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A nonlocal Cauchy problem for nonlinear
generalized fractional integro-differential
equations

Vinod V. Kharat, Shivaji Tate and Anand Rajshekhar Reshimkar

Abstract. In this paper, we study the existence of solutions of a nonlocal Cauchy
problem for nonlinear fractional integro-differential equations involving general-
ized Katugampola fractional derivative. By using fixed point theorems, the results
are obtained in weighted space of continuous functions. In the last, results are
illustrated with suitable examples.
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1. Introduction

The idea of fractional differentiation was introduced by Riemann and Liouville
in the nineteenth century. It is the generalization of ordinary differentiation and in-
tegration to arbitrary non-integer order, for details, see [1, 2, 4, 5, 6, 15, 16] and the
references therein.

The area of fractional differential equations is now considered to be very im-
portant due to its various applications in different fields of science and technology
such as control theory, rheology, signal processing, modelling, fractals, chaotic dy-
namics, bioengineering and biomedical and so on, for example see [6, 13, 17] and the
references therein. Recently, many researchers studied the fractional differential and
integro-differential equations and obtained many interesting existence and uniqueness
results, see [3, 7, 12, 18, 20, 19, 21, 22, 23] and the references therein.
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Recently, the authors in [8] discussed the existence and stability of solution of
the initial value problem (IVP):

(%Dα,β
a+ x)(t) = f(t, x(t)), t ∈ J := (a, T ], (1.1)

(%I1−γ
a+ x)(a) = c2, γ = α+ β(1− α), c2 ∈ R, (1.2)

for generalized Katugampola fractional differential equation by using Schauder fixed
point theorem and the equivalence between IVP (1.1)-(1.2) and the integral equation

x(t) =
c2

Γ(γ)

(
t% − a%

%

)γ−1

+
1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1

f(s, x(s))ds. (1.3)

In [9], using Krasnoselskii’s fixed point theorem, Schauder fixed point theorem and
Schaefer fixed point theorem, authors discussed the existence of solution of IVP with
nonlocal initial condition:

(%Dα,β
a+ x)(t) = f(t, x(t)), t ∈ J := (a, T ], (1.4)

(%I1−γ
a+ x)(a+) =

m∑
j=1

ηjx(ξj), α ≤ γ = α+ β(1− α), ξj ∈ (a, T ], (1.5)

where %Dα,β
a+ is the generalized Katugampola fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and %I1−γ
a+ is the generalized Katugampola fractional integral

with % > 0. Authors also proved the equivalence between (1.4)-(1.5) and the integral
equation

x(t) =
K

Γ(α)

(
t% − a%

%

)γ−1 m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

f(s, x(s))ds

+
1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1

f(s, x(s))ds, (1.6)

where

K =

Γ(γ)−
m∑
j=1

ηj

(
ξ%j − a%

%

)γ−1
−1

. (1.7)

The above results motivate us and therefore, in this paper, we obtain the exis-
tence of solution of the following Nonlinear Generalized Fractional Integro–Differential
Equation (NGFIDE) of order α (0 < α < 1) and type β ∈ [0, 1]:

(%Dα,β
a+ x)(t) = f

(
t, x(t),

∫ t

a

h(t, s)x(s)ds

)
, t ∈ J := (a, T ], (1.8)

(%I1−γ
a+ x)(a+) =

m∑
j=1

ηjx(ξj), α ≤ γ = α+ β(1− α), ξj ∈ (a, T ], (1.9)

where %Dα,β
a+ is the generalized Katugampola fractional derivative of order α ∈ (0, 1)

and type β ∈ [0, 1] and %I1−γ
a+ is the generalized Katugampola fractional integral with

% > 0. Function f : J ×R×R→ R is a given function, ξj are pre–fixed points satisfy
0 < a < ξ1 ≤ . . . ≤ ξm < T and ηj , j = 1, 2, . . . ,m are real numbers.
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First, we establish an equivalent mixed-type nonlinear Volterra integral equation

x(t) =
K

Γ(α)

(
t% − a%

%

)γ−1 m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

× f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds

+
1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1

f

(
s, x(s),

∫ t

a

h(s, τ)x(τ)dτ

)
ds, (1.10)

where

K =

Γ(γ)−
m∑
j=1

ηj

(
ξ%j − a%

%

)γ−1
−1

, (1.11)

for NGFIDE (1.8)-(1.9) in the weighted space of continuous functions C1−γ,%[a, T ]
presented in the next section. We use the Krasnoselskii’s fixed point theorem and
Schauder fixed point theorem to prove the existence results for NGFIDE (1.8)-(1.9).

The rest of the paper is organized as follows. In Section 2, some definitions,
notations and basic results are given. We prove the equivalent integral equation in
Section 2 and the existence results are proved in Section 3. Illustrative examples are
given in the last section.

2. Preliminaries

Here we introduce some definitions and present preliminary results needed in
our proofs later.
Let the Euler gamma and beta functions be defined, respectively, by

Γ(α) =

∫ ∞
0

xα−1e−xdx, B(α, β) =

∫ 1

0

(1− x)α−1xβ−1dx, α > 0, β > 0.

It is well known that B(α, β) = Γ(α)Γ(β)/Γ(α + β) for α > 0, β > 0, see [13].
Throughout the paper, we consider [a, T ], 0 < a < T < ∞ being a finite interval on
R+ and % > 0.

Definition 2.1 ([13]). The space Xp
c (a, T ), c ∈ R, p ≥ 1 consists of those real valued

Lebesgue measurable functions g on (a, T ) for which ‖g‖Xpc <∞, where

‖g‖Xpc =

(∫ b

a

|tcg(t)|p dt

t

)1/p

, p ≥ 1 and ‖g‖X∞c = ess sup
a≤t≤T

|tcg(t)|

In particular, when c = 1/p, we see that Xc
1/p(a, T ) = Lp(a, T ).

Definition 2.2 ([14]). We denote by C[a, T ] a space of continuous functions g on (a, T ]
with the norm

‖g‖C = max
t∈[a,T ]

|g(t)|
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The weighted space Cγ,%[a, T ], 0 ≤ γ < 1 of functions g on (a, T ] is defined as

Cγ,%[a, T ] =

{
g : (a, T ]→ R :

(
t% − a%

%

)γ
g(t) ∈ C[a, T ]

}
(2.1)

with the norm

‖g‖Cγ,% =

∥∥∥∥( t% − a%%

)γ
g(t)

∥∥∥∥
C

= max
t∈[a,t]

∣∣∣∣( t% − a%%

)γ
g(t)

∣∣∣∣ ,
and C0,%[a, T ] = C[a, T ]

Definition 2.3 ([14]). Let δ% =
(
t%−1d/dt

)
, 0 ≤ γ < 1. Denote Cnδ%γ [a, T ] the Banach

space of functions g which are continuously differentinble, with δ%, on [a, T ] upto order
(n− 1) and have the derivative δn% g on (a, T ] such that δn% g ∈ Cγ,%[a, T ] :

Cnδ%,γ [a, T ] =
{
δk%g ∈ C[a, T ], k = 0, 1, . . . , n− 1, δn% g ∈ Cγ,%[a, T ]

}
, n ∈ N

with the norm

‖g‖Cnδ%,γ =

n−1∑
k=0

∥∥δk%g∥∥C +
∥∥δn% g∥∥Cγ,% , ‖g‖Cnδ% =

n∑
k=0

max
t∈Ω

∣∣δk%g(t)
∣∣ .

In particular, for n = 0 we have C0
δ%γ

[a, T ] = Cγ,%[a, T ].

Definition 2.4 ([10]). Let α > 0 and f ∈ Xp
c (a, T ), where Xp

c is as in Definition 2.1.
The left-sided Katugampola fractional integral %Iαa+ of order α is defined as

%Iαa+f(t) =

∫ t

a

s%−1

(
t% − s%

%

)α−1
f(s)

Γ(α)
ds, t > a. (2.2)

Definition 2.5 ([11]). Let α ∈ R+\N and n = [α] + 1, where [α] is the integer part of
α. The left-sided Katugampola fractional derivative %Dα

a+ is defined as

%Dα
a+f(t) = δn%

(
%In−αa+ f(s)

)
(t)

=

(
t%−1 d

dt

)n ∫ t

a

s%−1

(
t% − s%

%

)n−α−1
f(s)

Γ(n− α)
ds. (2.3)

Definition 2.6 ([14]). The left-sided generalized Katugampola fractional derivative
%Dα,β

a+ of order 0 < α < 1 and type 0 ≤ β ≤ 1 is defined as(
%Dα,β

a+ f
)

(t) =
(
%I
β(1−α)
a+ δ%

%I
(1−β)(1−α)
a+ f

)
(t), (2.4)

for the functions for which the right-hand side expression exists.

Lemma 2.7 ([9]). Suppose that α > 0, β > 0, p ≥ 1 and %, c ∈ R such that % ≥ c.
Then for f ∈ Xp

c (a, T ), the semigroup property of Katugampola integral is valid. This
is

%Iαa+
%Iβa+f(t) = %Iα+β

a+ f(t). (2.5)

Lemma 2.8 ([11]). Suppose that α > 0, 0 ≤ γ < 1 and f ∈ Cγ,%[a, T ]. Then for all
t ∈ (a, T ],

%Dα
a+

%Iαa+f(t) = f(t). (2.6)
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Lemma 2.9 ([11]). Suppose that α > 0, 0 ≤ γ < 1, f ∈ Cγ,%[a, T ] and %I1−α
a+ f ∈

C1
γ,%[a, T ]. Then

%Iαa+
%Dα

a+f(t) = f(t)−
%I1−α
a+ f(a)

Γ(α)

(
t% − a%

%

)α−1

. (2.7)

Lemma 2.10 ([9]). Suppose %Iαa+ and %Dα
a+ are defined as in Definitions 2.4 and 2.5,

respectively. Then

%Iαa+

(
t% − a%

%

)σ−1

=
Γ(σ)

Γ(σ + 1)

(
t% − a%

%

)α+σ−1

, α ≤ 0, σ > 0, t > a, (2.8)

%Dα
a+

(
t% − a%

%

)α−1

= 0, 0 < α < 1. (2.9)

Remark 2.11. For 0 < α < 1, 0 ≤ β ≤ 1, the generalized Katugampola fractional

derivative %Dα,β
a+ can be written in terms of Katugampola fractional derivative as

%Dα,β
a+ = %I

β(1−α)
a+ δ%

%I1−γ
a+ = %I

β(1−α)
a+

%Dγ
a+, γ = α+ β(1− α).

Lemma 2.12 ([14]). Let α > 0, 0 < γ ≤ 1 and f ∈ C1−γ,%[a, b]. If α > γ, then(
%Iαa+f

)
(a) = lim

x→a+

(
%Iαa+f

)
(t) = 0.

To discuss the existence of a solution of NGFIDE (1.8)-(1.9), we need the fol-
lowing spaces:

Cα,β1−γ,%[a, T ] =
{
g ∈ C1−γ,%[a, T ] : %Dα,β

a+ g ∈ C1−γ,%[a, T ]
}
, 0 < γ ≤ 1 (2.10)

and

Cγ1−γ,%[a, T ] =
{
g ∈ C1−γ,%[a, T ] : %Dγ

a+g ∈ C1−γ,%[a, T ]
}
, 0 < γ ≤ 1. (2.11)

Since %Dα,β
a+ g = %I

β(1−α)
a+

%Dγ
a+g, it is obvious that Cγ1−γ,%[a, T ] ⊂ Cα,β1−γ,%[a, T ].

Lemma 2.13 ([9]). Let α > 0, β > 0 and γ = α+ β − αβ. If g ∈ Cγ1−γ,%[a, T ], then

%Iγa+
%Dγ

a+g(t) = %Iαa+
%Dα,β

a+ g(t) = %D
β(1−α)
a+ g(t).

To prove the equivalence between NGFIDE (1.8)-(1.9) with Volterra integral
equation (1.10), we note the following lemmas.

Lemma 2.14 ([14]). Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α+ β − αβ. If f : (a, T ]× R→ R
is a function such that f(·, x(·)) ∈ C1−γ,%[a, T ] for any x(·) ∈ C1−γ,%[a, T ], then
x(·) ∈ Cγ1−γ,%[a, T ] satisfies IVP (1.1)-(1.2) if and only if x(·) satisfies the nonlinear

Volterra integral equation. (1.3)

Lemma 2.15 ([9]). Let 0 < α < 1, 0 ≤ β ≤ 1, γ = α + β − αβ. If f : (a, T ]× R→ R
is a function such that f(·, x(·)) ∈ C1−γ,%[a, T ] for any x(·) ∈ C1−γ,%[a, T ], then x ∈
Cγ1−γ,%[a, T ] satisfies IVP (1.4)-(1.5) if and only if x satisfies the nonlinear Volterra

integral equation (1.6).

Using the aforementioned equivalence, we prove a new equivalent mixed-type
integral equation for NGFIDE (1.8)-(1.9).
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Lemma 2.16. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. Suppose that
f : (a, T ] × R × R → R is a function such that f(·, x(·), y(·)) ∈ C1−γ,%[a, T ] for
any x(·) ∈ C1−γ,%[a, T ]. Function x(·) ∈ Cγ1−γ,%[a, T ] is a solution of NGFIDE (1.8)–

(1.9) if and only if x(·) is a solution of the mixed-type nonlinear Volterra integral
equation. (1.10)

Proof. First, we start with necesssary part. By appling Lemma 2.14 and Lemma 2.15,
a solution of NGFIDE (1.8)-(1.9) can be expressed as

x(t) =
%I1−γ
a+ x(a+)

Γ(γ)

(
t% − a%

%

)γ−1

+

∫ t

a

s%−1

(
t% − s%

%

)α−1 f
(
s, x(s),

∫ s
a
h(s, τ)x(τ)dτ

)
Γ(α)

ds. (2.12)

By putting t = ξj in (2.12), we obtain

x(ξj) =
%I1−γ
a+ x(a+)

Γ(γ)

(
ξ%j − a%

%

)γ−1

+

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1
f
(
s, x(s),

∫ s
a
h(s, τ)x(τ)dτ

)
Γ(α)

ds, (2.13)

and by multiplying both sides of (2.13) by ηj , we get

ηjx(ξj) =
%I1−γ
a+ x(a+)

Γ(γ)
ηj

(
ξ%j − a%

%

)γ−1

+ ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1
f
(
s, x(s),

∫ s
a
h(s, τ)x(τ)dτ

)
Γ(α)

ds. (2.14)

Using the initial condition of NGFIDE (1.8)-(1.9), we have

(%I1−γ
a+ x)(a+) =

m∑
j=1

ηjx(ξj) =
%I1−γ
a+ x(a+)

Γ(γ)

m∑
j=1

ηj

(
ξρj − a`

%

)γ−1

+

m∑
j−1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1
f
(
s, x(s),

∫ s
a
h(s, τ)x(τ)dτ

)
Γ(α)

ds,

which gives

(%I1−γ
a+ x)(a+)

Γ(γ)−
m∑
j−1

ηj

(
ξ%j − a%

%

)γ−1


=
Γ(γ)

Γ(α)

m∑
j−1

ηj

∫ ξj

a

s%
−1

(
ξ%j − s%

%

)α−1

f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds, (2.15)
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i.e.

(%I1−γ
a+ x)(a+) =

Γ(γ)

Γ(α)
K

m∑
j−1

ηj

∫ ξj

a

s%
−1

(
ξ%j − s%

%

)α−1

× f
(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds, (2.16)

where K is as in (1.11). Substituting (2.16) into (2.12), we obtain the integral equation
(1.10).
Secondly, we prove the sufficient part.
Applying %I1−γ

a+ on both sides of the integral equation (1.10), we get

%I1−γ
a+ x(t) =

K

Γ(α)
%I1−γ
a+

(
t% − a%

%

)γ−1 m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

× f
(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds

+%I1−γ
a+

%Iαa+f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds,

using Lemmas 2.7 and 2.10 , we have

%I1−γ
a+ x(t) =

Γ(γ)

Γ(α)
K

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

× f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds

+ %I
1−β(1−α)
a+ f

(
t, x(t),

∫ t

a

h(t, s)x(s)ds

)
. (2.17)

Since 1− γ < 1− β(1− α), Lemma 2.12 can be utilized and limit t→ a+ gives

%I1−γ
a+ x(a) =

Γ(γ)

Γ(α)
K

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

× f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds. (2.18)

By putting t = ξj in (1.10), we have

x (ξj) =
K

Γ(α)

(
ξ%j − a%

%

)γ−1 m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

×f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds
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+
1

Γ(α)

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds.

Further,

m∑
j=1

ηjx (ξj) =
K

Γ(α)

m∑
j−1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

× f
(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds

m∑
j=1

ηj

(
ξ%j − a%

%

)γ−1

+

m∑
j=1

ηj
1

Γ(α)

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds

=

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1
f
(
s, x(s),

∫ s
a
h(s, τ)x(τ)dτ

)
Γ(α)

ds

×

1 +K

m∑
j=1

ηj

(
ξ%j − a%

%

)γ−1


=
Γ(γ)

Γ(α)
K

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds. (2.19)

Equations (2.18) and (2.19), implies that

%I1−γ
a+ x(a+) =

m∑
j=1

ηjx (ξj) .

Applying %Dγ
a+ to both sides of (1.10), from Lemmas 2.10 and 2.14 if follows that

%Dγ
a+x(t) = %D

β(1−α)
a+ f

(
t, x(t),

∫ t

a

h(t, s)x(s)ds

)
, (2.20)

since x ∈ Cγ1−γ,%[a, T ], from the definition of Cγ1−γ,%[a, T ] we have %Dγ
a+x ∈

C1−γ,%[a, T ] then %D
β(1−α)
a+ f = δ%

%I
1−β(1−α)
a+ f ∈ C1−γ,%[a, T ].

For f ∈ C1−γ,%[a, T ], obviously %I
1−β(1−α)
a+ f ∈ C1−γ,%[a, T ], then %I

1−β(1−α)
a+ f ∈

C
δ%
1−γ,%[a, T ]. This means f and %I

1−β(1−α)
a+ f satisfy the conditions of Lemma 2.9.

Lastly, applying %I
1−β(1−α)
a+ to both sides of (2.20), Lemma 2.9 helps us to obtain

%Da,β
a+ x(t) = f

(
t, x(t),

∫ t

a

h(t, s)x(s)ds

)
−

%I
1−β(1−α)
a+ f(a)

Γ(β(1− α))

(
t% − a%

%

)β(1−α)−1

.

By Lemma 2.12 it is easy to see that %I
1−β(1−α)
a+ f(a) = 0. Hence, it reduces to

%Dα,β
a+ x(t) = f

(
t, x(t),

∫ t

a

h(t, s)x(s)ds

)
.
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Hence, the sufficiency is proved. This completes the proof of the lemma. �

3. Existence of solutions

In this section, we state and prove the main results concerning the existence of
a solution of NGFIDE (1.8)-(1.9).

By using Krasnoselskii’s fixed point theorem we prove the first existence result
for NGFIDE (1.8)-(1.9).

Theorem 3.1. Suppose that:

(H01) f : (a, T ]×R×R→ R is a function such that f(·, x(·), y(·)) ∈ Cβ(1−α)
1−γ,% [a, T ] for

any x ∈ C1−γ,%[a, T ] and there exists a positive constant L > 0 such that for all
x, y, x̄, ȳ ∈ R,
|f(t, x, y)− f(t, x̄, ȳ)| ≤ L(|x− x̄|+ |y − ȳ|).

(H02) The constant

θ =
Γ(γ)L(1 + hT (T − a))

Γ(γ + α)

|K| m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

+

(
T % − a%

%

)α
< 1,

where K is as in (1.11) and hT = Sup{|h(t, s)| |a ≤ s ≤ t ≤ T}.

Then NGFIDE (1.8)-(1.9) has at least one solution in Cγ1−γ,%[a, T ] ⊂ Cα,β1−γ,%[a, T ].

Proof. From Lemma 2.16 it is sufficient to prove the existence of a solution for mixed-
type integral equation (1.10). Define N : C1−γ,%[a, T ]→ C1−γ,%[a, T ] by

(Nx)(t) =
K

Γ(α)

(
t% − a%

%

)γ−1 m∑
j−1

η

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

× f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds

+
1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1

f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds. (3.1)

Obviously, the operntor N is well defined. Set f̄(s) = f(s, 0, 0) and

$ =
Γ(γ)

Γ(γ + α)

|K| m∑
j=1

ηj

(
ξ%j − a%

%

)a+γ−1

+

(
T % − a%

%

)α ‖f̄‖C1−γ,% .

Consider

Br =
{
x ∈ C1−γ,%[a, T ] : ‖x‖C1−γ,% ≤ r

}
, where r ≥ $

1− θ
, θ < 1.
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Now, we subdivide the operator N into two operators P and Q on Br as follows:

(Px)(t) =
K

Γ(α)

(
t% − a%

%

)γ−1 m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

× f
(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds, (3.2)

and

(Qx)(t) =
1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1

f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds. (3.3)

The proof is divided into several steps:
Step 1. For any x, x̄ ∈ Br we prove Px+Qx̄ ∈ Br. For operator P , multiplying both
sides of (3.2) by ((t% − a%) /%)

1−γ
, we have

(Px)(t)

(
t% − a%

%

)1−γ

=
K

Γ(α)

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

× f
(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds,

then ∣∣∣∣(Px)(t)

(
t% − a%

%

)1−γ ∣∣∣∣
≤ |K|

Γ(α)

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1∣∣∣∣f(s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)∣∣∣∣ds
≤ |K|

Γ(α)

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

×
(∣∣∣∣f(s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
− f(s, 0, 0)

∣∣∣∣+

∣∣∣∣f(s, 0, 0)

∣∣∣∣)ds

≤ |K|
Γ(α)

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1

×
(
L

(
|x(s)|+ hT

∫ s

a

|x(τ)|dτ
)

+ |f̄(s)|
)

ds

≤ |K|
Γ(α)

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1(
s% − a%

%

)γ−1

×
((

s% − a%

%

)1−γ

L(1 + hT (T − a))|x(s)|+
(
s% − a%

%

)1−γ

|f̄(s)|
)

ds

≤ |K|
Γ(α)

m∑
j−1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1(
s% − a%

%

)γ−1



A nonlocal Cauchy problem for nonlinear generalized fractional 499

×
(
L(1 + hT (T − a))‖x‖C1−γ,% + ‖f̄‖Cγ,%

)
ds

≤ |K|
Γ(α)

m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

B(α, γ)×
(
L(1 + hT (T − a))‖x‖C1−γ,% + ‖f̄‖C1−γ,%

)
,

which implies

‖Px‖C1−γ,% ≤
Γ(γ)|K|
Γ(α+ γ)

m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

×
(
L(1 + hT (T − a))‖x‖[C1−γ,% + ‖f̄‖C1−γ,%

)
. (3.4)

For operator Q,(
t% − a%

%

)1−γ

(Qx)(t)− 1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1(
t% − a%

%

)1−γ

× f
(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)
ds, (3.5)

using the same fact that we used in the case of operator P again, we obtain∣∣∣∣∣(Qx) (t)

(
t% − a%

%

)1−γ
∣∣∣∣∣

≤ 1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1(
t% − a%

%

)1−γ

×
∣∣∣∣f (s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)∣∣∣∣ ds
≤
(
t% − a%

%

)1−γ
1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1

× (L(1 + hT (T − a))|x(s)|+ |f̄(s)|)ds

≤ B(α, γ)

Γ(α)

(
T % − a%

%

)α (
L(1 + hT (T − a))‖x‖C1−γ,% + ‖f̄‖C1−γ,%

)
.

This gives

‖Qx‖C1−γ,% ≤
Γ(γ)

Γ(α+ γ)

(
T % − a%

%

)α
×
(
L(1 + hT (T − a))‖x‖C1−γ,% + ‖f̄‖C1−γ,%

)
. (3.6)

From equations (3.4) and (3.6) for every x, x̄ ∈ Br we obtain

‖Px+Qx̄‖C1−γ,% ≤ ‖Px‖C1−γ,% + ‖Qx̄‖C1−γ,% ≤ θr +$ ≤ r

which implies that Px+Qx̄ ∈ Br.
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Step 2. Now we prove that operator P is a contraction mapping.
Let x, x̄ ∈ Br, for operator P we have,

(
(Px)(t)− (Px̄)(t)

)(
t% − a%

%

)1−γ

=
|K|

Γ(α)

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1(
f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)

− f
(
s, x̄(s),

∫ s

a

h(s, τ)x̄(τ)dτ

))
ds

≤ |K|
Γ(α)

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1(∣∣∣∣f(s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)

− f
(
s, x̄(s),

∫ s

a

h(s, τ)x̄(τ)dτ

)∣∣∣∣)ds

≤ |K|
Γ(α)

m∑
j=1

ηj

∫ ξs

a

s%−1

(
ξ%j − s%

%

)α−1

L(1 + hT (T − a))|x(s)− x̄(s)|ds

≤ L(1 + hT (T − a))|K|B(α, γ)

Γ(α)

m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

‖x− x̄‖C1−γ,% ,

which is

‖Px− Px̄‖C1−γ,% ≤
L(1 + hT (T − a))|K|Γ(γ)

Γ(α+ γ)

m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

‖x− x̄‖C1−γ,% ≤ θ‖x− x̄‖C1−γ,% .

Thus, by assumption (H02), operator P is a contraction mapping.

Step 3. Operator Q is compact and continuous.
Since f ∈ C1−γ,%[a, T ], by the definition of C1−γ,%[a, T ], it is obvious that Q is con-
tinuous. By Step 1, we have

‖Qx‖C1−γ,% ≤
Γ(γ)

Γ(γ + α)

(
T % − a%

%

)α
×
(
L(1 + hT (T − a))‖x‖[C1−γ,% + ‖f̄‖C1−γ,%

)
,

this means Q is uniformly bounded on Br.
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To prove the compactness of Q, for any 0 < a < t1 < t2 ≤ T we have∣∣∣∣(Qx) (t1)− (Qx) (t2)

∣∣∣∣
=

∣∣∣∣∫ t1

a

s%−1

(
t%1 − s%

%

)α−1 f(s, x(s),
∫ s
a
h(s, τ)x(τ)dτ)

Γ(α)
ds

−
∫ t2

a

s%−1

(
t%2 − s%

%

)α−1 f(s, x(s),
∫ s
a
h(s, τ)x(τ)dτ)

Γ(α)
ds

∣∣∣∣
≤
‖f‖C1−γ,%

Γ(α)

∣∣∣∣∫ t1

a

s%−1

(
t%1 − s%

%

)α−1(
s% − a%

%

)γ−1

ds

−
∫ t2

a

s%−1

(
t%2 − s%

%

)α−1(
s% − a%

%

)γ−1

ds

∣∣∣∣
≤
‖f‖C1−γ,%Γ(γ)

Γ(α+ γ)

∣∣∣∣∣
(
t%1 − a%

%

)α+γ−1

−
(
t%2 − a%

%

)α+γ−1
∣∣∣∣∣ . (3.7)

The right-hand side of inequality (3.7) tends to zero as t2 → t1 either α+ γ < 1
or α+ γ ≥ 1. Therefore, Q is equicontinuous. Hence, by Arzelà-Ascoli theorem, Q is
compact on Br.

By applying Krasnoselskii’s fixed point theorem, NGFIDE (1.8)-(1.9) has at
least one solution x ∈ C1−γ,%[a, T ]. One can easily show that this solution is actually
in Cγ1−γ,%[a, T ] by repeating the process from the proof of Lemma 2.16. Thus, we
complete the proof. �

Now, we will discuss the next existence result by using Schauder fixed point
theorem. For this, we consider the following hypothesis:

(H11) f : (a, T ]× R× R→ R is a function such that f(·, x(·), y(·)) ∈ Cβ(1−α)
1−γ,% [a, T ] for

any x, y ∈ C1−γ,%[a, T ], and for all x, y ∈ R there exist L > 0 and M ≥ 0 such
that

|f(t, x, y)| ≤ L(|x|+ |y|) +M.

Theorem 3.2. Suppose that (H11) and (H02) hold. Then NGFIDE (1.8)-(1.9) has at

least one solution in Cγ1−γ,%[a, T ] ⊂ Cα,β1−γ,%[a, T ].

Proof. Let Bε =
{
x ∈ C1−γ,%[a, T ] : ‖x‖C1−γ,% ≤ ε

}
with ε ≥ Ω/(1 − θ) for θ < 1,

where

Ω =
M |K|

Γ(α+ 1)

m∑
j=1

ηj

(
ξ%j − a%

%

)α
+

M

Γ(α+ 1)

(
T % − a%

%

)α−γ+1

.

Consider the operator N on Bε defined in (3.1). We prove the theorem in the following
three steps:
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Step 1. First we prove that N (Bε) ⊂ Bε. By hypotheses (H11) and (H02), for any
x ∈ C1−γ,%[a, T ] and ‖x‖C1−γ,% we have∣∣∣∣(Nx)(t)

(
t% − a%

%

)1−γ ∣∣∣∣
≤
(
L(1 + hT (T − a))Γ(γ)

Γ(α+ γ)

m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

+
L(1 + hT (T − a))Γ(γ)

Γ(γ + α)

(
T % − a%

%

)a)
‖x‖C1−γ,%

+
M

Γ(α+ 1)

m∑
j=1

ηj

(
ξ%j − a%

%

)α
+

M

Γ(α+ 1)

(
T % − a%

%

)α−γ+1

.

This is ‖Nx‖C1−γ,% ≤ θε+ Ω ≤ ε, which gives N (Bε) ⊂ Bε.
Next we shall prove that N is completely continuous.

Step 2. N is continuous. Let xn be a sequence such that xn → x in Bε. Then for each
t ∈ (a, T ], we have∣∣∣∣ ((Nx) (xn) − (Nx)(t))

(
t% − a%

%

)γ−1 ∣∣∣∣
≤ |K|

Γ(α)

m∑
j=1

ηj

∫ ξj

a

s%−1

(
ξ%j − s%

%

)α−1 ∣∣∣∣f(s, xn(s),

∫ s

a

h(s, τ)xn(τ)dτ

)

− f
(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)∣∣∣∣ds
+

(
t% − a%

%

)1−γ
1

Γ(α)

∫ t

a

s%−1

(
t% − s%

%

)α−1

×
∣∣∣∣f(s, xn(s),

∫ s

a

h(s, τ)xn(τ)dτ

)
− f

(
s, x(s),

∫ s

a

h(s, τ)x(τ)dτ

)∣∣∣∣ds
≤ Γ(γ)

Γ(γ + α)

|K| m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

+

(
T % − a%

%

)α
×
∣∣∣∣∣∣∣∣f(·, xn(·),

∫ s

a

h(s, τ)xn(·)dτ
)
− f

(
·, x(·),

∫ s

a

h(s, τ)x(·)dτ
)∣∣∣∣∣∣∣∣

C1−γ,%

,

this implies∣∣∣∣∣∣∣∣Nxn −Nx∣∣∣∣∣∣∣∣
C1−γ,%

≤ Γ(γ)

Γ(γ + α)

(
|K|

m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

+

(
T % − a%

%

)α)

×
∣∣∣∣∣∣∣∣f(·, xn(·),

∫ s

a

h(s, τ)xn(τ)dτ

)
− f

(
·, x(·),

∫ s

a

h(s, τ)x(·)dτ
)∣∣∣∣∣∣∣∣

C1−γ,α

.

Thus, N is a continuous operator.
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Step 3. Finally, we prove that N (Bε) is relatively compact.
Since N (Bε) ⊂ Bε, it follows that N (Bε) is uniformly bounded.

By repeating the same process as in Step 3 in Theorem 3.1 , one can easily prove
that N is equicontinuous on Bε.

As α ≤ γ < 1 and noting (3.7), for any 0 < a < t1 < t2 ≤ T one has

|(Nx)(t1)− (Nx)(t2)|

≤
‖f‖C1−γ,% |K|Γ(γ)

Γ(α+ γ)

m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1

×

((
t%1 − a%

%

)γ−1

−
(
t%2 − a%

%

)γ−1
)

+ |(Qx)(t1)− (Qx)(t2)|

≤
‖f‖C1−γ,% |K|Γ(γ)

Γ(α+ γ)

m∑
j=1

ηj

(
ξ%j − a%

%

)α+γ−1∣∣∣∣ t%2 − t
%
1

(t%1 − a%) (t%2 − a%)

∣∣∣∣1−γ

+
‖f‖C1−γ,%Γ(γ)

Γ(γ + α)

∣∣∣∣( t%1 − a%%

)α+γ−1

−
(
t%2 − a%

%

)α+γ−1∣∣∣∣→ 0,

as t2 → t1. Thus, Q is equicontinuous.

Hence, N (Bε) is an equicontinuous set and therefore N (Bε) is relatively com-
pact. As a consequence of Steps 1 to 3 together with Arzelà-Ascoli theorem, we can
conclude that N : Bε → Bε is completely continuous. By applying Schauder fixed
point theorem, we complete the proof. �

4. Example

In this section, we will show the applications of our main results with two ex-
amples.

Example 4.1. Consider the nonlocal problem(
%Dα,β

a+

)
x(t) = f(t, x(t), Hx(t)), t ∈ (1, 2], (4.1)

(
%I1−γ
a+ x

)
(1+) = 2x

(
5

3

)
, γ = α+ β(1− α). (4.2)

Denoting α = 3
4 , β = 1

2 gives γ = 7
8 . Let % = 1

2 > 0 and set

f(t, x(t), Hx(t)) =

(
t% − 1

%

)−1/16

+
1

4

(
t% − 1

%

)15/16

sinx(t) +
1

4
Hx(t),

where

Hx(t) =

∫ t

1

1

(3 + t)2
x(s)ds.
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We can see that(
t1/2 − 1

1
2

)1/8

f(t, x(t), Hx(t)) =

(
t1/2 − 1

1
2

)1/16

+
1

4

(
t1/2 − 1

1
2

)17/16

sinx(t) +
1

4

(
t1/2 − 1

1
2

)1/8

Hx(t) ∈ C[1, 2] (4.3)

i.e. f(t, x,Hx(t)) ∈ C1/8,1/2[1, 2].
Moreover,

|f(t, x,Hx(t))− f(t, x̄, ¯Hx(t))| ≤ 1

4

(
|x− x̄|+ |Hx(t)− ¯Hx(t)|

)
.

So, we have L = 1
4 , hT = 1

16 .
Some elementary computations gives us

|K| =

∣∣∣∣∣∣∣
Γ(0.875)− 2

((
5
3

)1/2 − 1
1
2

)−1/8
−1

∣∣∣∣∣∣∣ ≈ 0.9521 < 1

and

θ =
Γ(0.875) 1

4 (1 + 1
16 (2− 1))

4Γ(1.625)

×

|K| × 2

((
5
3

)1/2 − 1
1
2

)5/8

+

(
21/2 − 1

1
2

)3/4


≈ 0.17964219 < 1.

All the assumptions of Theorem 3.1 are satisfied with

|K| ≈ 0.9521 and θ ≈ 0.17964219.

Therefore, problem (4.1)-(4.2) has at least one solution in C1/8,1/2[1, 2].

Example 4.2. Consider the nonlocal problem(
%Dα,β

a+ x

)
(t) = f(t, x(t), Hx(t)), t ∈ (1, 2], (4.4)

(
%I1−γ
a+ x

)
(1+) = 3x

(
8

7

)
+ 2x

(
4

3

)
. (4.5)

Denote α = 1
2 , β = 3

4 and % = 1
2 > 0. So γ = 7

6 and
(
ξ1 = 8

7

)
≤
(
ξ2 = 4

3

)
. Set

f(t, x(t), Hx(t)) = sin

(
1

3
|x(t)|

)
+

1

3
Hx(t), t ∈ (1, 2],

where

Hx(t) =

∫ t

1

1

(3 + t)2
x(s)ds.



A nonlocal Cauchy problem for nonlinear generalized fractional 505

It is easy to see that f(t, x(t), Hx(t)) ∈ C1/8,1/2[1, 2] and

|f(t, x,Hx(t))| ≤ 1

3

(
|x|+ |Hx(t)|

)
.

So, we have L = 1
3 , M = 0, hT = 1

16 . Moreover,

|K|=

∣∣∣∣∣∣∣
Γ(0.875)−

3

((
8
7

)1/2 − 1
1
2

)−1/8

+ 2

((
4
3

)1/2 − 1
1
2

)−1/8
−1

∣∣∣∣∣∣∣ ≈ 0.1973< 1

and

θ =
Γ(0.875) 1

3 (1 + 1
16 (2− 1))

3Γ(1.375)

×

|K| × 3

((
8
7

)1/2 − 1
1
2

)3/8

+ 2

((
4
3

)1/2 − 1
1
2

)3/8
 ≈ 0.2515 < 1

With the values of |K| and θ, problem (4.4)-(4.5) satisfies all the conditions of Theo-
rem 3.2. Thus, problem (4.4)-(4.5) has at least one solution in C1/8,1/2[1, 2].
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