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Linear delay-differential operator of
a meromorphic function sharing two sets
or small function together with values with
its c-shift or q-shift

Arpita Roy and Abhijit Banerjee

Abstract. The paper is devoted to study the uniqueness problem of linear delay-
differential operator of a meromorphic function sharing two sets or small function
together with values with its c-shift and q-shift operator. Results of this paper
drastically improve two recent results of Meng-Liu [J. Appl. Math. Inform. 37(1-
2)(2019), 133-148] and Qi-Li-Yang [Comput. Methods Funct. Theory, 18(2018),
567-582]. In addition to this, one of our results improves and extends that of
Qi-Yang [Comput. Methods Funct. Theory, 20(2020), 159-178].
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1. Introduction, Definitions and Results

Throughout the paper we use standard notations of Nevanlinna theory as stated
in [7] and by any meromorphic function f we always mean that it is defined on C.
Let f and g be such two non-constant meromorphic functions. For a ∈ C ∪ {∞}, the
following two quantities

δ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
= lim inf

r−→∞

m(r, a; f)

T (r, f)

Received 05 August 2020; Accepted 17 September 2020.
© Studia UBB MATHEMATICA. Published by Babeş-Bolyai University
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and

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)

are respectively known as Nevanlinna deficiency of the value a and ramification index.
In the beginning of the nineteenth century R. Nevanlinna inaugurated the value

distribution theory with his famous Five value and Four value theorems which can be
considered as the backbone of the modern uniqueness theory. Illuminated by these two
basic results initially the research were performed on the value sharing of meromorphic
functions. After five decades, uniqueness theory moved to a new direction led by F.
Gross [4], who transformed the traditional value sharing problem to a more general
set up namely shared set problems. Now we recall the definition of set sharing.

Definition 1.1. For some a ∈ C, we denote by Ef (a), the collection of the zeros of
f − a, where a zero is counted according to its multiplicity. In addition to this, when
a = ∞, the above notation implies that we are considering the poles. In the same
manner, by Ef (a), we denote the collection of the distinct zeros or poles of f − a
according as a ∈ C or a =∞ respectively.

Let S be a set of distinct elements of C∪{∞}. For a non-constant meromorphic
function f , let Ef (S) =

⋃
a∈S Ef (a)

(
Ef (S) =

⋃
a∈S Ef (a)

)
. Then we say f , g share

the set S CM(IM) if Ef (S) = Eg(S)
(
Ef (S) = Eg(S)

)
.

Evidently, if S is a singleton, then it coincides with the traditional definition of
CM(IM) sharing of values, which are known to the readers.

In 2001, due to a revolutionary approach by Lahiri [8, 9], the notion of weighted
sharing of values or sets appeared in the literature and expedite the research work
there in. Though now-a-days the definition is widely circulated, we invoke the defini-
tion.

Definition 1.2. [8, 9] Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is
counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f, g share the value a with weight k and denote it by (a, k). The IM and CM
sharing corresponds to (a, 0) and (a,∞) respectively.

Definition 1.3. [8] Let S be a set of distinct elements of C ∪ {∞} and k be a non-
negative integer or ∞. We denote by Ef (S, k) the set ∪a∈SEk(a; f). Clearly Ef (S) =

Ef (S,∞) and Ef (S) = Ef (S, 0).
If Ef (S, k) = Eg(S, k), then we say that f , g share the set S with weight k and

write it as f , g share (S, k).

By N(r, a; f |< m) we mean the counting function of those a-points of f whose
multiplicities are less than m where each a-point is counted according to its multiplic-
ity and by N(r, a; f |≥ m) we mean the counting function of those a-points of f whose
multiplicities are not less than m where each a-point is counted ignoring multiplicity.
We also denote by N2(r, a; f) the sum N(r, a; f) +N(r, a; f |≥ 2).

Usually, S(r, f) denotes any quantity satisfying S(r, f) = o(T (r, f)) for all r
outside of a possible exceptional set of finite linear measure. Also S1(r, f) denotes any
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quantity satisfying S1(r, f) = o(T (r, f)) for all r on a set of logarithmic density 1,
where the logarithmic density of a set F is defined by

lim sup
r→∞

1

log r

∫
[1,r]∩F

dt

t
.

Throughout the paper for a positive integer n, S1, S∗1 and S2 represents respec-
tively the sets {1, ω, . . . , ωn−1}, {α1, α2, . . . , αn} and {∞}, where ω = cos 2π

n +i sin 2π
n

and αi, i = 1, 2, . . . , n are non-zero constants.
Let at−1(6= 0), at−2, . . . , a0 and C( 6= 0) be complex numbers. We define

P (z) = CzQ(z) = Cz(at−1z
t−1 + at−2z

t−2 + . . .+ a1z + a0). (1.1)

For the polynomial P (z) as given in (1.1) let us define the following two functions:

χt−1
0

=

{
1, if a0 6= 0

0, if a0 = 0

and

µt−1
0

=

{
1, if a0 = 0, a1 6= 0

0, otherwise.

In view of (1.1), corresponding to the set S∗1 , let us consider the polynomial P∗(z) as
follows:

P∗(z) = CzQ∗(z), where C =
1

(−1)n+1α1α2 . . . αn
and (1.2)

Q∗(z) =

n−1∑
r=0

(−1)r
∑

α1α2 . . . αr z
n−r−1,∑

α1α2 . . . αr = sum of the products of the values α1, α2, . . . , αn taken r into account.
We also denote by m1 and m2 as the number of simple and multiple zeros of Q∗(z)
respectively.

Next we define linear shift operator, delay operator and differential operator
respectively as follows:

L1(f(z)) = akf(z + ck) + ak−1f(z + ck−1) + . . .+ a1f(z + c1) + a0f(z),

L2(f(z)) = bsf
(s)(z + cs) + bs−1f

(s−1)(z + cs−1) + . . .+ b1f
′(z + c1),

L3(f(z)) = dtf
(t)(z) + dt−1f

(t−1)(z) + . . .+ d1f
′(z),

where ak, bs and dt are non-zero and k, s, t are natural numbers and all c′is are non-
zero. For the sake of convenience we shall call L2(f(z))+L3(f(z)) as delay-differential

operator which is denoted by L̃(f(z)).
As far as the knowledge of the authors are concerned, Qi-Li-Yang [13] were the

first authors who initiated two shared set problems for the derivative of a meromorphic
function f(z) with its shift f(z + c) as follows:

Theorem A. [13] Let f(z) be a non-constant meromorphic function of finite order,
n ≥ 9 be an integer and a be a non-zero complex constant. If [f ′(z)]n and fn(z + c)
share (a,∞) and (∞,∞), then f ′(z) = tf(z+c), for a constant t that satisfies tn = 1.
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Recently employing the notion of weighted sharing, Meng-Liu [12] further inves-
tigated Theorem A to obtain the following result.

Theorem B. [12] Let f(z) be a non-constant meromorphic function of finite order,
n ≥ 10 be an integer. If [f ′(z)]nand fn(z + c) share (1, 2) and (∞, 0), then f ′(z) =
tf(z + c), for a constant t that satisfies tn = 1.

Considering f(z) = ez and ω = e−c satisfying ωn = 1, it is easy to see that f ′

and f(z + c) share the sets (S1,∞), (∞,∞) and f ′(z) = ωf(z + c) for each n. So it
is natural to conjecture that in Theorem A and Theorem B the cardinality of n could
further be reduced. To this end, we have performed our investigations and have been
able to reduce the cardinality of n in Theorem B up to 6. In fact, we have proved our
theorem for a more general setting S∗1 rather than to consider only the set S1.

Theorem 1.1. Let f(z) be a non-constant meromorphic function of finite order such

that L̃(f(z)) and f(z + c) share (S∗1 , 2) and (S2, 0). If

n > 2(χn−10 + µn−10 +m1 + 2m2) +
15

(2n− 3)
(χn−10 +m1 +m2), then

n∏
i=1

(L̃(f(z))− αi) ≡
n∏
i=1

(f(z + c)− αi).

Remark 1.1. From the definitions, we easily can calculate the value of χn−10 , µn−10 ,
m1 and m2 for a particular set S∗1 . Clearly for the set S1, χn−10 = 0; µn−10 = 0; m1 = 0
and m2 = 1. Therefore in above theorem for the set S1 if n > 4 + 15

(2n−3) i.e., if n ≥ 6

then L̃(f(z)) = tf(z+c), for a constant t that satisfies tn = 1. For a particular choices

of coefficients of L̃(f(z)) we can easily make L̃(f(z)) = f ′.

Corresponding to q-shift Meng-Liu [12] also investigated the same result like
Theorem B as follows :

Theorem C. [12] Let f(z) be a non-constant meromorphic function of zero order,
n ≥ 10 be an integer. If [f ′(z)]nand fn(qz) share (1, 2) and (∞, 0), then
f ′(z) = tf(qz), for a constant t that satisfies tn = 1.

In connection to Theorem C below we present our result which improves the same.

Theorem 1.2. Let f(z) be a non-constant meromorphic function of zero order such

that L̃(f(z)) and f(qz) share (S∗1 , 2) and (S2, 0). If

n > 2(χn−10 + µn−10 +m1 + 2m2) +
15

(2n− 3)
(χn−10 +m1 +m2) then

n∏
i=1

(L̃(f(z))− αi) ≡
n∏
i=1

(f(qz)− αi).

In the next theorem we shall show that the lower bound of n can further be
reduced at the expense of allowing both the range sets S∗1 , S2 to be shared CM.
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Theorem 1.3. Let f(z) be a non-constant meromorphic function of finite order such

that L̃(f(z)) and f(z + c) share (S∗1 ,∞) and (S2,∞) with

T (r, f) = N

(
r,

1

L̃(f(z))

)
+ S(r, f)

then for n > 2(χn−10 +m1 +m2) + 1,
n∏
i=1

(L̃(f(z))− αi) ≡
n∏
i=1

(f(z + c)− αi).

Remark 1.2. In connection of Remark 1.1, for the set S1 in Theorem 1.3 the result
holds for n ≥ 4.

Our next theorem is analogous theorem of Theorem 1.3 corresponding to q-shift.

Theorem 1.4. Let f(z) be a non-constant meromorphic function of zero order such

that L̃(f(z)) and f(qz) share (S∗1 ,∞) and (S2,∞). If n > 2(χn−10 + m1 + m2) + 1
then

n∏
i=1

(L̃(f(z))− αi) ≡
n∏
i=1

(f(qz)− αi).

Recently, corresponding to Theorem A, Qi-Yang [14] obtained the value sharing
problem for entire function as follows:

Theorem D. [14] Let f(z) be a transcendental entire function of finite order and let
(a 6= 0) ∈ C. If f ′(z) and f(z + c) share (0,∞) and (a, 0), then f ′(z) ≡ f(z + c).

In view of Theorem 1.1, [14] we know that f(z) actually becomes a transcendental

entire function. Since we are dealing with L̃(f(z)) instead of f ′, it will be reasonable
to consider the above theorem for meromorphic function under small function sharing
category. In this respect we prove the following theorem.

Theorem 1.5. Let f(z) be a transcendental meromorphic function of finite order and

let a(z)( 6≡ 0) ∈ S(f) be an entire function. If L̃(f(z)) and f(z + c) share (0,∞),

(∞,∞) and (a(z), 0) with Θ(0; f) + Θ(∞; f) > 0, then L̃(f(z)) ≡ f(z + c).

From Theorem 1.5 we can immediately deduce the following corollary.

Corollary 1.1. Let f(z) be a transcendental entire function of finite order and let

a(z)(6≡ 0) ∈ S(f). If L̃(f(z)) and f(z + c) share (0,∞) and (a(z), 0), then L̃(f(z)) ≡
f(z + c).

Following example shows that in Theorem 1.5 the CM pole sharing can not be
replaced by IM.

Example 1.1. Let f(z) = 2e2
√

2iz−8e
√

2iz+2
(e
√

2iz+1)2
and c =

√
2π. Choose the coefficients of

L̃(f(z)) in such a way that L̃(f(z)) = f ′′. Then

L̃(f(z))

(
=

24e
√
2iz[e2

√
2iz − 4e

√
2iz + 1]

(e
√
2iz + 1)4

)
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and f(z + c) share (0,∞), (1, 0) and (∞, 0) and Θ(0; f) + Θ(∞; f) = 1
2 > 0 but

L̃(f(z)) 6≡ f(z + c).

From the next example we can show that in Theorem 1.5 sharing of 0 can not
be replaced by sharing of a non-zero value.

Example 1.2. Let f(z) = (eλz − 1)2 + 1. Choose eλc = 1,

s∑
i=1

bi(2λ)ie2λci +

t∑
i=1

di(2λ)i = 0

and
s∑
i=1

bi(λ)ieλci +

t∑
i=1

di(λ)i = −1

2
.

Then f(z+ c) = (eλz − 1)2 + 1 and L̃(f(z)) = eλz. Clearly f(z+ c) and L̃(f(z)) share

(2,∞), (∞,∞) and (1, 0) with Θ(0; f) + Θ(∞; f) > 0. But L̃(f(z)) 6= f(z + c).

In Theorem 1.5, sharing of the value 0 can be removed at the cost of slightly
manipulating the deficiency condition. In this respect, we state the following theorem
for transcendental meromorphic function.

Theorem 1.6. Let f(z) be a transcendental meromorphic function of finite order and

let a(z)( 6≡ 0) ∈ S(f) be an entire function. If L̃(f(z)) and f(z + c) share (a(z),∞)

and (∞,∞) with δ(0; f) > 0, then L̃(f(z)) ≡ f(z + c).

By an example we now show that a(z) CM sharing can not be replaced by IM
in Theorem 1.6.

Example 1.3. Let f(z) = −2ez−1
e2z and c = πi. Choose L̃(f(z)) = L3(f(z)) with

2

t∑
i=1

(−1)i+1di = 1 and

t∑
i=1

(−2)idi = 0.

Then L̃(f(z)) = 1
ez and f(z + c) = 2ez−1

e2z share (1, 0), (∞,∞) and δ(0; f) = 1
2 > 0.

Clearly L̃(f(z)) 6= f(z + c).

Our next example shows that a(z) 6≡ 0 in Theorem 1.6 can not be dropped as
well as (a(z), 0) sharing in Theorem 1.5 can not be removed.

Example 1.4. Let f(z) = e
πiz
c . Choose L̃(f(z)) = f ′. Then clearly f(z+c) and L̃(f(z))

share (0,∞), (∞,∞) and δ(0; f) > 0. But L̃(f(z)) 6= f(z + c).

Following two examples show that δ(0; f) > 0 in Theorem 1.6 can not be re-
moved.

Example 1.5. In Example 1.2 though f(z + c) and L̃(f(z)) share (2,∞), (∞,∞) but

δ(0; f) = 0. Here L̃(f(z)) 6= f(z + c).
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Example 1.6. Let f(z) = ez+z
2 and a(z) = z. Choose L̃(f(z)) = L3(f(z)) with d1 = 2c

and
t∑

j=2

dj = 2(ec − c).

Then

f(z + c)

(
=
ecez + z + c

2

)
and L̃(f(z)) (= ecez + c)

share (a(z),∞) and (∞,∞) but δ(0; f) = 0. Clearly L̃(f(z)) 6= f(z + c).

2. Lemmas

In this section some lemmas will be presented which will be needed in the sequel.

Lemma 2.1. [3] Let f(z) be a meromorphic function of finite order ρ and let c ∈ C\{0}
be fixed. Then, for each ε > 0, we have

T (r, f(z + c)) = T (r, f(z)) +O(rρ−1+ε) +O(log r).

Lemma 2.2. [5] Let f(z) be a meromorphic function of finite order and c ∈ C \ {0}.
Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Lemma 2.3. [6] Let f be a non-constant meromorphic function of finite order and
c ∈ C. Then

N

(
r,

1

f(z + c)

)
≤ N

(
r,

1

f(z)

)
+ S(r, f),

N (r, f(z + c)) ≤ N (r, f(z)) + S(r, f),

N

(
r,

1

f(z + c)

)
≤ N

(
r,

1

f(z)

)
+ S(r, f)

and

N (r, f(z + c)) ≤ N (r, f(z)) + S(r, f).

Lemma 2.4. [2] Let f(z) be a meromorphic function of zero order and q ∈ C \ {0}.
Then

m

(
r,
f(qz)

f(z)

)
= S1(r, f).

Lemma 2.5. [16] Let f(z) be a non-constant zero order meromorphic function and
q ∈ C \ {0}, then

T (r, f(qz)) = (1 + o(1))T (r, f(z))

and

N(r, f(qz)) = (1 + o(1))N(r, f(z))

on a set of lower logarithmic measure 1.
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Using Lemma 2.4 and Lemma 2.5 and by the help of simple transformation one
can easily prove the next lemma.

Lemma 2.6. Let f(z) be a meromorphic function of zero order and q ∈ C \ {0}. Then

m

(
r,
f(z)

f(qz)

)
= S1(r, f).

Lemma 2.7. [15] Let f(z) be a non-constant meromorphic function in the complex

plane, and let R(f) = P (f)
Q(f) , where

P (f) =

p∑
k=0

ak(z)fk and Q(f) =

q∑
j=0

bj(z)f
j

are two mutually prime polynomials in f . If the coefficients ak(z) for k = 0, 1, . . . , p
and bj(z) for j = 0, 1, . . . , q are small functions of f with ap(z) 6≡ 0 and bq(z) 6≡ 0,
then

T (r, P (f)) = max{p, q}T (r, f) + S(r, f).

Lemma 2.8. [11] Suppose that h is a non-constant meromorphic function satisfying

N(r, h) +N

(
r,

1

h

)
= S(r, h).

Let f = a0h
p + a1h

p−1 + . . . + ap, and g = b0h
q + b1h

q−1 + . . . + bq be polynomials
in h with coefficients a0, a1, . . ., ap; b0, b1, . . ., bq being small functions of h and

a0b0ap 6≡ 0. If q ≤ p, then m
(
r, gf

)
= S(r, h).

Lemma 2.9. [10] If N(r, 0; f (k) | f 6= 0) denotes the counting function of those zeros
of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.10. Let F be a meromorphic function. Then

N(r, 1;F |≥ k + 1) ≤ 1

k
{N(r, 0;F ) +N(r,∞;F )}+ S(r, F ).

Since the proof is straight forward, it is omitted.

Lemma 2.11. [1] Let F , G be two meromorphic functions sharing (1, 2) and (∞, k),
where 0 ≤ k ≤ ∞. Then one of the following cases holds

(i) T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

+N∗(r,∞;F,G)}+ S(r, F ) + S(r,G),

where N∗(r,∞; f, g) is the reduced counting function of those poles of F whose mul-
tiplicities differ from the multiplicities of the corresponding poles of G,
(ii) F ≡ G,
(iii) FG ≡ 1.
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Lemma 2.12. Let P∗(f) and P∗(g) be defined in (1.2), for two non-constant mero-
morphic functions f and g. Then

N(r, 0;P∗(f)) ≤ (χn−10 +m1 +m2)T (r, f);

N2(r, 0;P∗(f)) ≤ (χn−10 + µn−10 +m1 + 2m2)T (r, f).

Similar results occur for P∗(g).

Proof. Rewrite P∗(f) and P∗(g) as

P∗(f) = Cf(f − β
1
) . . . (f − β

m1
)(f − β

m1+1
)nm1+1 . . . (f − β

m1+m2
)nm1+m2 (2.1)

and

P∗(g) = Cg(g − β
1
) . . . (g − β

m1
)(g − β

m1+1
)nm1+1 . . . (g − β

m1+m2
)nm1+m2 ,

where β′
i
s (i = 1, 2, . . . ,m1 +m2) are distinct complex constants and ni is the multi-

plicity of the factor (z − β
i
) in P∗(z) for i = 1, 2, . . . ,m1 +m2 with n1 = n2 = . . . =

nm1
= 1 and nm1+1, . . . , nm1+m2

≥ 2.
Here we have to consider two cases:

Case 1. Suppose none of β′
i
s (i = 1, 2, . . . ,m1 +m2) be zero. Then

N(r, 0;P∗(f)) ≤ N(r, 0; f) +

m1+m2∑
i=1

N(r, β
i
; f) ≤ (1 +m1 +m2)T (r, f);

N2(r, 0;P∗(f)) ≤ N(r, 0; f)+

m1∑
i=1

N(r, β
i
; f)+2

m1+m2∑
i=m1+1

N(r, β
i
; f) ≤ (1+m1+2m2)T (r, f).

Case 2. Next let one of β′
i
s (i = 1, 2, . . . ,m1 +m2) be zero.

Subcase 1: Suppose one among β′
i
s (i = 1, 2, . . . ,m1) be zero. Without loss of gener-

ality let us assume that β1 = 0. Then

N(r, 0;P∗(f)) ≤ N(r, 0; f) +

m1+m2∑
i=2

N(r, βi ; f) ≤ (m1 +m2)T (r, f) ;

N2(r, 0;P∗(f)) ≤ 2N(r, 0; f) +

m1∑
i=2

N(r, βi ; f) + 2

m1+m2∑
i=m1+1

N(r, β
i
; f)

≤ (1 +m1 + 2m2)T (r, f).

Subcase 2: Next suppose one among β′
i
s (i = m1 + 1,m1 + 2, . . . ,m1 +m2) be zero.

Without loss of generality let us assume that β
m1+1

= 0. Then

N(r, 0;P∗(f)) ≤ N(r, 0; f) +

m1∑
i=1

N(r, β
i
; f) +

m1+m2∑
i=m1+2

N(r, β
i
; f)

≤ (m1 +m2)T (r, f);

N2(r, 0;P∗(f)) ≤ 2N(r, 0; f) +

m1∑
i=1

N(r, β
i
; f) + 2

m1+m2∑
i=m1+2

N(r, β
i
; f)

≤ (m1 + 2m2)T (r, f).
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Combining all cases we can write

N(r, 0;P∗(f)) ≤ (χn−10 +m1 +m2)T (r, f);

N2(r, 0;P∗(f)) ≤ (χn−10 + µn−10 +m1 + 2m2)T (r, f).

Similarly we can obtain the same conclusions for the function g. �

Lemma 2.13. Let P∗(f) and P∗(g) for two non-constant meromorphic functions f and
g (as defined in (1.2)) share (1, 2) and (∞, 0). If

n > 2(χn−10 + µn−10 +m1 + 2m2) +
15

(2n− 3)
(χn−10 +m1 +m2),

then either P∗(f)(z) ≡ P∗(g)(z) or P∗(f)(z).P∗(g)(z) ≡ 1.

Proof. Set

Φ =
P∗(f)(P∗(g)− 1)

P∗(g)(P∗(f)− 1)
.

Clearly S(r,Φ) can be replaced by S(r, f) +S(r, g). It is obvious that Φ 6≡ 0. If Φ ≡ 0
then either P∗(f) = 0 or P∗(g) = 1, which gives f and g are constants, a contradiction.
First suppose that Φ 6≡ 1. So P∗(f) 6≡ P∗(g).
Therefore, using Lemma 2.10 we get

N(r, 0; Φ) +N(r,∞; Φ)

≤ N(r, 1;P∗(f) |≥ 3) +N(r, 0;P∗(f)) +N(r, 0;P∗(g))

≤ 1

2

(
N(r, 0;P∗(f)) +N(r,∞;P∗(f))

)
+N(r, 0;P∗(f))

+N(r, 0;P∗(g)) + S(r, P∗(f))

≤ 3

2
N(r, 0;P∗(f)) +

1

2
N(r,∞; f) +N(r, 0;P∗(g)) + S(r, f).

Now,

Φ− 1 =
P∗(g)− P∗(f)

P∗(g)(P∗(f)− 1)
and Φ′ =

[
P∗(g)′

P∗(g)(P∗(g)− 1)
− P∗(f)′

P∗(f)(P∗(f)− 1)

]
Φ.

If Φ′ ≡ 0 then [
P∗(g)′

P∗(g)(P∗(g)− 1)
− P∗(f)′

P∗(f)(P∗(f)− 1)

]
≡ 0.

Integrating we have

P∗(f)− 1

P∗(f)
≡ A P∗(g)− 1

P∗(g)
,

where A is non-zero constant. i.e.,

1− 1

P∗(f)
≡ A− A

P∗(g)
.

Since P∗(f) and P∗(g) share (∞, 0) so A = 1. Then P∗(f) ≡ P∗(g) which gives Φ ≡ 1,
a contradiction. Therefore Φ′ 6≡ 0. Clearly all poles of P∗(f) and P∗(g) are multiple
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poles which are multiple zeros of Φ − 1 and so zeros of Φ′ with multiplicity at least
(n− 1) but not zeros of Φ. Therefore by Lemma 2.9,

(n− 1)N(r,∞; f) = (n− 1)N(r,∞;P∗(f)) = (n− 1)N(r,∞;P∗(f) |≥ n)

≤ N(r, 0; Φ
′
| Φ 6= 0) ≤ N(r, 0; Φ) +N(r,∞; Φ) + S(r,Φ).

So,

(2n− 3)N(r,∞; f) ≤ 3N(r, 0;P∗(f)) + 2N(r, 0;P∗(g)) + S(r, f).

Applying Lemma 2.12 we obtain

N(r,∞; f) ≤ 3(χn−10 +m1 +m2)

2n− 3
T (r, f)

+
2(χn−10 +m1 +m2)

2n− 3
T (r, g) + S(r, f) + S(r, g).

Similarly

N(r,∞; g) ≤ 3(χn−10 +m1 +m2)

2n− 3
T (r, g)

+
2(χn−10 +m1 +m2)

2n− 3
T (r, f) + S(r, f) + S(r, g).

That is

N(r,∞; f) +N(r,∞; g) ≤ 5(χn−10 +m1 +m2)

2n− 3
(T (r, f) + T (r, g)) (2.2)

+S(r, f) + S(r, g).

If possible, we suppose that (i) of Lemma 2.11 holds. Therefore

T (r, P∗(f)) + T (r, P∗(g))

≤ 2{N2(r, 0;P∗(f)) +N2(r, 0;P∗(g)) +N(r,∞;P∗(f)) +N(r,∞;P∗(g))

+N∗(r,∞;P∗(f), P∗(g))}+ S(r, P∗(f)) + S(r, P∗(g)).

Then using Lemma 2.7, Lemma 2.12 and (2.2) we have

n (T (r, f) + T (r, g))

≤
(

2(χn−10 + µn−10 +m1 + 2m2) +
15(χn−10 +m1 +m2)

2n− 3

)
(T (r, f) + T (r, g))

+S(r, f) + S(r, g),

which contradicts our assumption. So by Lemma 2.11 we have

P∗(f)(z).P∗(g)(z) ≡ 1.

If Φ ≡ 1, then P∗(f)(z) ≡ P∗(g)(z).

Hence the lemma is proved. �
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Lemma 2.14. Let f and g be two non-constant meromorphic functions of finite order.
Let n ≥ 2, and let {a1(z), a2(z), . . . , an(z)} ∈ S(f) be distinct meromorphic periodic

functions with period c. If m
(
r, g
f−ak

)
= S(r, f), for k = 1, 2, . . . , n, then

n∑
k=1

m

(
r,

1

f − ak

)
≤ m

(
r,

1

g

)
+ S(r, f),

where the exceptional set associated with S(r, f) is of at most finite logarithmic mea-
sure.

Proof. Set

P (f) =

n∏
k=1

(f − ak).

Rewriting we have

1

P (f)
=

n∑
k=1

αk
f − ak

,

where αk ∈ S(f) are certain periodic function with period c. Now,

m

(
r,

g

P (f)

)
≤

n∑
k=1

m

(
r,

g

f − ak

)
+ S(r, f) = S(r, f),

and so

m

(
r,

1

P (f)

)
= m

(
r,

g

P (f)

)
+m

(
r,

1

g

)
≤ m

(
r,

1

g

)
+ S(r, f).

By the first fundamental theorem and using the above inequation we get

m

(
r,

1

g

)
≥ m

(
r,

1

P (f)

)
+ S(r, f) = T (r, P (f))−N

(
r,

1

P (f)

)
+ S(r, f)

≥ nT (r, f)−
n∑
k=1

N

(
r,

1

f − ak

)
+ S(r, f) =

n∑
k=1

m

(
r,

1

f − ak

)
+ S(r, f). �

Lemma 2.15. If f be a meromorphic function of finite order then L̃(f(z)) is of finite
order and

m

(
r,
L̃(f(z))

f(z + c)

)
= S(r, f), m

(
r,

L̃(f(z))

f(z)− βi

)
= S(r, f)

and

m

(
r,
L̃(f(z))

f(qz)

)
= S1(r, f).
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Proof. Using logarithmic derivative lemma and Lemma 2.2 we have

m

(
r,
L̃(f(z))

f(z + c)

)
= m

r,
s∑
j=1

bjf
(j)(z + cj) +

t∑
j=1

djf
(j)(z)

f(z + c)

 (2.3)

≤
s∑
j=1

m

(
r,
f (j)(z + cj)

f (j)(z)

)
+

s∑
j=1

m

(
r,
f (j)(z)

f(z)

)

+

t∑
j=1

m

(
r,
f (j)(z)

f(z)

)
+ (s+ t) m

(
r,

f(z)

f(z + c)

)
+O(1)

= S(r, f).

Also,

m

(
r,

L̃(f(z))

f(z)− βi

)
= m

r,
s∑
j=1

bjf
(j)(z + cj) +

t∑
j=1

djf
(j)(z)

f(z)− βi


≤

s∑
j=1

m

(
r,
f (j)(z + cj)

f (j)(z)

)
+

t∑
j=1

m

(
r,

f (j)(z)

f(z)− βi

)

+

s∑
j=1

m

(
r,

f (j)(z)

f(z)− βi

)
+O(1) = S(r, f).

Using (2.3) and Lemma 2.1 we have

T (r, L̃(f(z))) ≤ s2 + t2 + 3(s+ t) + 2

2
T (r, f) + S(r, f).

As f is of finite order so L̃(f(z)) and f(z + c) is of finite order and S(r, L̃(f(z))) can
be replaced by S(r, f).

Similarly by using Lemma 2.4, Lemma 2.5 and Lemma 2.6 as and when required
we can prove f(qz) and L̃(f(z)) are zero order when f is of zero order and

m

(
r,
L̃(f(z))

f(qz)

)
= S1(r, f). �

3. Proofs of the theorems

Proof of Theorem 1.1. Since

Ef(z+c)(S
∗
1 , 2) = EL̃(f(z))(S

∗
1 , 2) and Ef(z+c)(S2, 0) = EL̃(f(z))(S2, 0),
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it follows that P∗(f(z + c)), P∗(L̃(f(z))) share (1, 2) and (∞, 0). So by Lemma 2.13

we have either P∗(f(z + c)) ≡ P∗(L̃(f(z))) or P∗(f(z + c)).P∗(L̃(f(z))) ≡ 1. Suppose
that

P∗(f(z + c)).P∗(L̃(f(z))) ≡ 1. (3.1)

Noting that P∗(f(z + c)), P∗(L̃(f(z))) share (∞, 0), so we can conclude that

P∗(f(z + c)), P∗(L̃(f(z))) both are entire functions.

So

N

(
r,∞;

P∗(L̃(f(z)))

P∗(f(z + c))

)
= N(r, 0;P∗(f(z + c))).

Therefore using Lemma 2.12 and Lemma 2.1, we get

N

(
r,∞;

P∗(L̃(f(z)))

P∗(f(z + c))

)
≤ (χn−10 +m1 +m2)T (r, f(z + c)) ≤ nT (r, f) + S(r, f).

Using Lemma 2.2 and Lemma 2.15 we have

m

(
r,

P∗(L̃(f(z)))

P∗(f(z + c))

)
= m

(
r,

L̃(f(z))

f(z + c)

m1+m2∏
i=1

(
L̃(f(z))− β

i

f(z + c)− β
i

)ni)

≤ m

(
r,
L̃(f(z))

f(z + c)

)
+m

(
r,

m1+m2∏
i=1

(
L̃(f(z))− β

i

f(z + c)− β
i

)ni)
+O(1)

≤
m1+m2∑
i=1

ni m

(
r,
L̃(f(z))− β

i

f(z + c)− βi

)
+ S(r, f)

≤
m1+m2∑
i=1

ni m

(
r,

L̃(f(z))

f(z)− β
i

)
+

m1+m2∑
i=1

ni m

(
r,

1

f(z)− β
i

)

+

m1+m2∑
i=1

ni m

(
r,

f(z)− βi
f(z + c)− β

i

)
+ S(r, f)

≤
m1+m2∑
i=1

ni m

(
r,

1

f(z)− βi

)
+ S(r, f)

≤ (n1 + n2 + . . .+ nm1+m2)T (r, f) + S(r, f)

≤ (n− 1)T (r, f) + S(r, f).

By Lemma 2.1, Lemma 2.7 and (3.1),

2nT (r, f) = 2nT (r, f(z + c)) + S(r, f) = 2T (r, P∗(f(z + c))) + S(r, f)

≤ T

(
r,

1

P∗(f(z + c))2

)
+ S(r, f) ≤ T

(
r,

P∗(L̃(f(z)))

P∗(f(z + c))

)
+ S(r, f)

≤ (2n− 1)T (r, f) + S(r, f),

which is a contradiction.



Linear delay-differential operator of a meromorphic function 607

Therefore P∗(L̃(f(z))) ≡ P∗(f(z + c)), which yields
n∏
i=1

(L̃(f(z))− αi) ≡
n∏
i=1

(f(z + c)− αi). �

Proof of Theorem 1.2. By proceeding in a similar way of the proof of Theorem 1.1 we
can prove this theorem using Lemma 2.4, Lemma 2.5 and Lemma 2.6 as and when
required instead of Lemma 2.1 and Lemma 2.2. �
Proof of Theorem 1.3. Since the finite order meromorphic functions f(z + c) and

L̃(f(z)) share (S∗1 ,∞), (S2,∞), it follows that P∗(f(z+ c)), P∗(L̃(f(z))) share (1,∞)
and (∞,∞) which yields

N(r, L̃(f(z))) = N(r, f(z + c)) (3.2)

and

P∗(L̃(f(z)))− 1

P∗(f(z + c))− 1
= eγ(z), (3.3)

where γ(z) is a polynomial.
Now,

T (r, eγ(z)) = m(r, eγ(z)) = m

(
r,
P∗(L̃(f(z)))− 1

P∗(f(z + c))− 1

)
.

Using the definition of P∗(z) we have

T (r, eγ(z)) = m

(
r,

(L̃(f(z)))− α1)(L̃(f(z)))− α2) . . . (L̃(f(z)))− αn)

(f(z + c)− α1)(f(z + c)− α2) . . . (f(z + c)− αn)

)

≤
n∑
j=1

m

(
r,
L̃(f(z)))− αj
f(z + c)− αj

)
+O(1)

≤
n∑
j=1

m

(
r,

L̃(f(z))

f(z)− αj

)
+

n∑
j=1

m

(
r,

1

f(z)− αj

)
+

n∑
j=1

m

(
r,

f(z)− αj
f(z + c)− αj

)
+O(1).

In view of Lemma 2.2, Lemma 2.14, Lemma 2.15 and then by the first fundamental
theorem and (3.2) we have

T (r, eγ(z)) =

n∑
j=1

m

(
r,

1

f(z)− αj

)
+ S(r, f) ≤ m

(
r,

1

L̃(f(z))

)
+ S(r, f)

≤ T (r, L̃(f(z)))−N
(
r,

1

L̃(f(z))

)
+ S(r, f)

≤ m

(
r,
L̃(f(z))

f(z + c)

)
+m(r, f(z + c)) +N(r, L̃(f(z)))−N

(
r,

1

L̃(f(z))

)
+ S(r, f)

≤ T (r, f(z + c))−N
(
r,

1

L̃(f(z))

)
+ S(r, f)
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≤ T (r, f)−N
(
r,

1

L̃(f(z))

)
+ S(r, f).

According to the given condition

T (r, f) = N

(
r,

1

L̃(f(z))

)
+ S(r, f),

so T (r, eγ(z)) = S(r, f).
Now from (3.3) we have

P∗(L̃(f(z))) = eγ(z)
(
P∗(f(z + c))− 1 + e−γ(z)

)
.

Set

W (z) =
P∗(f(z + c))

1− e−γ(z)
.

If eγ(z) 6≡ 1, then by applying Nevanlinna’s second fundamental theorem to W (z) and
using (3.2) and Lemma 2.12 we obtain

T (r, P∗(f(z + c))) ≤ T (r,W ) + S(r, f)

≤ N(r, 0;W ) +N(r,∞;W ) +N(r, 0;W − 1) + S(r, f)

≤ N(r, 0;P∗(f(z + c))) +N(r,∞;P∗(f(z + c))) +N(r, 0;P∗(L̃(f(z)))) + S(r, f)

≤ (χn−10 +m1 +m2)
(
T (r, f(z + c)) + T (r, L̃(f(z)))

)
+N(r,∞; f(z + c)) + S(r, f)

≤ (χn−10 +m1 +m2)

(
T (r, f(z + c)) +m(r, f(z + c)) +m

(
r,
L̃(f(z))

f(z + c)

)
+N(r,∞; f(z + c))) +N(r,∞; f) + S(r, f).

Using Lemma 2.1 and Lemma 2.15 we get

nT (r, f) ≤ (2χn−10 + 2m1 + 2m2 + 1)T (r, f) + S(r, f),

which contradicts n > 2(χn−10 +m1 +m2) + 1. This gives eγ(z) ≡ 1, that yields

n∏
i=1

(L̃(f(z))− αi) ≡
n∏
i=1

(f(z + c)− αi). �

Proof of Theorem 1.4. Here L̃(f(z)) and f(qz) are of zero order. Since f(qz) and

L̃(f(z)) share (S∗1 ,∞) and (S2,∞), it follows that P∗(f(qz)) and P∗(L̃(f(z))) share
(1,∞) and (∞,∞). Therefore

P∗(L̃(f(z)))− 1

P∗(f(qz))− 1
= A,

where A is a non-zero constant.
This gives

P∗(L̃(f(z))) = A

(
P∗(f(qz))− 1 +

1

A

)
.
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Set W1(z) = P∗(f(qz))

1− 1
A

. If A 6≡ 1, then applying Nevanlinna’s second fundamental

theorem to W1(z) and using Lemmas 2.4 and 2.5 and 2.15 as and when required we
can calculate the rest of the proof similar to Theorem 1.3. �
Proof of Theorem 1.5. Here f(z + c) and L̃(f(z)) are of finite order. Since f(z + c)

and L̃(f(z)) share (0,∞) and (∞,∞), so

L̃(f(z))

f(z + c)
= eδ(z), (3.4)

where δ(z) is a polynomial.
Clearly by Lemma 2.15 we get

T (r, eδ(z)) = S(r, f).

When eδ(z) ≡ 1 then L̃(f(z)) ≡ f(z + c).

When eδ(z) 6≡ 1, using the fact that f(z + c) and L̃(f(z)) share (a(z), 0) we have

N

(
r,

1

L̃(f(z))− a(z)

)
= N

(
r,

1

f(z + c)− a(z)

)
≤ N

(
r,

1

eδ(z) − 1

)
+N

(
r,

1

a(z)

)
≤ T (r, eδ(z)) + S(r, f) = S(r, f).

Rewriting (3.4) we get

L̃(f(z))− a(z) = eδ(z)(f(z + c)− a(z)e−δ(z)).

Clearly a(z)e−δ(z) 6≡ a(z). So,

N

(
r,

1

f(z + c)− a(z)e−δ(z)

)
= N

(
r,

1

L̃(f(z))− a(z)

)
= S(r, f).

Using Lemma 2.1, 2.3 and the second fundamental theorem we obtain

2T (r, f) = 2T (r, f(z + c)) + S(r, f)

≤ N(r, f(z + c)) +N

(
r,

1

f(z + c)

)
+N

(
r,

1

f(z + c)− a(z)

)
+N

(
r,

1

f(z + c)− a(z)e−δ(z)

)
+ S(r, f) ≤ N(r, f) +N

(
r,

1

f

)
+ S(r, f),

which is a contradiction to Θ(0; f) + Θ(∞; f) > 0. Hence L̃(f(z)) ≡ f(z + c). �

Proof of Theorem 1.6. Here f(z + c) and L̃(f(z)) are of finite order. Since f(z + c)

and L̃(f(z)) share (a(z),∞) and (∞,∞), so

L̃(f(z))− a(z)

f(z + c)− a(z)
= eζ(z), (3.5)
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where ζ(z) is a polynomial. Using logarithmic derivative lemma, Lemma 2.1 and
Lemma 2.2 we get

T (r, eζ(z)) = m(r, eζ(z)) = m

(
r,

L̃(f(z))− a(z)

f(z + c)− a(z)

)

≤ m

(
r,
L̃(f(z))− L̃(a(z − c))

f(z + c)− a(z)

)
+m

(
r,
L̃(a(z − c))− a(z)

f(z + c)− a(z)

)
+O(1)

≤ m

(
r,
L̃(f(z))− L̃(a(z − c))

f(z)− a(z − c)

)
+m

(
r,
f(z)− a(z − c)
f(z + c)− a(z)

)
+m

(
r,

1

f(z + c)− a(z)

)
+ S(r, f)

≤ m

r,
s∑
j=1

bj(f
(j)(z + cj)− a(j)(z − c+ cj)) +

t∑
j=1

dj(f
(j)(z)− a(j)(z − c))

f(z)− a(z − c)


+T (r, f(z + c)) + S(r, f)

≤
s∑
j=1

m

(
r,
f (j)(z + cj)− a(j)(z − c+ cj)

f (j)(z)− a(j)(z − c)

)
+

t∑
j=1

m

(
r,
f (j)(z)− a(j)(z − c)
f(z)− a(z − c)

)

+

s∑
j=1

m

(
r,
f (j)(z)− a(j)(z − c)
f(z)− a(z − c)

)
+ T (r, f) + S(r, f)

≤ T (r, f) + S(r, f).

So S(r, eζ(z)) can be replaced by S(r, f). When eζ(z) ≡ 1 then L̃(f(z)) ≡ f(z + c).
Suppose eδ(z) 6≡ 1. Now rewriting (3.5) we can obtain

1

f(z + c)
= − L̃(f(z))

a(z)f(z + c)(eζ(z) − 1)
+

eζ(z)

a(z)(eζ(z) − 1)
.

Therefore in view of Lemma 2.15 we have

m

(
r,

1

f(z + c)

)
≤ 2 m

(
r,

1

eζ(z) − 1

)
+ S(r, f).

If ζ(z) is constant then automatically m
(
r, 1
f(z+c)

)
= S(r, f). If ζ(z) is non-constant

then by Lemma 2.8 we get

m

(
r,

1

f(z + c)

)
= S(r, eζ(z)) = S(r, f).
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By Lemma 2.1 and Lemma 2.3 we have

T (r, f) = T (r, f(z + c)) + S(r, f) = T

(
r,

1

f(z + c)

)
+ S(r, f)

≤ N

(
r,

1

f(z + c)

)
+ S(r, f) ≤ N

(
r,

1

f

)
+ S(r, f) ≤ T (r, f) + S(r, f).

Therefore,

N

(
r,

1

f

)
= T (r, f) + S(r, f),

which contradicts the fact that δ(0, f) > 0. Hence L̃(f(z)) ≡ f(z + c). �

4. Observation

Take L̃(f(z)) = L3 with all coefficients are 1. Then we see that choosing

c =
log(α+ α2 + . . .+ αt)

α
,

where 1 + α+ . . .+ αt−1 6= 0, we somehow get a solution f(z) = eαz (α 6= 0) of

L̃(f(z)) = f(z + c). (4.1)

However choosing c = π
2 , we can present the solution of f ′ = f(z + c) as the linear

combination of two independent solutions. e.g., f(z) = d1e
iz + d2e

−iz. So it is a
matter of concern that how the solutions of (4.1) looks like. Unfortunately we can not
elucidated in this matter.
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