of the variable t and the parameter ρ ∈ [0, 1] which satisfy the following
conditions for all t ∈ R:

lim
ρ→0+

κ0(ρ, t) = 0, lim
ρ→1−

κ0(ρ, t) = 1, κ0(ρ, t) 6= 0, ρ ∈ (0, 1], (1.6)

lim
ρ→0+

κ1(ρ, t) = 1, lim
ρ→1−

κ1(ρ, t) = 0, κ1(κ, t) 6= 0, ρ ∈ [0, 1). (1.7)

This newly defined local derivative tends to the original function as the order ρ tends
to zero and hence improved the conformable derivatives. In [7, 8], Jarad et al. proposed
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more general forms and properties of proportional derivative of a function f with
respect to another function g. The kernel obtained in their investigation contains an
exponential function and is function dependent (more details can be seen in Section 2).

The novelty of the current work is that, to the best knowledge of the author,
no one has yet been treated with non-instantaneous impulsive fractional differential
equations involving the proportional fractional derivative with respect to another
function.

2. Preliminaries

Let C(J,R) be the Banach space of all continuous functions from J into R with
the norm

‖y‖C = sup
t∈J
|y(t)|.

We consider the Banach space

PC(J,R) = {y : J → R : y ∈ C((tk, tk+1],R), k = 0, 1, · · · ,m and there exist y
(
t−k
)

and y
(
t+k
)
, k = 1, · · · ,m with y

(
t−k
)

= y (tk)},

with the norm

‖y‖PC = sup
t∈J
|y(t)|.

Now, we recall some basic definitions and properties of fractional proportional
derivative and integral of a function with respect to another function. The terms and
notations are adopted from [7, 8].

Definition 2.1. (The proportional derivative of a function with respect to another
function) For ρ ∈ [0, 1], let the functions κ0, κ1 : [0, 1] × R → [0,∞) be continuous
such that for all t ∈ R we have

lim
ρ→0+

κ1(ρ, t) = 1, lim
ρ→0+

κ0(ρ, t) = 0, lim
ρ→1−

κ1(ρ, t) = 0, lim
ρ→1−

κ0(ρ, t) = 1,

and κ1(ρ, t) 6= 0, ρ ∈ [0, 1], κ0(ρ, t) 6= 0, ρ ∈ [0, 1]. Let g(t) be a strictly increasing
continuous function. Then the proportional differential operator of order ρ of f with
respect to g is defined by

Dρ,gf(t) = κ1(ρ, t)f(t) + κ0(ρ, t)
f ′(t)

g′(t)
. (2.1)

For the restricted case when κ1(ρ, t) = 1− ρ and κ0(ρ, t) = ρ, (2.1) becomes

Dρ,gf(t) = (1− ρ)f(t) + ρ
f ′(t)

g′(t)
. (2.2)
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Definition 2.2. (The proportional integral of a function with respect to another func-
tion) For ρ ∈ (0, 1], α ∈ C, <(α) > 0 and g ∈ C[a, b], g′(t) > 0, we define the left and
right fractional integrals of f with respect to g by

aI
α,ρ,gf(t) =

1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
f(s)g′(s)ds, (2.3)

Iα,ρ,gb f(t) =
1

ραΓ(α)

∫ b

t

e
ρ−1
ρ (g(s)−g(t)) (g(s)− g(t))

α−1
f(s)g′(s)ds, (2.4)

respectively.

Definition 2.3. For ρ ∈ (0, 1], α ∈ C, <(α) > 0, we define the left fractional derivative
of f with respect to g as

aD
α,ρ,gf(t) = Dn,ρ,g

aI
n−α,ρ,gf(t)

=
Dn,ρ,g
t

ρn−αΓ(n− α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

n−α−1
f(s)g′(s)ds, (2.5)

and the right fractional derivative of f with respect to g as

Dα,ρ,g
b f(t) = 	D

n,ρ,gIn−α,ρ,gb f(t)

=
	D

n,ρ,g

ρn−αΓ(n− α)

∫ b

t

e
ρ−1
ρ (g(s)−g(t)) (g(s)− g(t))

n−α−1
f(s)g′(s)ds, (2.6)

where n = [<(α)] + 1, Dn,ρ,g = Dρ,gDρ,g · · ·Dρ,g︸ ︷︷ ︸
n times

and

	D
ρ,g := (1− ρ)f(t)− ρf

′(t)

g′(t)
, 	D

n,ρ,g = 	D
ρ,g
	D

ρ,g · · ·	Dρ,g︸ ︷︷ ︸
n times

.

Lemma 2.4. ([8]) If ρ ∈ (0, 1], <(α) > 0 and <(β) > 0. Then, for f is continuous
and defined for t ≥ a, we have

aI
α,ρ,g

(
aI
β,ρ,gf

)
(t) = aI

β,ρ,g (aI
α,ρ,gf) (t) =

(
aI
α+β,ρ,gf

)
(t), (2.7)

Iα,ρ,gb

(
Iβ,ρ,gb f

)
(t) = Iβ,ρ,gb (Iα,ρ,gb f) (t) =

(
Iα+β,ρ,gb f

)
(t). (2.8)

Lemma 2.5. ([7]) Let <[α] > 0, n = −[−<(α)], f ∈ L1(a, b) and (aI
α,ρ,gf)(t) ∈

ACn[a, b]. Then

aI
α,ρ,g

aD
α,ρ,gf(t) = f(t)− e

ρ−1
ρ (g(t)−g(a))

n∑
j=1

(aI
j−α,ρ,gf)(a+)

(g(t)− g(a))
α−j

ρα−jΓ(α+ 1− j)
.

(2.9)
For 0 < α ≤ 1, we have

aI
α,ρ,g

aD
α,ρ,gf(t) = f(t)− e

ρ−1
ρ (g(t)−g(a))(aI

1−α,ρ,gf)(a+)
(g(t)− g(a))

α−1

ρα−1Γ(α)
. (2.10)

Lemma 2.6. Let α, β > 0. Then, for any a, b ∈ R, we get

Ig :=

∫ b

a

(g(b)− g(s))β−1(g(s)− g(a))α−1g′(s)ds = (g(b)− g(a))α+β−1B(α, β),
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where B(·, ·) is the well-known beta function defined as

B(m,n) =

∫ 1

0

(1− s)m−1sn−1ds, m > 0, n > 0.

Proof. By the substitution g(s) = g(b)z, the integral Ig becomes

Ig = (g(b))α+β−1
∫ 1

g(a)
g(b)

(1− z)β−1
(
z − g(a)

g(b)

)α−1
dz.

Using the following well-known integral∫ b

a

(s− a)m−1(b− s)n−1ds = (b− a)m+n−1B(m,n) = (b− a)m+n−1 Γ(m)Γ(n)

Γ(m+ n)
,

m > 0, n > 0, we get

Ig = (g(b))α+β−1
(

1− g(a)

g(b)

)α+β−1
B(α, β).

The proof is finished. �

3. Existence and uniqueness results

In order to investigate the existence of solution for (1.5), we consider the following
auxiliary lemma

Lemma 3.1. Let 0 < α ≤ 1 and let h : J → R be an integrable function. Then the
linear problem

aD
α,ρ,gy(t) = h(t), t ∈ (sk, tk+1] ⊂ J, k = 0, 1, · · · ,m,

y(t) = ψk
(
t, y
(
t+k
))
, t ∈ (tk, sk], k = 1, · · · ,m,

aI
1−α,ρ,gy(a) = y0 ∈ R,

(3.1)

has a solution given by

y(t) =



e
ρ−1
ρ (g(t)−g(a)) (g(t)− g(a))

α−1

ρα−1Γ(α)
y0

+
1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
h(s)g′(s)ds , t ∈ [a, t1],

ψk
(
t, y
(
t+k
))
, t ∈ (tk, sk], k = 1, · · · ,m,

e
ρ−1
ρ (g(t)−g(sk))

(
(g(t)− g(a))

(g(sk)− g(a))

)α−1
×
[
ψk
(
sk, y

(
t+k
))
− 1

ραΓ(α)

∫ sk

a

e
ρ−1
ρ (g(sk)−g(s)) (g(sk)−g(s))

α−1
h(s)g′(s)ds

]
+

1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
h(s)g′(s)ds , t ∈ (sk, tk+1],

k = 1, · · · ,m.
(3.2)
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Proof. Let t ∈ (0, t1]. Then, using Lemma 2.5, the problem aD
α,ρ,gy(t) = h(t), t ∈ (a, t1],

aI
1−α,ρ,gy(a) = y0 ∈ R,

(3.3)

has a solution given by

y(t) = e
ρ−1
ρ (g(t)−g(a)) (g(t)− g(a))

α−1

ρα−1Γ(α)
y0

+
1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
h(s)g′(s)ds , t ∈ [0, t1].

For t ∈ (t1, s1], y(t) = ψ1

(
t, y
(
t+1
))

. Again, using Lemma 2.5 and applying the
proportional fractional integral aI

α,ρ,g over (a, t2] to both sides of the problem aD
α,ρ,gy(t) = h(t), t ∈ (s1, t2],

y(s1) = ψ1

(
s1, y

(
t+1
))
,

(3.4)

we get

y(t) = e
ρ−1
ρ (g(t)−g(a)) (g(t)− g(a))

α−1

ρα−1Γ(α)
aI

1−α,ρ,gy(a)

+
1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
h(s)g′(s)ds. (3.5)

Substituting t = s1 in (3.5), we get

y(s1) = e
ρ−1
ρ (g(s1)−g(a)) (g(s1)− g(a))

α−1

ρα−1Γ(α)
aI

1−α,ρ,gy(a)

+
1

ραΓ(α)

∫ s1

a

e
ρ−1
ρ (g(s1)−g(s)) (g(s1)− g(s))

α−1
h(s)g′(s)ds. (3.6)

From the second equation of (3.3), we get

aI
1−α,ρ,gy(a) = e−

ρ−1
ρ (g(s1)−g(a)) Γ(α) (g(s1)− g(a))

1−α

ρ1−α

×
[
ψ1

(
s1, y

(
t+k
))
− 1

ραΓ(α)

∫ s1

a

e
ρ−1
ρ (g(s1)−g(s)) (g(s1)−g(s))

α−1
h(s)g′(s)ds

]
. (3.7)

Therefore, by substituting (3.7) in (3.5), we get

y(t) = e
ρ−1
ρ (g(t)−g(s1))

(
(g(t)− g(a))

(g(s1)− g(a))

)α−1
×
[
ψ1

(
s1, y

(
t+1
))
− 1

ραΓ(α)

∫ s1

a

e
ρ−1
ρ (g(s1)−g(s)) (g(s1)− g(s))

α−1
h(s)g′(s)ds

]
+

1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
h(s)g′(s)ds.
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For t ∈ (t2, s2],

y(t) = ψ2

(
t, y
(
t+2
))
.

Performing the same process, we deduce when t ∈ (s2, t3] that the solution of the
problem

 aD
α,ρ,gy(t) = h(t), t ∈ (s2, t3],

y(s2) = ψ2

(
s2, y

(
t+2
))
,

(3.8)

is given by

y(t) = e
ρ−1
ρ (g(t)−g(s2))

(
(g(t)− g(a))

(g(s2)− g(a))

)α−1
×
[
ψ2

(
s2, y

(
t+2
))
− 1

ραΓ(α)

∫ s2

a

e
ρ−1
ρ (g(s2)−g(s)) (g(s2)− g(s))

α−1
h(s)g′(s)ds

]
+

1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
h(s)g′(s)ds.

In general, when t ∈ (sk, tk+1], the solution of the problem

 aD
α,ρ,gy(t) = h(t), t ∈ (sk, tk+1],

y(sk) = ψk
(
sk, y

(
t+k
))
,

(3.9)

is given by

y(t) = e
ρ−1
ρ (g(t)−g(sk))

(
(g(t)− g(a))

(g(sk)− g(a))

)α−1
×
[
ψk
(
sk, y

(
t+k
))
− 1

ραΓ(α)

∫ sk

a

e
ρ−1
ρ (g(sk)−g(s)) (g(sk)− g(s))

α−1
h(s)g′(s)ds

]
+

1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
h(s)g′(s)ds.

This shows that y(t) satisfies (3.2). This completes the proof. �



Impulsive fractional integro-differential equations 551

By virtue of Lemma 3.1, we deduce that the solution of the non-instantaneous
impulsive fractional integro-differential equation (1.5) is given by

y(t) =



e
ρ−1
ρ (g(t)−g(a)) (g(t)− g(a))

α−1

ρα−1Γ(α)
y0

+
1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
f
(
s, y(s), aI

β,ρ,gy(s)
)
g′(s)ds,

t ∈ [a, t1],

ψk
(
t, y
(
t+k
))
, t ∈ (tk, sk], k = 1, · · · ,m,

e
ρ−1
ρ (g(t)−g(sk))

(
(g(t)− g(a))

(g(sk)− g(a))

)α−1 [
ψk
(
sk, y

(
t+k
))

− 1

ραΓ(α)

∫ sk

a

e
ρ−1
ρ (g(sk)−g(s)) (g(sk)−g(s))

α−1
f
(
s, y(s), aI

β,ρ,gy(s)
)
g′(s)ds

]
+

1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)− g(s))

α−1
f
(
s, y(s), aI

β,ρ,gy(s)
)
g′(s)ds,

t ∈ (sk, tk+1], k = 1, · · · ,m.
(3.10)

For ease of handling later, we will use the following brief constants:

Θ1 := (g(t1)− g(a))
α
, Θ2 := max {(g(tk+1)− g(a))

α
, k = 1, · · · ,m} ,

Θ3 :=
(g(t1)− g(a))

α

ραΓ(α+ 1)
, Θ4 :=

(g(t1)− g(a))
α+β

ρα+βΓ(α+ β + 1)
,

Ξ1 :=
(g(t1)− g(a))

α+β

ρβΓ(β + 1)
,

Ξ2 := max

{(
(g(tk+1)− g(a))

(g(sk)− g(a))

)α−1
, k = 1, · · · ,m

}
,

Ξ3 := max

{
(g(tk+1)− g(a))

α+β

ρβΓ(β + 1)
, k = 1, · · · ,m

}
,

Ξ4 := max

{
(g(tk+1)− g(a))

α

ραΓ(α+ 1)
, k = 1, · · · ,m

}
,

Ξ5 := max

{
(g(tk+1)− g(a))

α+β

ρα+βΓ(α+ β + 1)
, k = 1, · · · ,m

}
.

(3.11)

In order to investigate the main results, the following hypotheses will be imposed.

(H1). The function f : J × R2 → R is continuous and ψk ∈ C([tk, sk],R),
k = 1, · · · ,m.

(H2). There exists a constant Lf > 0 such that

|f(t, u1, v1)− f(t, u2, v2)| ≤ Lf (|u1 − u2|+ |v1 − v2|) ,

for each t ∈ [sk, tk+1], k = 0, 1, · · · ,m, for all ui, vi ∈ R, i = 1, 2.
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(H3). There exist constants Lk > 0, k = 1, · · · ,m such that

|ψk(t, u1)− ψk(t, u2)| ≤ Lk|u1 − u2|,

for each t ∈ [tk, sk], k = 1, · · · ,m, for all u1, u2 ∈ R.
(H4). There exist positive constants `0, `1 and `2 such that

|f(t, u, v)| ≤ `0 + `1|u|+ `2|v|,

for each t ∈ [sk, tk+1], k = 0, 1, · · · ,m, for all u, v ∈ R.
(H5). There exist positive constants ℵ0 and ℵ10 such that

|ψk(t, u)| ≤ ℵ0 + ℵ1|u|,

for each t ∈ [tk, sk], k = 1, · · · ,m, for all u.
(H6). There exists a constant M > 0 such that

max

{
M

Θ3(`0 + `1M) + Θ4`2M
,

M

ℵ0 + ℵ1M
,

M

Ξ2

[
ℵ0 + ℵ1M + Ξ4(`0 + `1M) + Ξ5`2M

]
+ Ξ4(`0 + `1M) + Ξ5`2M

}
> 1.

For the purpose of convenience, for each t ∈ [a, T ] and each y1, y2 ∈ PC(J,R), we
have

|aIβ,ρ,gy1(t)− aI
β,ρ,gy2(t)|

≤ 1

ρβΓ(β)

∫ t

a

∣∣∣e ρ−1
ρ (g(t)−g(s))

∣∣∣ (g(t)− g(s))
β−1 |y1(s)− y2(s)|g′(s)ds

≤ (g(T )− g(a))
β

ρβΓ(β + 1)
‖y1 − y2‖PC . (3.12)

Also, since g is monotonic increasing, then ∀t > a, ρ ∈ (0, 1), we have∣∣∣e ρ−1
ρ (g(t)−g(a))

∣∣∣ < 1.

The following result is based on the Banach contraction mapping principle.

Theorem 3.2. Assume that the hypotheses (H1)-(H3) are satisfied. If

Ω := max

{
Lf (Θ1 + Ξ1)

ραΓ(α+ 1)
,Ξ2

(
Lk +

Lf (Θ2 + Ξ3)

ραΓ(α+ 1)

)
+
Lf (Θ2 + Ξ3)

ραΓ(α+ 1)

}
< 1, (3.13)

then the non-instantaneous impulsive fractional integro-differential equation (1.5) has
a unique solution on J .

Proof. We transform the problem of non-instantaneous impulsive fractional integro-
differential equation (1.5) into a fixed point problem.
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Define an operator N : PC(J,R)→ PC(J,R) by

(N y) (t)=



e
ρ−1
ρ (g(t)−g(a)) (g(t)− g(a))

α−1

ρα−1Γ(α)
y0

+
1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s)) (g(t)−g(s))

α−1
f(s, y(s), aI

β,ρ,gy(s))g′(s)ds,

t ∈ [a, t1];

ψk
(
t, y
(
t+k
))
, t ∈ (tk, sk], k = 1, · · · ,m;

e
ρ−1
ρ (g(t)−g(sk))

(
(g(t)− g(a))

(g(sk)− g(a))

)α−1 [
ψk
(
sk, y

(
t+k
))

− 1

ραΓ(α)

∫ sk

a

e
ρ−1
ρ (g(sk)−g(s))(g(sk)−g(s))α−1f(s, y(s), aI

β,ρ,gy(s))g′(s)ds
]

+
1

ραΓ(α)

∫ t

a

e
ρ−1
ρ (g(t)−g(s))(g(t)− g(s))α−1f

(
s, y(s), aI

β,ρ,gy(s)
)
g′(s)ds,

t ∈ (sk, tk+1], k = 1, · · · ,m.
(3.14)

Obviously, it is easy to see that the operator N is well defined according to the
continuity hypotheses of f and ψk. Next, we shall show that N is a contraction.

Case I. For each t ∈ [a, t1] and each y1, y2 ∈ PC(J,R), using (3.11) and (3.12), we
have

|(N y1) (t)− (N y2) (t)|

≤ 1

ραΓ(α)

∫ t

a

∣∣∣e ρ−1
ρ (g(t)−g(s))

∣∣∣ (g(t)− g(s))
α−1 ∣∣f (s, y1(s), aI

β,ρ,gy1(s)
)

−f
(
s, y2(s), aI

β,ρ,gy2(s)
)∣∣ g′(s)ds

≤ 1

ραΓ(α)

∫ t

a

(g(t)− g(s))
α−1

Lf (|y1(s)− y2(s)|

+|aIβ,ρ,gy1(s)− aI
β,ρ,gy2(s)|

)
g′(s)ds

≤ Lf
ραΓ(α)

∫ t

a

(g(t)− g(s))
α−1

(
‖y1 − y2‖PC +

(g(t1)− g(a))
β

ρβΓ(β + 1)
‖y1 − y2‖PC

)
g′(s)ds

≤ Lf
ραΓ(α+ 1)

(Θ1 + Ξ1) ‖y1 − y2‖PC .

Case II. For each t ∈ (tk, sk], k = 1, · · · ,m and each y1, y2 ∈ PC(J,R), we obtain

|(N y1) (t)− (N y2) (t)| ≤ Lk‖y1 − y2‖PC .
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Case III. For each t ∈ (sk, tk+1], k = 1, · · · ,m and each y1, y2 ∈ PC(J,R), using
(3.12), we get

|(N y1) (t)− (N y2) (t)|

≤

∣∣∣∣∣e ρ−1
ρ (g(t)−g(sk))

(
(g(t)− g(a))

(g(sk)− g(a))

)α−1∣∣∣∣∣
[
|ψk

(
sk, y1

(
t+k
))
− ψk

(
sk, y2

(
t+k
))
|

+
1

ραΓ(α)

∫ sk

a

∣∣∣e ρ−1
ρ (g(sk)−g(s))

∣∣∣ (g(sk)− g(s))
α−1 ∣∣f (s, y1(s), aI

β,ρ,gy1(s)
)

−f
(
s, y2(s), aI

β,ρ,gy2(s)
)∣∣ g′(s)ds]

+
1

ραΓ(α)

∫ t

a

∣∣∣e ρ−1
ρ (g(t)−g(s))

∣∣∣ (g(t)− g(s))
α−1 ∣∣f (s, y1(s), aI

β,ρ,gy1(s)
)

−f
(
s, y2(s), aI

β,ρ,gy2(s)
)∣∣ g′(s)ds

≤

[(
(g(tk+1)− g(a))

(g(sk)− g(a))

)α−1
×

(
Lk +

Lf
ραΓ(α+ 1)

[
(g(tk+1)− g(a))

α
+

(g(tk+1)− g(a))
α+β

ρβΓ(β + 1)

])

+
Lf

ραΓ(α+ 1)

[
(g(tk+1)− g(a))

α
+

(g(tk+1)− g(a))
α+β

ρβΓ(β + 1)

]]
‖y1 − y2‖PC

≤

[
Ξ2

(
Lk +

Lf (Θ2 + Ξ3)

ραΓ(α+ 1)

)
+
Lf (Θ2 + Ξ3)

ραΓ(α+ 1)

]
‖y1 − y2‖PC

Therefore, one has

‖N y1 −N y2‖PC ≤ Ω ‖y1 − y2‖PC .
Since, by (3.13), Ω < 1. Then, the operator N is a contraction and there exists a
unique solution y ∈ PC(J,R) of the non-instantaneous impulsive fractional integro-
differential equation (1.5). This completes the proof. �

Now, we prove the existence of solutions of the non-instantaneous impulsive
fractional integro-differential equation (1.5) by applying the following Leray-Schauder
nonlinear alternative.

Theorem 3.3. [5] (Leray-Schauder nonlinear alternative) Let E be a Banach space,
D a closed convex subset of E and S ⊂ D an open subset with 0 ∈ S. Then each
continuous compact mapping N : S → D has at least one of the following properties:

i. N has a fixed point in S, or
ii. there exists w ∈ ∂S (the boundary of S in D) and ξ ∈ (0, 1) with w = ξN (w).

Theorem 3.4. Assume that the hypotheses (H4)-(H6) are satisfied.If

max {Θ3`1 + Θ4`2, ℵ1, Ξ2 [ℵ1 + Ξ4`1 + Ξ5`2] + Ξ4`1 + Ξ5`2} < 1. (3.15)
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Then the non-instantaneous impulsive fractional integro-differential equation (1.5) has
at least one solution on J .

Proof. Let N be defined by (3.14) and Br = {y ∈ PC(J,R) : ‖y‖PC ≤ r} be a closed
convex subset of PC(J,R), where

r ≥ max

{
Θ3`0

1− (Θ3`1 + Θ4`2)
,
ℵ0

1− ℵ1
,

Ξ2 [ℵ0 + Ξ4`0] + Ξ4`0
1− (Ξ2 [ℵ1 + Ξ4`1 + Ξ5`2] + Ξ4`1 + Ξ5`2)

}
.

(3.16)
The proof will be given in several steps.

Step 1. N is continuous.
Let yn be a sequence such that yn → y in PC(J,R).

Case I. For each t ∈ [a, t1], we have

|(N yn)(t)− (N y)(t)|

≤ 1

ραΓ(α)

∫ t

a

∣∣∣e ρ−1
ρ (g(t)−g(s))

∣∣∣ (g(t)− g(s))
α−1 ∣∣f (s, yn(s), aI

β,ρ,gyn(s)
)

−f
(
s, y(s), aI

β,ρ,gy(s)
)∣∣ g′(s)ds

≤ (g(t1)− g(a))
α

ραΓ(α+ 1)

∥∥f (·, yn(·), aIβ,ρ,gyn(·)
)
− f

(
·, y(·), aIβ,ρ,gy(·)

)∥∥
PC

.

Case II. For each t ∈ (tk, sk], k = 1, · · · ,m, we get

|(N yn)(t)− (N y)(t)| ≤ ‖ψk (·, yn (·))− ψk (·, y (·))‖PC .
Case III. For each t ∈ (sk, tk+1], k = 1, · · · ,m, we obtain that

|(N yn)(t)− (N y)(t)|

≤
(

(g(t)− g(a))

(g(sk)− g(a))

)α−1 [
|ψk

(
sk, yn

(
t+k
))
− ψk

(
sk, y

(
t+k
))
|

+
1

ραΓ(α)

∫ sk

a

(g(sk)− g(s))
α−1 ∣∣f (s, yn(s), aI

β,ρ,gyn(s)
)

−f
(
s, y(s), aI

β,ρ,gy(s)
)∣∣ g′(s)ds]

+
1

ραΓ(α)

∫ t

a

(g(t)− g(s))
α−1 ∣∣f (s, yn(s), aI

β,ρ,gyn(s)
)

−f
(
s, y(s), aI

β,ρ,gy(s)
)∣∣ g′(s)ds

≤
(

(g(tk+1)− g(a))

(g(sk)− g(a))

)α−1 [
‖ψk (·, yn (·))− ψk (·, y (·)) ‖PC

+
(g(sk)− g(a))

α

ραΓ(α+ 1)

∥∥f (·, yn(·), aIβ,ρ,gyn(·)
)
− f

(
·, y(·), aIβ,ρ,gy(·)

)∥∥
PC

]

+
(g(tk+1)− g(a))

α

ραΓ(α+ 1)

∥∥f (·, yn(·), aIβ,ρ,gyn(·)
)
− f

(
·, y(·), aIβ,ρ,gy(·)

)∥∥
PC

.
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Since the functions f and ψk are continuous. Then, from above inequalities, we deduce
that ‖N yn −N y‖PC → 0 as n→∞.
Step 2. N is uniformly bounded.
Case I. For each t ∈ [a, t1] and for any y ∈ Br, using (3.11) and Lemma 2.6, we have

|(N y)(t)| ≤ 1

ραΓ(α)

∫ t

a

(g(t)− g(s))
α−1 ∣∣f (s, y(s), aI

β,ρ,gy(s)
)∣∣ g′(s)ds

≤ 1

ραΓ(α)

∫ t

a

(g(t)− g(s))
α−1 (

`0 + `1|y(s)|+ `2|aIβ,ρ,gy(s)|
)
g′(s)ds

≤ 1

ραΓ(α)

∫ t

a

(g(t)− g(s))
α−1 (

`0 + `1|y(s)|+ `2 aI
β,ρ,g|y(s)|

)
g′(s)ds

≤ 1

ραΓ(α)

∫ t

a

(g(t)− g(s))
α−1

(
`0 + `1‖y‖PC

+
`2

ρβΓ(β)

∫ s

a

(g(s)− g(τ))
β−1 ‖y‖PC g′(τ)dτ

)
g′(s)ds

≤ 1

ραΓ(α)

∫ t

a

(g(t)− g(s))α−1

(̀
0+`1r +

`2r

ρβΓ(β + 1)
(g(s)− g(a))β

)
g′(s)ds

≤ Θ3(`0 + `1r) + Θ4`2r ≤ r.

Case II. For each t ∈ (tk, sk], k = 1, · · · ,m, and for any y ∈ Br, we get

|(N y)(t)| ≤
∣∣ψk (t, y (t+k ))∣∣

≤ ℵ0 + ℵ1|y(t+k )|
≤ ℵ0 + ℵ1‖y‖PC
≤ ℵ0 + ℵ1r ≤ r.

Case III. For each t ∈ (sk, tk+1], k = 1, · · · ,m, and for any y ∈ Br, using (3.11) and
Lemma 2.6, we obtain

|(N y)(t)| ≤
(

(g(t)− g(a))

(g(sk)− g(a))

)α−1 [
ℵ0 + ℵ1|y(t+k )|

+
1

ραΓ(α)

∫ sk

a

(g(sk)− g(s))
α−1 (

`0 + `1|y(s)|+ `2|aIβ,ρ,gy(s)|
)
g′(s)ds

]

+
1

ραΓ(α)

∫ t

a

(g(t)− g(s))
α−1 (

`0 + `1|y(s)|+ `2|aIβ,ρ,gy(s)|
)
g′(s)ds

≤
(

(g(tk+1)−g(a))

(g(sk)− g(a))

)α−1[
ℵ0+ℵ1r+

(g(tk+1)−g(a))
α

ραΓ(α+ 1)
(`0+`1r)+

(g(tk+1)−g(a))
α+β

ρα+βΓ(α+β+1)
`2r

]

+
(g(tk+1)− g(a))

α

ραΓ(α+ 1)
(`0 + `1r) +

(g(tk+1)− g(a))
α+β

ρα+βΓ(α+ β + 1)
`2r

≤ Ξ2 [ℵ0 + ℵ1r + Ξ4(`0 + `1r) + Ξ5`2r] + Ξ4(`0 + `1r) + Ξ5`2r ≤ r.
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From the above three inequalities, using (3.16), we infer that ‖N y‖PC ≤ r. Hence,
the operator N maps bounded sets into bounded sets of PC(J,R).
Step 3. N maps bounded sets into equicontinuous sets.
Case I. For the interval t ∈ [a, t1], a ≤ ϑ1 < ϑ2 ≤ t1 and for any y ∈ Br, we have

|(N y)(ϑ2)− (N y)(ϑ1)|

≤

∣∣∣∣∣e ρ−1
ρ (g(ϑ2)−g(a)) (g(ϑ2)− g(a))

α−1

ρα−1Γ(α)
− e

ρ−1
ρ (g(ϑ1)−g(a)) (g(ϑ1)− g(a))

α−1

ρα−1Γ(α)

∣∣∣∣∣ |y0|
+

1

ραΓ(α)

∫ ϑ1

a

∣∣∣(g(ϑ2)− g(s))
α−1 − (g(ϑ1)− g(s))

α−1
∣∣∣

×
(
`0 + `1|y(s)|+ `2 aI

β,ρ,g|y(s)|
)
g′(s)ds

+
1

ραΓ(α)

∫ ϑ2

ϑ1

(g(ϑ2)− g(s))
α−1 (

`0 + `1|y(s)|+ `2 aI
β,ρ,g|y(s)|

)
g′(s)ds

≤

∣∣∣∣∣e ρ−1
ρ (g(ϑ2)−g(a)) (g(ϑ2)− g(a))

α−1

ρα−1Γ(α)
− e

ρ−1
ρ (g(ϑ1)−g(a)) (g(ϑ1)− g(a))

α−1

ρα−1Γ(α)

∣∣∣∣∣ |y0|
+

`0 + `1r

ραΓ(α+ 1)
(2 (g(ϑ2)− g(ϑ1))

α
+ |(g(ϑ2)− g(a))

α − (g(ϑ1)− g(a))
α|)

+
`2r

ρα+βΓ(α)Γ(β + 1)

(∫ ϑ1

a

∣∣∣(g(ϑ2)− g(s))
α−1 − (g(ϑ1)− g(s))

α−1
∣∣∣

× (g(s)− g(a))
β
g′(s)ds

+

∫ ϑ2

ϑ1

(g(ϑ2)− g(s))
α−1

(g(s)− g(a))
β
g′(s)ds

)
→ 0, as ϑ2 → ϑ1.

Case II. For each t ∈ (tk, sk], k = 1, · · · ,m, a ≤ ϑ1 < ϑ2 ≤ t1 and for any y ∈ Br, one
has

|(N y)(ϑ2)− (N y)(ϑ1)| ≤
∣∣ψk (ϑ2, y (t+k ))− ψk (ϑ1, y (t+k ))∣∣→ 0, as ϑ2 → ϑ1.

Case III. For each t ∈ (sk, tk+1], k = 1, · · · ,m, a ≤ ϑ1 < ϑ2 ≤ t1 and for any y ∈ Br,
using Lemma 2.6, one has

|(N y)(ϑ2)− (N y)(ϑ1)|

≤

∣∣∣∣∣e ρ−1
ρ (g(ϑ2)−g(sk))

(
(g(ϑ2)− g(a))

(g(sk)− g(a))

)α−1
− e

ρ−1
ρ (g(ϑ1)−g(sk))

(
(g(ϑ1)− g(a))

(g(sk)− g(a))

)α−1∣∣∣∣∣
×
[
|ψk

(
sk, y

(
t+k
))
|+ 1

ραΓ(α)

∫ sk

a

(g(sk)− g(s))
α−1

×
(
`0 + `1|y(s)|+ `2 aI

β,ρ,g|y(s)|
)
g′(s)ds

]
+

1

ραΓ(α)

∫ ϑ1

a

∣∣∣(g(ϑ2)− g(s))
α−1 − (g(ϑ1)− g(s))

α−1
∣∣∣

×
(
`0 + `1|y(s)|+ `2 aI

β,ρ,g|y(s)|
)
g′(s)ds
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+
1

ραΓ(α)

∫ ϑ2

ϑ1

(g(ϑ2)− g(s))
α−1 (

`0 + `1|y(s)|+ `2 aI
β,ρ,g|y(s)|

)
g′(s)ds

≤

∣∣∣∣∣e ρ−1
ρ (g(ϑ2)−g(sk))

(
(g(ϑ2)− g(a))

(g(sk)− g(a))

)α−1
− e

ρ−1
ρ (g(ϑ1)−g(sk))

(
(g(ϑ1)− g(a))

(g(sk)− g(a))

)α−1∣∣∣∣∣
×

[
|ψk

(
sk, y

(
t+k
))
|+ (g(sk)− g(a))

α

ραΓ(α+ 1)
(`0 + `1r) +

(g(sk)− g(a))
α+β

ρα+βΓ(α+ β + 1)
`2r

]

+
`0 + `1r

ραΓ(α+ 1)
(2 (g(ϑ2)− g(ϑ1))

α
+ |(g(ϑ2)− g(a))

α − (g(ϑ1)− g(a))
α|)

+
`2r

ρα+βΓ(α)Γ(β+1)

(∫ ϑ1

a

|(g(ϑ2)−g(s))α−1−(g(ϑ1)−g(s))α−1|(g(s)− g(a))βg′(s)ds

+

∫ ϑ2

ϑ1

(g(ϑ2)− g(s))
α−1

(g(s)− g(a))
β
g′(s)ds

)
→ 0, as ϑ2 → ϑ1.

In view of the above three inequalities, we infer that ‖(N y)(ϑ2)− (N y)(ϑ1)‖PC → 0
independently of y ∈ Br, as ϑ2 → ϑ1. Consequently, the operator N is equicon-
tinuous and uniformly bounded. Hence, by Arzelà-Ascoli Theorem, the operator
N : PC(J,R)→ PC(J,R) is is completely continuous.

Step 4. We show that there exists an open set S ⊂ PC(J,R) with y 6= ξN y for
ξ ∈ (0, 1) and y ∈ ∂S.

In other words, we shall show that the part (i) in Theorem 3.3 is verified.

Consider the equation y = ξ N y, for ξ ∈ (0, 1). Then, in view of Step 2, we have
the following cases:

Case I. For the interval t ∈ [a, t1], we have

|y(t)| = |ξ N y(t)|

≤ (g(t1)− g(a))
α

ραΓ(α+ 1)
(`0 + `1‖y‖PC) +

(g(t1)− g(a))
α+β

ρα+βΓ(α+ β + 1)
`2‖y‖PC ,

which implies that:

‖y‖PC
Θ3(`0 + `1‖y‖PC) + Θ4`2‖y‖PC

≤ 1. (3.17)

Case II. For each t ∈ (tk, sk], k = 1, · · · ,m, one has

|y(t)| = |ξ N y(t)|
≤ ℵ0 + ℵ1‖y‖PC ,

which implies that:

‖y‖PC
ℵ0 + ℵ1‖y‖PC

≤ 1. (3.18)
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Case III. For each t ∈ (sk, tk+1], k = 1, · · · ,m, one has

|y(t)| = |ξ N y(t)|

≤
(

(g(tk+1)− g(a))

(g(sk)− g(a))

)α−1 [
ℵ0 + ℵ1‖y‖PC +

(g(tk+1)− g(a))
α

ραΓ(α+ 1)
(`0 + `1‖y‖PC)

+
(g(tk+1)− g(a))

α+β

ρα+βΓ(α+ β + 1)
`2‖y‖PC

]

+
(g(tk+1)− g(a))

α

ραΓ(α+ 1)
(`0 + `1‖y‖PC) +

(g(tk+1)− g(a))
α+β

ρα+βΓ(α+ β + 1)
`2‖y‖PC ,

which implies, by (3.11), that:

‖y‖PC
Ξ2[ℵ0+ℵ1‖y‖PC+Ξ4(`0+`1‖y‖PC)+Ξ5`2‖y‖PC ]+Ξ4(`0+`1‖y‖PC)+Ξ5`2‖y‖PC

≤1.

(3.19)
By combining (3.17),(3.18) and (3.19) together with (H6), there exists M such that:

M 6= ‖y‖PC .

Let us set

S = {y ∈ PC(J,R : ‖y‖PC < M)}.
Note that the operator N : S → PC(J,R) is continuous and completely continu-
ous. From the choice of S, there is no y ∈ ∂S such that y = ξN y for ξ ∈ (0, 1).
Consequently, by the nonlinear alternative of Leray-Schauder type (Theorem 3.3), we
deduce that N has a fixed point y ∈ S which is a solution of (1.5). This completes
the proof. �

4. Illustrative examples

Example 4.1. Consider the following non-instantaneous impulsive fractional problem:

aD
1
2 ,2,t

2

y(t) =
e−2t

(
|y(t)|+

∣∣∣0+I 3
4
,2,t2y(t)

∣∣∣)
(1+7et)

(
1+|y(t)|+

∣∣∣0+I 3
4
,2,t2y(t)

∣∣∣) , t ∈ (0, 13 ] ∪ ( 2
3 , 1],

y(t) =
|y( 1

3
+)|

(3+7e2t)(1+|y( 1
3
+)|)

, t ∈ ( 1
3 ,

2
3 ],

0+I
1
2 ,2,t

2

y(0) = 0,

(4.1)

Here, J = [0, 1], 0 = s0 < t1 = 1
3 < s1 = 2

3 < t2 = 1, and α = 1
2 , β = 3

4 , ρ = 1,m = 1.
Set

g(t) = t2, f(t, u, v) =
e−2t (|u|+ |v|)

(1 + 7et) (1 + |u|+ |v|)
and

ψ1(t, u) =
|u|

(3 + 7e2t)(1 + |u|)
.
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Let ui, vi ∈ R, i = 1, 2 and t ∈ [0, 13 ] ∪ ( 2
3 , 1]. Then, we get

|f(t, u1, v1)− f(t, u2, v2)| ≤ 1

8
(|u1 − u2|+ |v1 − v2|) .

Let u1, u2 ∈ R and t ∈ ( 1
3 ,

2
3 ]. Then, we obtain

|ψ1(t, u1)− ψ1(t, u2)| ≤ 1

10
|u1 − u2|.

Thus, the hypotheses (H1), (H2) and (H3) in Theorem 3.2 are satisfied with Lf = 1
8

and Lk = L1 = 1
10 . Therefore, by (3.13), one can deduce that:

Ω = max{0.0568660825, 0.55752695} = 0.55752695 < 1.

Hence, the non-instantaneous impulsive fractional problem (4.1) has a unique solution
on [0, 1].

Example 4.2. Consider

aD
1
2 ,2,t

2

y(t) = sin t
5
√
9+t2

+ |y(t)|
10et(1+|y(t)|) +

∣∣∣0+I 3
4
,2,t2y(t)

∣∣∣
25+t2 , t ∈ (0, 13 ] ∪ ( 2

3 , 1],

y(t) = e−t

16+t4 +
cos y( 1

3
+)

4
√
49+t2

, t ∈ ( 1
3 ,

2
3 ],

0+I
1
2 ,2,t

2

y(0) = 0,

(4.2)

Here, J = [0, 1], 0 = s0 < t1 = 1
3 < s1 = 2

3 < t2 = 1, and α = 1
2 , β = 3

4 , ρ = 1,m = 1.
Set

g(t) = t2, f(t, u, v) =
sin t

5
√

9 + t2
+

|u|
10et(1 + |u|)

+
|v|

25 + t2

and

ψ1(t, u) =
e−t

16 + t4
+

cosu

4
√

49 + t2
.

For all u, v ∈ R and each t ∈ [0, 13 ] ∪ ( 2
3 , 1], we get

|f(t, u, v)| ≤ 1

15
+

1

10
|u|+ 1

25
|v|.

For all u ∈ R and each t ∈ ( 1
3 ,

2
3 ], we get

|ψ1(t, u)| ≤ 1

16
+

1

28
|u|.

Thus, the hypotheses (H4) and (H5) hold with `0 = 1
15 , `1 = 1

10 , `2 = 1
25 ,ℵ0 = 1

16 and

ℵ1 = 1
28 . Moreover, from (3.15), we get

max {Θ3`1 + Θ4`2, ℵ1, Ξ2 [ℵ1 + Ξ4`1 + Ξ5`2] + Ξ4`1 + Ξ5`2}
= {0.039877417, 0.03571428571, 0.500165849}
= 0.0.500165849 < 1.

By Theorem 3.4, we conclude that our theoretical results are applicable to the problem
(4.2).
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