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Abstract. In this paper, we obtain some existence results for the integral boun-
dary value problems of nonlinear fractional q-difference equations. The differential
operator is taken in the Riemann-Liouville sense.

Mathematics Subject Classification (2010): 39A13, 34A08, 47H10.

Keywords: Riemann-Liouville fractional derivative, fractional q-difference equa-
tions, integral boundary value problems, the fixed point theorem, positive solu-
tion, upper and lower solutions.

1. Introduction

In this paper we will study the existence and uniqueness of solutions for the
following singular boundary value problem of fractional q-difference equations(

Dα
q u
)

(t) + ϕ (t) f(t, u (t)) = 0 , 0 < t < 1, (1.1)

u (0) = 0, u (1) = a

∫ 1

0

h (s)u (s) dqA (s) + b, (1.2)

where Dα
q is a fractional q-derivative of Riemann-Liouville type with 1 < α ≤ 2,∫ 1

0
x (t) dqA (t), is the Riemann-Stieltjes q-integral of x with respect to A (t) such

that dqA (t) = DqA(t)dqt, f : [0, 1] × R → R is a continuous function, h : [0, 1] → R
is a continuous function, ϕ is defined on the interval (0, 1) and ϕ may be singular at
0 or 1.

In the last few years, fractional differential equations have been studied exten-
sively, because of their demonstrated applications in various fields of science and
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engineering; see [5, 16, 19, 27, 36, 39]. Recently, many researchers study the exis-
tence of solutions of fractional differential equations such as the Riemann-Liouville
fractional derivative problem [3, 12, 17, 31, 32, 34, 35, 37, 38, 40, 41, 42] the Caputo
fractional boundary value problem [3, 33], the Hadamard fractional boundary value
problem [28, 30], conformable fractional boundary value problem [20, 24, 25] etc.

Quantum calculus is ordinary calculus without limits. There are several types
of quantum calculus: h-calculus, q-calculus and Hahn’s calculus. In this paper we are
concerned with the q-calculus. The q-derivative and the q-integral were first defined
by Jackson [14, 15]. For some recent existence results on q-difference equations see
[2, 6, 10, 13, 22, 26] and the references there in.

There has also been a growing interest on the subject of discrete fractional
equations. Fractional q-difference equations have recently attracted the attention of
several researchers for the applications of fields such as physics, chemistry, biology,
economics, control theory, signal and image processing, electricity etc. Some recent
work on the existence theory of fractional q-difference equations can be found in
[4, 7, 8, 9, 23]. Motivated by all the works above, in this paper we discuss the problem
(1.1)-(1.2) and we will give the existence results for this problem.

The paper is organized as follows. In Section 2, we give some preliminary results
that will be used in the proof of our main results. In Section 3, we establish the exis-
tence of a solution for the nonlinear fractional q-difference boundary value problems
(1.1)-(1.2).

2. Preliminaries

In this section, we list some useful definitions and preliminaries, which will be
used in the proofs of the main results.
Let q ∈ (0, 1) and define

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the power function (a− b)k , k ∈ N0 = {0, 1, 2, . . . } is

(a− b)0 = 1 , (a− b)(k) =

k−1∏
i=0

(
a− bqi

)
, k ∈ N, a, b ∈ R.

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏
n=0

a− bqn

a− bqα+n
.

Note that, if b = 0 then a(α) = aα.
The q-gama function is defined by

Γq (x) =
(1− q)(x−1)

(1− q)x−1
, x ∈ R\ {0,−1,−2, . . . }

then
Γq (x+ 1) = [x] Γq (x) .



Existence of solutions for fractional q-difference equations 575

The q-derivative of a function f is here defined by

(Dqf) (x) =
f (x)− f(qx)

(1− q)x
, (Dqf) (0) = lim

x→0
(Dqf) (x) for x 6= 0

and q-derivatives of higher order by(
D0
qf
)

(x) = f (x) and
(
Dn
q f
)

(x) = Dq

(
Dn−1
q f

)
(x) , n ∈ N.

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf) (x) =

∫ x

0

f(t)dqt = x (1− q)
∞∑
n=0

f(xqn)qn, x ∈ [0, b] .

If a ∈ [0, b] and f is defined in the interval [0, b], its integral from a to b is defined by∫ b

a

f (t) dqt =

∫ b

0

f (t) dqt−
∫ a

0

f(t)dqt.

Similarly as done for derivatives, an operator Inq can be defined, i.e.,(
I0q f
)

(x) = f (x) and
(
Inq f

)
(x) = Iq

(
In−1q f

)
(x) , n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf) (x) = f (x)

and if f is continuous at x = 0, then

(IqDqf) (x) = f (x)− f(0).

We now point out two formulas that will be used later (tDq denotes the derivative
with respect to variable t)

tDq(t− s)(α) = [α]q(t− s)
(α−1)

,

(
xDq

∫ x

0

f (x, t) dqt

)
(x) =

∫ x

0
xDqf (x, t)dqt+ f (qx, x) .

Remark 2.1. If α > 0 and a ≤ b ≤ t , then (t− a)
(α) ≥ (t− b)(α).

Definition 2.2. [1] Let α ≥ 0 and f be a function defined on [0, 1]. The fractional
q-integral of the Riemann-Liouville type is

(I0q f) (x) = f(x)

and

(I
α
q f) (x) =

1

Γq(α)

∫ x

0

(x− qt)(α−1)f(t)dqt , x ∈ [0, 1] .

Definition 2.3. [29] The fractional q-derivative of the Riemann-Liouville type of order
α ≥ 0 is defined by

(D
α
q f) (x) = f(x)

and
(D

α
q f) (x) =

(
Dp
qI
p−α
q f

)
(x) , α > 0,
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where p is the smallest integer greater than or equal to α.
Next, we list some properties about q-derivative and q-integral that are already

known in the literature, which are helpful in proofs of our main results.
Lemma 2.4. [21]
(1) If f and g are q-integral on the interval [a, b], α ∈ R, c ∈ [a, b], then

1.
∫ b
a

(f (t) + g (t)) dqt =
∫ b
a
f (t) dqt+

∫ b
a
g(t)dqt

2.
∫ b
a
αf (t) dqt = α

∫ b
a
f(t)dqt

3.
∫ b
a
f (t)dqt =

∫ c
a
f (t)dqt+

∫ b
c
f (t)dqt

4.
∫
xαdqs = xα+1

[α+1] , (α 6= −1) ;

(2) If |f | is q-integral on the interval [0, x], then∣∣∣∣∫ x

0

f(t)dqt

∣∣∣∣ ≤ ∫ x

0

|f(t)| dqt;

(3) If f and g are q-integral on the interval [0, x], f (t) ≤ g (t) , ∀t ∈ [0, x], then∫ x

0

f(t)dqt ≤
∫ x

0

g(t)dqt.

Lemma 2.5. [9] Let α > 0 and p be a positive integer. Then, the following equality
holds: (

Iαq D
p
qf
)

(x) =
(
Dp
qI
α
q f
)

(x)−
p−1∑
k=0

xα−p+k

Γq (α+ k − p+ 1)
(Dk

q f)(0).

Now, we will give the existence theorems used in our main results.
Theorem 2.6. [11] Let T : X → X be a map on a complete non-empty metric space.
If some iterate Tn of T is a contraction, then T has a unique fixed point.
Theorem 2.7. [18] Let X be a Banach space and P ⊆ X be a cone. Suppose that
Ω1 and Ω2 are bounded open sets contained in X such that 0 ⊆ Ω1 ⊆ Ω1 ⊆ Ω2.
Suppose further that T : P ∩ (Ω2\Ω1) → P is a completely continuous operator. If
either

1. ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2, or
2. ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2, then

T has at least one fixed point in P ∩ (Ω2\Ω1).
Theorem 2.8. [4] (Nonlinear alternative for single valued maps) Let E be a Banach
space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U . Suppose that
F : U → C is a continuous, compact (that is, F (U) is a relatively compact subset of
C) map. Then either

1. F has a fixed point in U , or
2. There is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λ F (u).

The next result is important in the sequel.
Lemma 2.9. Let g (t) : [0, 1] → [0,∞) be a given continuous function. Then the
boundary value problem (

Dα
q u
)

(t) + g(t) = 0, 0 < t < 1, (2.1)
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u (0) = 0, u (1) = a

∫ 1

0

h (s)u (s) dqA (s) + b (2.2)

has a unique solution

u (t) =

∫ 1

0

H (t, qs) g (s) dqs+
b

k
tα−1

where

H (t, s) = G (t, s) +
a tα−1

k
GA(s)

such that

G (t, s) =
1

Γq(α)

{
(t (1− s))(α−1) − (t− s)(α−1), s ≤ t
(t (1− s))(α−1), s ≥ t,

GA (s) =

∫ 1

t=0

h (t)G (t, s) dqA(t)

and

k = 1− a
∫ 1

0

h (s) sα−1 dqA(s) 6= 0.

Proof. From Lemma 2.5 and Definition 2.2, we have

u(t) = − 1

Γq (α)

∫ t

0

(t− qs)(α−1)g (s) dqs+ c1t
α−1 + c2t

α−2.

Since u (0) = 0 we get c2 = 0. Thus, we have

u(t) = − 1

Γq (α)

∫ t

0

(t− qs)(α−1)g (s) dqs+ c1t
α−1.

Using the second boundary condition we get

− 1

Γq (α)

∫ 1

0

(1− qs)(α−1)g (s) dqs+ c1

= a

∫ 1

0

h (s)

[
− 1

Γq (α)

∫ s

0

(s− qw)
(α−1)

g (w) dqw + c1s
α−1

]
dqA (s) + b

Thus, we have

c1

[
1− a

∫ 1

0

h (s) sα−1dqA (s)

]
=

1

Γq (α)

∫ 1

0

(1− qs)(α−1)g (s) dqs

− a

Γq (α)

∫ 1

0

[∫ 1

wq

h (s) (s− qw)
(α−1)

dqA (s)

]
g (w) dqw + b

and

c1 =
1

k

{
1

Γq (α)

∫ 1

0

(1− qs)(α−1)g (s) dqs

− a

Γq (α)

∫ 1

0

[∫ 1

wq

h (s) (s− qw)
(α−1)

dqA (s)

]
g (w) dqw

}
+
b

k
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so

c1 =
1

kΓq (α)

∫ 1

0

(1− qs)(α−1)g (s) dqs

− a

kΓq (α)

∫ 1

0

[∫ 1

sq

h (t) (t− qs)(α−1)dqA (t)

]
g (s) dqs +

b

k
.

Therefore, we have

u (t) = − 1

Γq (α)

∫ t

0

(t− qs)(α−1)g (s) dqs+
tα−1

k

{
1

Γq (α)

∫ 1

0

(1− qs)(α−1)g (s) dqs

− a

Γq (α)

∫ 1

0

[∫ 1

sq

h (t) (t− qs)(α−1)dqA (t)

]
g (s) dqs

}
+
b

k
tα−1

= − 1

Γq (α)

∫ t

0

(t− qs)(α−1)g (s) dqs+
tα−1

Γq (α)

∫ 1

0

(1− qs)(α−1)g (s) dqs

− tα−1

Γq (α)

∫ 1

0

(1− qs)(α−1)g (s) dqs+
tα−1

k

{
1

Γq (α)

∫ 1

0

(1− qs)(α−1)g (s) dqs

− a

Γq (α)

∫ 1

0

[∫ 1

sq

h (t) (t− qs)(α−1)dqA (t)

]
g (s) dqs

}
+
b

k
tα−1

u (t) =

∫ 1

0

G (t, qs) g (s) dqs

+
atα−1

kΓq (α)

{∫ 1

s=0

[∫ 1

t=0

h (t) tα−1dqA (t)

]
(1− qs)(α−1)g (s) dqs

−
∫ 1

s=0

[∫ 1

t=sq

h (t) (t− qs)(α−1)dqA (t)

]
g (s) dqs

}
+
b

k
tα−1.

Thus

u (t) =

∫ 1

0

G (t, qs) g (s) dqs+
atα−1

k

∫ 1

0

GA (s) g (s) dqs+
b

k
tα−1,

where

G (t, s) =
1

Γq(α)

{
(t (1− s))(α−1) − (t− s)(α−1), s ≤ t
(t (1− s))(α−1), s ≥ t

GA (s) =

∫ 1

t=0

h (t)G (t, s) dqA(t),

and

k = 1− a
∫ 1

0

h (s) sα−1 dqA(s) 6= 0.

Consequently, we can write

u (t) =

∫ 1

0

H (t, qs) g (s) dqs+
b

k
tα−1
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where

H (t, s) = G (t, s) +
a tα−1

k
GA(s). �

Lemma 2.10. Assume that 0 < k < 1 and GA(s) ≥ 0 for s ∈ [0, 1], then H(t, s)
satisfies followings:

1. H (t, s) ≥ 0, ∀t, s ∈ [0, 1]
2. There exist a constant

L =
1

Γq(α)

(
1 +

a.H

k

)
such that

atα−1

k
GA (s) ≤ H (t, s) ≤ L (1− s)(α−1)tα−1,

where

H =

∫ 1

0

h (t) tα−1 dqA(t).

Proof. 1. (i) For s ≤ t, we know that

G (t, s) =
1

Γq (α)

[
(t (1− s))(α−1) − (t− s)(α−1)

]
.

Since

t < 1⇒ 1

t
> 1⇒ −s

t
< −s⇒

(
1− s

t

)(α−1)
< (1− s)(α−1),

we get

1

Γq (α)

[
tα−1(1− s)(α−1) − tα−1

(
1− s

t

)(α−1)]
>

1

Γq (α)
tα−1

[
(1− s)(α−1) −

(
1− s

t

)(α−1)]
> 0,

so G (t, s) ≥ 0.
(ii) For s ≥ t, it is clear that G (t, s) > 0.

Thus we get G (t, s) ≥ 0, ∀t, s ∈ [0, 1].

Since GA (s) =
∫ 1

t=0
h (t)G (t, s) dqA(t) > 0, then H (t, s) ≥ 0, for t, s ∈ [0, 1] .

2. Since

G (t, s) ≤ 1

Γq (α)
tα−1(1− s)(α−1) < 1

Γq (α)
(1− s)(α−1),

we have

GA (s) =

∫ 1

t=0

h (t)G (t, s) dqA(t) <

∫ 1

t=0

h (t)
1

Γq (α)
tα−1(1− s)(α−1)dqA(t)

=
(1− s)(α−1)

Γq (α)

∫ 1

t=0

h (t) tα−1dqA (t) =
(1− s)(α−1)

Γq (α)
H.

Also, we know

H (t, s) = G (t, s) +
a tα−1

k
GA(s)
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that

H (t, s) ≤ 1

Γq (α)
tα−1(1− s)(α−1) +

a

kΓq (α)
tα−1(1− s)(α−1)H

=
1

Γq (α)

(
1 +

aH

k

)
tα−1(1− s)(α−1)

≤ L (1− s)(α−1)tα−1.

In conclusion, we have

atα−1

k
GA (s) ≤ H (t, s) ≤ 1

Γq (α)

(
1 +

aH

k

)
(1− s)(α−1)tα−1. �

3. Main results

We are now in a position to state and prove our main results in this paper.
Transform the problem (1.1)−(1.2) into a fixed point problem. We define the operator
T : C ([0, 1] ,R)→ C ([0, 1] ,R) by

(Tu) (t) =

∫ 1

0

H (t, qs)ϕ (s) f (s, u (s)) dqs+
b

k
tα−1. (3.1)

It’s easy to show that, from Lemma 2.9, the fixed points of operator T coincide
with the solutions of boundary value problems (1.1)− (1.2).

Suppose that the following conditions are satisfied.

(H1) ϕ (t) is nonnegative on (0, 1) and∫ 1

0

(1− qs)(α−1)ϕ (s) dqs <∞

(H2) |f (t, u)− f(t, v)| ≤ K. |u− v| , for all t ∈ [0, 1] , u, v ∈ R
(H3) f ∈ C ([0, 1]× R, [0,∞) ) , C ⊂ B, C = {u ∈ C [0, 1] : u(t) ≥ 0}
(H4) f ∈ C ([0, 1]× [0,∞) , [0,∞) ), f(t, u1) ≤ f(t, u2) for 0 ≤ u1 < u2 and any
t ∈ [0, 1] .

Let B = C ([0, 1] , R) is the Banach space with the norm ‖u‖ = maxt∈[0,1] |u(t)|
and C = {u ∈ B : u(t) ≥ 0}. Then C is a normal cone on B. Also we denote u1 4 u2
if and only if u2−u1 ∈ C for u1, u2 ∈ B.

Lemma 3.1 If there holds (H1) and f meets (H3). Then the operator T : C → B

(Tu) (t) =

∫ 1

0

H (t, qs)ϕ (s) f (s, u (s)) dqs+
b

k
tα−1

satisfies T (C) ⊂ C and T is completely continuous.

Proof. It follows from (H1) and the nonnegativeness and continuity of H (t, qs) and
f (t, u (t)) that T has definition and satisfies T (C) ⊂ C. The next proof will be given
in several steps.

Step 1. T is continuous.
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Let {un} be a sequence such that un → u. Then for each t ∈ [0, 1], according to
Lebesgue control convergence theorem and Lemma 2.10, we have

‖Tun − Tu‖ =
sup

t ∈ [0, 1]
|(Tun) (t)− (Tu)(t)|

=
sup

t ∈ [0, 1]

∣∣∣∣∫ 1

0

H (t, qs)ϕ (s) f (s, un (s)) dqs−
∫ 1

0

H (t, qs)ϕ (s) f (s, u (s)) dqs

∣∣∣∣
≤ sup

t ∈ [0, 1]

∫ 1

0

H (t, qs) ϕ (s) |f (s, un (s))− f (s, u(s))| dqs

≤ 1

Γq (α)

(
1 +

aH

k

)
tα−1

∫ 1

0

(1− qs)(α−1)ϕ (s) |f (s, un (s))− f (s, u(s))| dqs

→ 0 , n→∞

Therefore, T is continuous.

Step 2. T maps bounded sets into bounded sets in C ([0, 1] ,R).

Indeed, it is enough to show that for any µ > 0, there exists a positive constant

r = M

∫ 1

0

1

Γq (α)

(
1 +

aH

k

)
(1− qs)(α−1)ϕ (s) dqs+

b

k
.

Such that for each u ∈ Bµ = {u ∈ C ([0, 1] ,R) : ‖u‖ ≤ µ}, we have ‖Tu‖ ≤ r.
Denote M = maxt∈[0,1],‖u‖≤µ {f (t, u (t)) + 1}. We have for each t ∈ [0, 1],

|Tu (t)| =

∫ 1

0

H (t, qs)ϕ (s) f (s, u (s)) dqs+
b

k
tα−1

≤
∫ 1

0

H (t, qs)ϕ (s) f (s, u (s)) dqs+
b

k

≤ M

∫ 1

0

H (t, qs)ϕ (s) dqs+
b

k

≤ M

∫ 1

0

1

Γq (α)

(
1 +

aH

k

)
(1− qs)(α−1)ϕ (s) dqs+

b

k
= r.

Thus we get ‖Tu‖ ≤ r.
Step 3. T maps bounded sets into equicontinuous sets of C ([0, 1] ,R).

Let t1, t2 ∈ [0, 1] , t1 < t2, Bµ be bounded set of C ([0, 1] ,R) as in Step 2 and let
u ∈ Bµ. Then

|(Tu) (t2)− (Tu) (t1)| =
∣∣∣∣∫ 1

0

(H (t2, qs)−H(t1, qs))ϕ (s) f (s, u (s)) dqs

+
b

k

(
t2
α−1 − t1α−1

)∣∣∣∣
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≤

∣∣∣∣∣−
∫ t2

0

(t2 − qs)(α−1)

Γq (α)
ϕ (s) f (s, u (s)) dqs

+
t2
α−1

kΓq (α)

∫ 1

0

(1− qs)(α−1)ϕ (s) f (s, u (s)) dqs

− at2
α−1

kΓq (α)

∫ 1

0

[∫ 1

sq

(t2 − qs)(α−1)h (t2) dqA (t2)

]
ϕ (s) f (s, u (s)) dqs+

b

k
t2
α−1

+

∫ t1

0

(t1 − qs)(α−1)

Γq (α)
ϕ (s) f (s, u (s)) dqs

− t1
α−1

kΓq (α)

∫ 1

0

(1− qs)(α−1)ϕ (s) f (s, u (s)) dqs

+
at1

α−1

kΓq (α)

∫ 1

0

[∫ 1

sq

(t1 − qs)(α−1)h (t1) dqA (t1)

]
ϕ (s) f (s, u (s)) dqs−

b

k
t1
α−1

∣∣∣∣
Furthermore, we deduce that

|(Tu) (t2)− (Tu) (t1)| ≤

∣∣∣∣∣
∫ t1

0

(t2 − qs)(α−1) − (t1 − qs)
(α−1)

Γq (α)
ϕ (s) f (s, u (s)) dqs

+

∫ t2

t1

(t2 − qs)(α−1)

Γq (α)
ϕ (s) f (s, u (s)) dqs

∣∣∣∣∣
+

∣∣∣∣∣ t2α−1kΓq (α)

∫ 1

0

(1− qs)(α−1)ϕ (s) f (s, u (s)) dqs

− t1
α−1

kΓq (α)

∫ 1

0

(1− qs)(α−1)ϕ (s) f (s, u (s)) dqs

∣∣∣∣∣
+

∣∣∣∣∣ at2α−1kΓq (α)

∫ 1

0

[∫ 1

sq

(t2 − qs)(α−1)h (t2) dqA (t2)

]
ϕ (s) f (s, u (s)) dqs

− at1
α−1

kΓq (α)

∫ 1

0

[∫ 1

sq

(t1 − qs)(α−1)h (t1) dqA (t1)

]
ϕ (s) f (s, u (s)) dqs

∣∣∣∣∣
+
b

k

∣∣t2α−1 − t1α−1∣∣
≤M

∫ t1

0

(t2 − qs)(α−1) − (t1 − qs)
(α−1)

Γq (α)
ϕ (s) dqs
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+
M

Γq (α)

∫ t2

t1

(1− qs)(α−1)ϕ (s) dqs+
M
∣∣t2α−1 − t1α−1∣∣

k

∫ 1

0

(1− qs)(α−1)

Γq (α)
ϕ (s) dqs

+
aM

kΓq (α)

∫ 1

0

{
t2
α−1

∫ 1

sq

(t2 − qs)(α−1)h (t2) dqA (t2)

−t1α−1
∫ 1

sq

(t1 − qs)(α−1)h (t1) dqA (t1)

}
+
b

k

∣∣t2α−1 − t1α−1∣∣ . (3.2)

Obviously, ∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)

(α−1)
)
ϕ (s) dqs

≤
∫ 1

0

(
(t2 − qs)(α−1)

(1− qs)(α−1)
− (t1 − qs)(α−1)

(1− qs)(α−1)

)
(1− qs)(α−1) ϕ (s) dqs.

The function (t−qs)(α−1)

(1−qs)(α−1) is continuous with respect to t and s on [0, 1]× [0, 1] and so

it is uniformly continuous on [0, 1]× [0, 1].

Therefore, for any t1, t2 ∈ [0, 1] , t1 < t2, s ∈ [0, 1] , as t1 → t2, we can conclude that

(t2 − qs)(α−1)

(1− qs)(α−1)
− (t1 − qs)(α−1)

(1− qs)(α−1)
→ 0.

So we can see ∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)

(α−1)
)
ϕ (s) dqs

≤
∫ 1

0

(
(t2 − qs)(α−1)

(1− qs)(α−1)
− (t1 − qs)(α−1)

(1− qs)(α−1)

)
(1− qs)(α−1) ϕ (s) dqs

→ 0 , t1 → t2.

For ∫ t2

t1

(1− qs)(α−1)ϕ (s) dqs,

according to Cauchy criterion for convergence of an improper integral, as t2 → t1,∫ t2

t1

(1− qs)(α−1)ϕ (s) dqs→ 0.

In conclusion, as t2 → t1, the right-hand side of the above inequality (3.2) tends to
zero. As a consequence of Step 1 to 3 together with the Arzela-Ascoli theorem. Hence
T is completely continuous. The proof is complete. �

Our first result is based on the generalization of Banach contraction principle.
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Theorem 3.2. Assume (H1) and (H2) hold. Let

M =

∫ 1

0

sα−1 (1− qs)(α−1)ϕ (s) dqs

and

MK
1

Γq (α)

(
1 +

aH

k

)
< 1

Then the boundary value problems (1.1)− (1.2) have a unique solution.

Proof. We shall prove that under the conditions (H1) and (H2), the operator Tn is a
contraction map in the space C [0, 1] for sufficiently large n.

T : C [0, 1]→ C [0, 1]

By Lemma 2.10 we have

|(Tu) (t)− (Tv) (t)| =
∣∣∣∣∫ 1

0

H (t, qs)ϕ (s) f (s, u (s)) dqs+
b

k
tα−1

−
∫ 1

0

H (t, qs)ϕ (s) f (s, v (s)) dqs−
b

k
tα−1

∣∣∣∣∣
≤
∫ 1

0

|H (t, qs)| |ϕ (s)| |f (s, u (s))− f(s, v (s))| dqs

≤
∫ 1

0

1

Γq (α)

(
1 +

aH

k

)
(1− qs)(α−1)tα−1ϕ (s) K |u (s)− v(s)| dqs

≤ 1

Γq (α)

(
1 +

aH

k

)
K ‖u− v‖ tα−1

∫ 1

0

(1− qs)(α−1)ϕ (s) dqs︸ ︷︷ ︸
l

≤ 1

Γq (α)

(
1 +

aH

k

)
K ‖u− v‖ tα−1 l

∣∣(T 2u
)

(t)−
(
T 2v

)
(t)
∣∣ ≤ ∫ 1

0

|H (t, qs)| |ϕ (s)| |f (s, (Tu) (s))− f(s, (Tv) (s))| dqs

≤
∫ 1

0

1

Γq (α)

(
1 +

aH

k

)
(1− qs)(α−1)tα−1ϕ (s) K |Tu− Tv| dqs

≤
∫ 1

0

1

Γq
2 (α)

(
1 +

aH

k

)2

(1− qs)(α−1)tα−1ϕ (s) K2 ‖u− v‖ sα−1 l dqs

<
1

Γq
2 (α)

(
1 +

aH

k

)2

K2 ‖u− v‖ tα−1 l
∫ 1

0

sα−1 (1− qs)(α−1)ϕ (s) dqs︸ ︷︷ ︸
M
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By the induction method, we have

|(Tnu) (t)− (Tnv) (t)| ≤ ‖u− v‖
Γq

n (α)

(
1 +

aH

k

)n
Kn l Mn−1 tα−1

≤ Kn l Mn−1

Γq
n (α)

(
1 +

aH

k

)n
‖u− v‖ ,

we can choose enough large n, such that

Kn l Mn−1

Γq
n (α)

(
1 +

aH

k

)n
<

1

2
,

then it follows that

|(Tnu) (t)− (Tnv) (t)| ≤ 1

2
‖u− v‖ .

By means of Theorem 2.6, we claim that the operator T has a unique fixed point. �

Theorem 3.3. If there holds (H1), define two constants

W = max
(t,s)∈[0,1]×[0,1]

H(t, qs) and Q =

∫ 1

0

W ϕ(s)dqs.

If there exist two positive constants r2 > r1 such that

b

k
+Q max

(t,u)∈[0,1]×[0,r2]
f(t, u) ≤ r2

and
b

k
+Q min

(t,u)∈[0,1]×[0,r1]
f(t, u) ≥ r1

then the boundary value problems (1.1) − (1.2) have at least one solution satisfying
r1 ≤ ‖u‖ ≤ r2.

Proof. It follows from continuity of H(t, qs) and f(t, u) that H(t, qs), f(t, u) has a
maximum on any closed field.

Let Ω1 = {u ∈ C : ‖u‖ < r1}. For u ∈ C ∩ ∂Ω1, we have 0 ≤ u(t) ≤ r1 on [0, 1],

‖Tu‖ =
sup

t ∈ [0, 1]

(∫ 1

0

H (t, qs)ϕ (s) f (s, u (s)) dqs+
b

k
tα−1

)
=

∫ 1

0

max

t ∈ [0, 1]
H (t, qs)ϕ (s) f (s, u (s))dqs+

b

k

=

∫ 1

0

W ϕ (s) f (s, u (s)) dqs+
b

k

≥ min
(t,u)∈[0,1]×[0,r1]

f(t, u)

∫ 1

0

W ϕ (s) dqs+
b

k

≥ r1 = ‖u‖ .
Let Ω2 = {u ∈ C : ‖u‖ < r2}. For u ∈ C ∩ ∂Ω2, we have 0 ≤ u(t) ≤ r2 on [0, 1],
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‖Tu‖ =
sup

t ∈ [0, 1]

(∫ 1

0

H (t, qs)ϕ (s) f (s, u (s)) dqs+
b

k
tα−1

)
≤ max

(t,u)∈[0,1]×[0,r2]
f(t, u)

∫ 1

0

W ϕ (s) dqs+
b

k

≤ r2 = ‖u‖ .

By Theorem 2.7 and Lemma 3.1, we can conclude that the operator equation Tu = u
has a solution satisfying r1 ≤ ‖u‖ ≤ r2. The proof is complete. �

Theorem 3.4. Assume that f : [0, 1]×R→ R is a continuous function. Let (H1) and
(H3) be satisfied. If there exists a constant R such that

R

r
> 1. (3.3)

Then the boundary value problems (1.1)− (1.2) have at least one solution, where r is
given in Lemma 3.1.

Proof. Let u be a solution. Then for t ∈ [0, 1], using the computations in proving
that T is bounded, we have |u(t)| = |λTu(t)| ≤ r and thus we have

‖u‖
r
≤ 1.

In view of (3.3) there exists R such that ‖u‖ 6= R. Let us set

U = {u ∈ C ([0, 1] ,R) : ‖u‖ < R+ 1}
Note that the operator T : U → C ([0, 1] ,R) is completely continuous. From the
choice of U, there is no u ∈ ∂U such that u = λTu(t) for some λ ∈ (0, 1).

Consequently, by the nonlinear alternative of Leray-Schauder type, we deduce
that T has a fixed point u ∈ U which is a solution of (1.1)− (1.2). �

Now we will give the upper and lower solutions result.

Definition 3.5. Let x ∈ C2 [0, 1], we say that x is a lower solution of the boundary
value problems (1.1)− (1.2), if(

Dα
q x
)

(t) + ϕ(t)f (t, x(t)) ≥ 0, t ∈ (0, 1)

x (0) = 0, x (1) ≤ a
∫ 1

0

h (s)x (s) dqA (s) + b

Let y ∈ C2 [0, 1], we say that y is a upper solution of the boundary value problems
(1.1)− (1.2), if (

Dα
q y
)

(t) + ϕ(t)f (t, y(t)) ≤ 0, t ∈ (0, 1)

y (0) = 0, y (1) ≥ a
∫ 1

0

h (s) y (s) dqA (s) + b

Theorem 3.6. Assume that (H4) holds, boundary value problems (1.1) − (1.2) has a
lower solution u0 ∈ C and an upper solution v0 ∈ C such that u04 v0. The boundary
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value problems (1.1)−(1.2) has the maximal lower solution u∗ and the minimal upper
solution v∗ on [u0, v0] ⊂ C, both u∗ and v∗ are positive solutions of boundary value
problems (1.1)− (1.2).
Furthermore,

0 ≤ u0 ≤ u∗ ≤ v∗ ≤ v0.

Proof. The proof will be given with three steps.
Step 1. We will obtain the lower solution sequence {uk} and the upper solution se-
quence {vk}. According to Lemma 2.9 for given u0 ∈ C,

Dα
q u1 (t) + ϕ (t) f (t, u0 (t)) = 0, t ∈ (0, 1)

u1 (0) = 0, u1 (1) = a

∫ 1

0

h (s)u0 (s) dqA (s) + b

has a unique solution u1.
Since u0 is a lower solution of boundary value problems (1.1)− (1.2) then

Dα
q u0 (t) + ϕ (t) f (t, u0 (t)) ≥ 0, t ∈ (0, 1)

u0 (0) = 0, u0 (1) = a

∫ 1

0

h (s)u0 (s) dqA (s) + b.

Thus we can get that
Dα
q (u1 (t)− u0 (t)) ≤ 0

and

(u1 − u0) (0) = 0, (u1 − u0) (1) ≥ a
∫ 1

0

h (s) (u0 − u0) (s) dqA (s) ≥ 0.

If we define u1 (t)− u0 (t) = k(t), we get

Dα
q k (t) = g(t)

k (0) = 0, k (1) = γ

so we know that

k (t) = −
∫ 1

0

G (t, qs) g (s) dqs+ γtα−1,

since g(t) ≤ 0 and γ ≥ 0 we say that k (t) ≥ 0 and so u1 (t) ≥ u0 (t) .
So we can get that if u0 4 u1 than f(t, u1) ≥ f(t, u0), from the condition (H4).
Using this, we get

Dα
q u1 (t) = −ϕ (t) f (t, u0 (t)) ≥ −ϕ (t) f (t, u1 (t))

u1 (0) = 0, u1 (1) = a

∫ 1

0

h (s)u0 (s) dqA (s) + b ≤ a
∫ 1

0

h (s)u1 (s) dqA (s) + b.

Since
Dα
q u1 (t) + ϕ (t) f (t, u1 (t)) ≥ 0, t ∈ (0, 1)

u1 (0) = 0, u1 (1) ≤ a
∫ 1

0

h (s) u1 (s) dqA (s) + b,

then u = u1(t) is a lower solution of boundary value problems (1.1)− (1.2).
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Starting from the initial function u0 by the following iterative scheme

Dα
q uk (t) + ϕ (t) f (t, uk−1 (t)) = 0, t ∈ (0, 1) , k = 1, 2, . . .

uk (0) = 0, uk (1) = a

∫ 1

0

h (s)uk−1 (s) dqA (s) + b, (3.4)

we can obtain the sequence {uk}, where u = uk(t) are lower solutions of boundary
value problems (1.1)− (1.2) and uk−1 4 uk, so that {uk} is monotonically increasing.

Starting from the initial function v0 by the following iterative scheme

Dα
q vk (t) + ϕ (t) f (t, vk−1 (t)) = 0, t ∈ (0, 1) , k = 1, 2, . . .

vk (0) = 0, vk (1) = a

∫ 1

0

h (s) vk−1 (s) dqA (s) + b, (3.5)

we can get the sequence {vk}, where v = vk(t) are upper solutions of boundary value
problems (1.1)− (1.2) and {vk} is monotonically decreasing.

Step 2. We prove that uk 4 vk if uk−1 4 vk−1, k = 1, 2, . . .
Since uk−1 4 vk−1, then uk−1(t) ≤ vk−1 (t) and Dα

q uk−1 (t) ≥ Dα
q vk−1 (t) and from

(H4), we have

f (t, uk−1 (t)) ≤ f (t, vk−1 (t)) .

Thus, by (3.4) and (3.5) , we get

Dα
q (vk (t)− uk(t)) = − ϕ (t) (f (t, vk−1 (t))− f (t, uk−1 (t))) ≤ 0,

vk (0)− uk (0) = 0,

vk (1)− uk (1) = a

∫ 1

0

h (s) vk−1 (s) dqA (s)− a
∫ 1

0

h (s)uk−1 (s) dqA (s) ≥ 0.

Similarly we can show that uk 4 vk in the same way as the above.
Therefore,

u0 4 u1 4 · · · 4 uk 4 · · · 4 · · · 4 vk 4 · · · 4 v1 4 v0.
Since C is a normal cone on B, the {uk} is uniformly bounded. Because H,G,ϕ and
f are continuous, we can easily get that {uk} is equicontinuous. Hence the {uk} is
relatively compact. Then there exist u∗ and v∗ such that

lim
k→∞

uk = u∗ , lim
k→∞

Dα
q uk = Dα

q u
∗ (3.6)

lim
k→∞

vk = v∗ , lim
k→∞

Dα
q vk = Dα

q v
∗ (3.7)

which imply that u∗ is the maximal lower solution, v∗ is the minimal upper solution
of boundary value problems (1.1)− (1.2) in [u0, v0] ⊂ C and u∗ 4 v∗.

Step 3. We prove that u∗ and v∗ are the solution of boundary value problems (1.1)−
(1.2).
According to Lemma 2.9 and (3.4) , we can get that

uk (t) =

∫ 1

0

H (t, qs)ϕ (s) f (s, uk−1 (s)) dqs+
b

k
tα−1.
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From (3.6) and by the continuity of H, f and Lebesgue dominated convergence the-
orem, we have

u∗ (t) =

∫ 1

0

H (t, qs)ϕ (s) f (s, u∗ (s)) dqs+
b

k
tα−1,

which implies that u∗ is a solution of boundary value problems (1.1) − (1.2). In the
same way, we can show that v∗ is a solution of boundary value problems (1.1)− (1.2),
too.

Furthermore,

0 ≤ u0(t) ≤ u∗(t) ≤ v∗(t) ≤ v0 (t) . �
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