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Expansion-compression fixed point theorem
of Leggett-Williams type for the sum of two
operators and applications for some classes
of BVPs

Salim Benslimane, Svetlin G. Georgiev and Karima Mebarki

Abstract. The purpose of this work is to establish an extension of a Leggett-
Williams type expansion-compression fixed point theorem for a sum of two oper-
ators. As illustration, our approach is applied to prove the existence of non trivial
nonnegative solutions for two-point BVPs and three-point BVPs.
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1. Introduction

For applicability reasons, we often search for existence and localization of positive
fixed points which may represent positive solutions for various nonlinear problems
posed in a Banach space.
One of the main results in fixed point theory is the cone expansion and compression
theorem proved by Krasnosel’skii in 1964 (see, e.g., [8, 14, 15]). It represents a powerful
existence tool in studying operator equations and showing existence of nonnegative
solutions to various boundary value problems. Then, many researchers have been
intersted in the extension of the above theorem in various directions (see, e.g., [1, 6,
7, 9, 16, 18, 19]).
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Throughout this paper, P will refer to a cone in a Banach space (E, ‖.‖). Let Ψ
and δ be nonnegative continuous functionals on P; then, for positive real numbers a
and b, we define the sets:

P(Ψ, b) = {x ∈ P : Ψ(x) ≤ b},

and

P(Ψ, δ, a, b) = {x ∈ P : a ≤ Ψ(x) and δ(x) ≤ b}.
Krasnosel’skii type compression-expansion fixed point theorems gives us fixed points
localized in a conical shell of the form {x ∈ P : a ≤ ‖x‖ ≤ b}, where a, b ∈ (0,∞),
while with the Leggett-Williams type they are localized in a conical shell of the form
P(α, β, a, b), where α is a concave nonnegative functional and β a convex nonnegative
functional.

The original Leggett-Williams fixed point theorem (see [17, Theorem 3.2])
discuss the existence of at least one fixed point in a conical shell of the form
{x ∈ P : a ≤ α(x) and ‖x‖ ≤ b}, where a, b ∈ (0,+∞). Noting that this result
has been widely extended in many directions, (see, e.g., [2, 3, 10, 11, 17]). In [2, The-
orem 4.1], Anderson et al. have discussed the existence of at least one solution in
P(β, α, r, R) or in P(α, β, r, R) for the nonlinear operational equation

Ax = x (1.1)

where A is a completely continuous nonlinear map acting in P, α is a nonnegative con-
tinuous concave functional on P and β is a nonnegative continuous convex functional
on P. In this result, the authors have used techniques similar to those of Leggett-
Williams that require only subsets of both boundaries to be mapped inward and
outward, respectively. They thus provide more general results than those obtained by
using the Krasnosel’skii’s cone compression and expansion one. Noting that, in [2],
the authors provided more general results than those obtained in [1, 4, 11, 12, 17, 19]
for completely continuous mappings.

In this paper, we use the fixed point index theory developed in [6] to generalize
the main result of [2] for the sum T+F where T is an expansive mapping with constant
h > 1 and I − F is a k-set contraction with k < h. The concept of set contraction is
related to that of the Kuratowski measure of noncompactness (see [5, 13]).

The paper is organized as follows. In Section 2 we give some auxiliary results
used for the proof of the main result. In Section 3, we present our main result. As
application, the existence of non trivial nonnegative solution for two-point BVPs and
three-point BVPs are considered in Section 4.

2. Auxiliary results

Let Ω be any subset of P, and U be a bounded open subset of P.
Consider T : Ω→ E an expansive mapping with constant h > 1, and I − F : U → E
a k-set contraction with 0 ≤ k < h. So, the operator T−1 is 1

h -Lipschtzian on T (Ω).
Assume that

(I − F )
(
U
)
⊂ T (Ω).
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Then the mapping T−1(I − F ) : U → P is a strict k
h -set contraction.

Hence, by Djebali et al. in [6], the fixed point index of the sum T + F on U ∩Ω with
respect to the cone P, noted i∗ (T + F,U ∩ Ω,P), is well defined.

The proof of our theorical result invokes the following main properties of the
fixed point index i∗.

(i). (Normalization) If U = P(Ψ, R), 0 ∈ Ω, and (I−F )x = z0 for all x ∈ U, where
z0 ∈ P,Ψ is a nonnegative continuous functionals on P satisfying Ψ(x) ≤ ‖x‖
for all x ∈ P and ‖z0 − T0‖ < hR, then

i∗ (T + F,U ∩ Ω,P) = 1.

(ii). (Additivity) For any pair of disjoint open subsets U1, U2 ⊂ U such that T +F
has no fixed point on (U \(U1 ∪ U2)) ∩ Ω, we have

i ∗(T + F,U ∩ Ω,P) = i ∗(T + F,U1 ∩ Ω,P) + i ∗(T + F,U2 ∩ Ω,P).

(iii). (Homotopy invariance) The fixed point index i ∗(T + H(., t), U ∩ Ω,P) does
not depend on the parameter t ∈ [0, 1], where

(a). (I−H) : [0, 1]×U → E is continuous and H(t, x) is uniformly continuous
in t with respect to x ∈ U,

(b). (I −H)([0, 1]× U) ⊂ T (Ω),
(c). (I−H(t, .)) : U → E is a `-set contraction with 0 ≤ ` < h for all t ∈ [0, 1],
(d). Tx+H(t, x) 6= x for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(iv). (Solvability) If i ∗(T +F,U ∩Ω,P) 6= 0, then T +F has a fixed point in U ∩Ω.

For proof and more details see [6, Theorem 3.1].

3. Main result

Let Ω be a subset of P such that 0 ∈ Ω. We consider the nonlinear equation

Tx+ Fx = x, (3.1)

where T : Ω → E an expansive mapping with constant h > 1, and I − F : P → E a
k-set contraction with 0 ≤ k < h.

In what follows, we will establish an extension of [2, Theorem 4.1], which guar-
antees the existence of at least one non trivial nonnegative solution of equation (3.1).

Theorem 3.1. Let α be a nonnegative continuous concave functional on P and β
be a nonnegative continuous convex functional on P with β(x) ≤ ‖x‖ for all x ∈ P.
Assume that there exists nonnegative numbers a, b, c, d and z0 ∈ P such that ‖T0‖ <
hmin(b, d) and α(T−1z0) > max(a, c).
Suppose that:

(A1). if x ∈ P with β(x) = b, then α(Tx+ x) ≥ a;
(A2). if x ∈ P with β(x) = b and α(x) ≥ a, then β(Tx+Fx) < b and β(Tx+x) ≤ b;
(A3). if x ∈ P with β(x) = b and α(Tx + Fx) < a, then β(Tx + Fx) < b and
β(Tx+ x) ≤ b;

(A4). if x ∈ P with α(x) = c, then β(Tx+ x− z0) ≤ d;
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(A5). if x ∈ P with α(x) = c and β(x) ≤ d, then α(Tx+ Fx) > c and α(Tx+ x−
z0) ≥ c;

(A6). if x ∈ P with α(x) = c and β(Tx + Fx) > d, then α(Tx + Fx) > c and
α(Tx+ x− z0) ≥ c.

Then,

1. (Expansive form) T + F has a fixed point x∗ in P(β, α, b, c) ∩ Ω if
(H1). a < c, b < d, {x ∈ P : b < β(x) and α(x) < c} ∩ Ω 6= ∅, P(β, b) ⊂
P(α, c), P(β, b) ∩ Ω 6= ∅ and P(α, c) is bounded and

t(I − F )(P(β, b)) ⊂ T (Ω), for all t ∈ [0, 1], (3.2)

t(I − F )(P(α, c)) + (1− t)z0 ⊂ T (Ω), for all t ∈ [0, 1]. (3.3)

2. (Compressive form) T + F has a fixed point x∗ in P(α, β, a, d) ∩ Ω if
(H2). c < a, d < b, {x ∈ P : a < α(x) and β(x) < d} ∩ Ω 6= ∅, P(α, a) ⊂
P(β, d), P(α, a) ∩ Ω 6= ∅, and P(β, d) is bounded and

t(I − F )(P(β, d)) ⊂ T (Ω), for all t ∈ [0, 1], (3.4)

t(I − F )(P(α, a)) + (1− t)z0 ⊂ T (Ω), for all t ∈ [0, 1]. (3.5)

Proof. We will prove the expansion form. The proof of the compression form is nearly
identical.
If we list

U = {x ∈ P : β(x) < b}, (3.6)

V = {x ∈ P : α(x) < c}, (3.7)

then, the interior of V − U is given by

W = (V − U)o = {x ∈ P : b < β(x) and α(x) < c}.
Thus U , V and W are bounded (they are subsets of V which is bounded by condition
(H1)), not empty (by condition (H1)) and open subsets of P. To prove the existence
of a fixed point for the sum T + F in P(β, α, b, c) ∩ Ω, it is enough for us to show
that i∗(T + F,W ∩ Ω,P) 6= 0 since W is the interior of P(β, α, b, c).

Claim 1. Tx+ Fx 6= x for all x ∈ ∂U ∩ Ω.
Let x0 ∈ ∂U ∩ Ω, then β(x0) = b. Suppose that x0 = Tx0 + Fx0, then
β(Tx0 + Fx0) = b. If α(x0) ≥ a, then β(Tx0 + Fx0) < b by condition (A2),
and if α(x0) < a, then α(Tx0 +Fx0) < a, then β(Tx0 +Fx0) < b by condition (A3).
This is a contradiction. Thus we have Tx+ Fx 6= x for all x ∈ ∂U ∩ Ω.

Claim 2. Tx+ Fx 6= x for all x ∈ ∂V ∩ Ω.
Let x1 ∈ ∂V ∩ Ω, then α(x1) = c. Suppose that x1 = Tx1 + Fx1, then
α(Tx1 + Fx1) = c. If β(x1) ≤ d, then α(Tx1 + Fx1) > c by condition (A5), and if
β(x1) > d, then β(Tx1 + Fx1) > d, then α(Tx1 + Fx1) > c by condition (A6).
This is a contradiction. Thus we have Tx+ Fx 6= x for all x ∈ ∂V ∩ Ω.

Claim 3. Let H1 : [0, 1]× U → E be defined by

H1(t, x) = tFx+ (1− t)x.
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Clearly H1 is uniformly continuous in t with respect to x ∈ U and (I − H1) is
continuous, and from (3.2) we easily see that (I −H1([0, 1]× U)) ⊂ T (Ω). Moreover
(I −H1(t, .)) : U → E is a k-set contraction for all t ∈ [0, 1] and Tx + H1(t, x) 6= x
for all (t, x) ∈ [0, 1]× ∂U ∩Ω. Otherwise, there would exists (t2, x2) ∈ [0, 1]× ∂U ∩Ω
such that Tx2 +H1(t2, x2) = x2. Since x2 ∈ ∂U , β(x2) = b. Either α(Tx2 +Fx2) < a
or α(Tx2 + Fx2) ≥ a.

Case (1): If α(Tx2 + Fx2) < a, the convexity of β and the condition (A3) lead

b = β(x2) = β (Tx2 +H1(t2, x2))
= β (Tx2 + t2Fx2 + (1− t2)x2)
≤ t2β (Tx2 + Fx2) + (1− t2)β(Tx2 + x2)
< b,

which is a contradiction.

Case (2): If α(Tx2 + Fx2) ≥ a, from the concavity of α and the condition (A1), we
obtain α(x2) ≥ a. Indeed,

α(x2) = α (Tx2 +H1(t2, x2))
≥ t2α (Tx2 + Fx2) + (1− t2)α(Tx2 + x2)
≥ a,

and thus by condition (A2), we have β(Tx2 + Fx2) < b and β(Tx2 + x2) < b, which
is the same contradiction we arrived at in the previous case.
Being T−10 ∈ U (we have hβ(T−10) ≤ h‖T−10‖ ≤ ‖T0‖ < hb), the homotopy
invariance property (iii) and the normality property (i) of the fixed point index i∗
lead

i∗(T + F,U ∩ Ω,P) = i∗(T + I, U ∩ Ω,P) = 1.

Claim 4. Let H2 : [0, 1]× V → E be defined by

H2(t, x) = tFx+ (1− t)(x− z0).

Clearly H2 is uniformly continuous in t with respect to x ∈ V and (I − H2) is
continuous, and from (3.3) we easily see that (I −H2([0, 1]× V )) ⊂ T (Ω). Moreover
I −H2(t, .) : V → E is a k-set contraction for all t ∈ [0, 1] and Tx+H2(t, x) 6= x for
all (t, x) ∈ [0, 1]×∂V ∩Ω. Otherwise, there would exists (t3, x3) ∈ [0, 1]×∂V ∩Ω such
that H2(t3, x3) = x3. Since x3 ∈ ∂V we have that α(x3) = c. Either β(Tx3+Fx3) ≤ d
or β(Tx3 + Fx3) > d.

Case (1): If β(Tx3 + Fx3) > d. the concavity of α and the condition (A6) lead

c = α(x3) = α(Tx3 +H2(t3, x3))
= α(Tx3 + t3Fx3 + (1− t3)(x3 − z0))
≥ t3α(Tx3 + Fx3) + t3α(Tx3 + x3 − z0)
> c.

This is a contradiction.
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Case (2): If β(Tx3 + Fx3) ≤ d, from the convexity of β and the condition (A4), we
obtain β(x3) ≤ d. Indeed,

β(x3) = β(Tx3 +H2(t3, x3))
≤ t3β(Tx3 + Fx3) + (1− t3)β(Tx3 + x3 − z0)
≤ d,

and thus by condition (A5), we have α(Tx3+Fx3) > c, which is the same contradiction
we arrived at in the previous case.
The homotopy invariance property (iii) of the fixed index i∗ yields

i∗(T + F, V ∩ Ω,P) = i∗(T + I − z0, V ∩ Ω,P),

and by the solvability property (iv) of the index i∗ ( since T−1z0 6∈ V the index cannot
be nonzero) we have

i∗(T + F, V ∩ Ω,P) = i∗(T + I − z0, V ∩ Ω,P) = 0.

Since U and W are disjoint open subsets of V and T + F has no fixed points in
V − (U ∪W ) (by claims 1 and 2), from the additivity property (ii) of the index i∗,
we deduce

i∗(T + F, V ∩ Ω,P) = i∗(T + F,U ∩ Ω,P) + i∗(T + F,W ∩ Ω,P).

Consequently, we have
i(T + F,W ∩ Ω,P) = −1,

and thus by the solvability property (iv) of the fixed point index i∗, the sum T + F
has a fixed point x∗ ∈W ⊂ P(β, α, b, c) ∩ Ω. �

4. Applications

In this section we will apply our main result Theorem 3.1 for two-point BVPs
and for three-point BVPs and will show that, using Theorem 3.1, some well-known
results can be enriched.

4.1. A Three-Point BVP

In this subsection, we will investigate the three-point BVP

y′′ + f(t, y) = 0, t ∈ (0, 1),

y(0) = ky(η), y(1) = 0,
(4.1)

where

(B1). f ∈ C([0, 1] × R+), 0 < Ã ≤ f(t, u) ≤ A, t ∈ [0, 1], u ∈ [0,∞), for some

positive constants A ≥ Ã.
(B2). η ∈ (0, 1), k > 0, k(1 − η) < 1, B = 1+kη

1−k(1−η) , ε ∈ (1, 2), c = 0 and there

exist a, b, d, z0 > 0 so that z0 = a and

a < d < b, 2z0 < εd, (ε− 1)b+ 2z0 <
d
2 ,

(ε− 1)b+ εAB < d, a < εAB+2z0
ε ≤ d.
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After the proof of the main result in this subsection, we will give an example for a

function f and constants A, Ã, B, η, k, a, b, d, ε, z0 which satisfy (B1) and (B2).
We will investigate the BVP (4.1) for existence of at least one non trivial nonnegative
solution. Our main result is as follows.

Theorem 4.1. Suppose (B1) and (B2). Then the BVP (4.1) has at least one non
trivial nonnegative solution y ∈ C2([0, 1]).

To prove our main result, we will use Theorem 3.1.

In [20] the BVP (4.1) is investigated when the function f satisfies the following
conditions

(B3). f(t, u) is nonnegative and continuous on (0, 1)× [0,∞), f(t, u) is monotone
increasing on u for fixed t ∈ (0, 1), there exists q ∈ (0, 1) such that

f(t, ru) > rqf(t, u), 0 < r < 1, (t, u) ∈ (0, 1)× [0,∞),

and in [20] it is proved that the BVP (4.1) has a unique solution u ∈
C([0, 1])

⋂
C2((0, 1)). We will note that there are cases for the function f for which

we can apply Theorem 4.1 and we can not apply Theorem 4.1 in [20] and conversely.
For example, if f(t, u) = 1 + 1

1+u , t, u ∈ [0,∞), then it is bounded below and above
and we can apply Theorem 4.1. At the same time, it is decreasing with respect to u

for t, u ∈ [0,∞) and we can not apply Theorem 4.1 in [20]. If f(t, u) =
m∑
j=1

aj(t)u
αj ,

where aj ∈ C([0,∞)) are nonnegative functions and αj ∈ (0, 1), j ∈ {1, . . . ,m}, as it
is shown in [20], it satisfies (B3). On the other hand, it is unbounded above and we
can not apply Theorem 4.1. Thus, our result Theorem 4.1 and Theorem 4.1 in [20]
are complementary.

4.1.1. Proof of Theorem 4.1. Set

H(t, s) =

 s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1,

and

G(t, s) = H(t, s) +
k(1− t)

1− k(1− η)
H(η, s), t, s ∈ [0, 1].

Note that 0 ≤ H(t, s) ≤ 1, t, s ∈ [0, 1]. Hence,

0 ≤ G(t, s) ≤ 1 +
k

1− k(1− η)
=

1− k + kη + k

1− k(1− η)
=

1 + kη

1− k(1− η)
= B,

t, s ∈ [0, 1]. Moreover, for t, s ∈
[
η
3 ,

η
2

]
, we have

H(t, s) ≥ η

3

(
1− η

2

)
and

G(t, s) ≥ H(t, s) ≥ η

3

(
1− η

2

)
.
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Next,

Ht(t, s) =

 −s, 0 ≤ s ≤ t ≤ 1,

1− s, 0 ≤ t ≤ s ≤ 1.

Hence, |Ht(t, s)| ≤ 1, t, s ∈ [0, 1], and

|Gt(t, s)| =

∣∣∣∣Ht(t, s)−
k

1− k(1− η)
H(η, s)

∣∣∣∣
≤ |Ht(t, s)|+

k

1− k(1− η)
H(η, s)

≤ 1 +
k

1− k(1− η)
=

1 + kη

1− k(1− η)
= B, t, s ∈ [0, 1].

Let E = C([0, 1]) be endowed with the maximum norm

‖y‖ = max
t∈[0,1]

|y(t)|.

On E, define

α(y) = min
t∈[ η3 ,

η
2 ]
|y(t)|+ z0, β(y) = max

t∈[0,1]
|y(t)|.

In [20] it is proved that the solution of the BVP (4.1) can be expressed in the following
form

y(t) =

∫ 1

0

G(t, s)f(s, y(s))ds, t ∈ [0, 1].

Set

k1 =
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
dε

.

Define

P = {y ∈ E : y(t) ≥ 0, t ∈ [0, 1], min
t∈[ η3 ,

η
2 ]
y(t) ≥ k1 max

t∈[0,1]
y(t)},

Ω = {y ∈ P : ‖y‖ ≤ 2z0 + εAB

ε
}.

Note that 0 ∈ Ω and Ω ⊂ P. For y ∈ P, define the operators

Ty(t) = −εy(t) + 2z0,

Fy(t) = y(t)− 2z0 + ε

∫ 1

0

G(t, s)f(s, y(s))ds, t ∈ [0, 1].
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Note that if y ∈ P is a fixed point of the operator T + F , then it is a solution to the
BVP (4.1). Next, if y ∈ P and β(y) ≤ b, we have

|Ty(t) + y(t)| ≤ (ε− 1)y(t) + 2z0

≤ (ε− 1)b+ 2z0

<
d

2
, t ∈ [0, 1],

and

|Ty(t) + Fy(t)| =

∣∣∣∣−(ε− 1)y(t) + ε

∫ 1

0

G(t, s)f(s, y(s))ds

∣∣∣∣
≤ (ε− 1)y(t) + ε

∫ 1

0

G(t, s)f(s, y(s))ds

≤ (ε− 1)b+ εA

∫ 1

0

G(t, s)ds

≤ (ε− 1)b+ εAB

< d.

Therefore, if y ∈ P and β(y) ≤ b, we have

β(Ty + y) < d (4.2)

and

β(Ty + Fy) < d. (4.3)

For y, z ∈ P, we have

|Ty(t)− Tz(t)| = ε|y(t)− z(t)|, t ∈ [0, 1].

Hence,

‖Ty − Tz‖ = ε‖y − z‖.
Thus, T : P → E is an expansive operator with constant h = ε.
Let now, y ∈ P. Then

|(I − F )y(t))| = ε

∣∣∣∣∫ 1

0

G(t, s)f(s, y(s))ds

∣∣∣∣
≤ εA

∫ 1

0

G(t, s)ds

≤ εAB, t ∈ [0, 1],

whereupon

‖(I − F )y‖ ≤ εAB
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and I − F : P → E is uniformly bounded. Moreover,∣∣∣∣ ddt (I − F )y(t)

∣∣∣∣ =

∣∣∣∣∫ 1

0

Gt(t, s)f(s, y(s))ds

∣∣∣∣
≤

∫ 1

0

|Gt(t, s)|f(s, y(s))ds

≤ AB, t ∈ [0, 1].

Consequently, I − F : P → E is completely continuous. Then I − F : P → E is a
0-set contraction.
Note that

‖T0‖ = 2z0 < εmin{b, d}.
For y ∈ E, we have

T−1y = −y − 2z0
ε

.

Hence,

α
(
T−1z0

)
= α

(z0
ε

)
=
z0
ε

+ z0 > max{a, c}.

Suppose that y ∈ P with β(y) = b. Then

α(Ty + y) = min
t∈[ η3 ,

η
2 ]
|Ty(t) + y(t)|+ z0 ≥ z0 = a.

Consequently (A1) holds.
Now, we take y ∈ P with β(y) = b, α(y) ≥ a. Then, using d < b, (4.2) and (4.3), we
obtain

β(Ty + y) < b and β(Ty + Fy) < b.

Consequently (A2) holds.
Observe that, if y ∈ P, β(y) = b and α(Ty + Fy) < a, using d < b and (4.2), (4.3),
we find

β(Ty + Fy) < b and β(Ty + y) < b.

Thus, (A3) holds.
Since c = 0 and α(y) > 0 for any y ∈ P, the case α(y) = c is impossible.

Let now, a1 ∈
(
a, εAB+z0

ε

)
be arbitrarily chosen. Then

α(a1) = a1 + z0 > a

and

β(a1) = a1 <
εAB + 2z0

ε
≤ d.

Therefore

{y ∈ P : a < α(y) and β(y) < d} ∩ Ω 6= ∅.
Let y ∈ P(α, a). Then y ∈ P and α(y) ≤ a. Hence,

a ≥ min
t∈[ η3 ,

η
2 ]
y(t) + z0 = min

t∈[ η3 ,
η
2 ]
y(t) + a.
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Therefore min
t∈[ η3 ,

η
2 ]
y(t) = 0 and using the definition of the cone P, we find

β(y) = max
t∈[0,1]

y(t) ≤ 1

k1
min

t∈[ η3 ,
η
2 ]
y(t) = 0 ≤ d.

Thus, y ∈ P(β, d) and P(α, a) ⊂ P(β, d).
Since 0 ∈ P(α, a), we have P(α, a) ∩ Ω 6= ∅.
Note that P(β, d) is bounded.
Let λ ∈ [0, 1] is fixed and u ∈ P(α, a) is arbitrarily chosen. Then β(u) ≤ d < b. Set

v(t) =
λε
∫ 1

0
G(t, s)f(s, u(s))ds+ (1− λ)z0

ε
, t ∈ [0, 1].

We have that v(t) ≥ 0, t ∈ [0, 1], and

v(t) ≤ εAB + z0
ε

≤ d, t ∈ [0, 1],

and

‖v‖ ≤ εAB + z0
ε

≤ d.

min
t∈[ η3 ,

η
2 ]
v(t) ≥

λε
∫ η

2
η
3

min
t∈[ η3 ,

η
2 ]
G(t, s)f(s, u(s))ds+ (1− λ)z0

ε

≥
λε
(
η
2 −

η
3

)
η
3

(
1− η

2

)
Ã+ (1− λ)z0

ε

≥
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
ε

=
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
dε

d

≥ k1 max
t∈[0,1]

v(t).

Thus, v ∈ Ω. Next,

λ(I − F )u(t) + (1− λ)z0 = 2λz0 − λε
∫ 1

0

G(t, s)f(s, u(s))ds+ z0 − λz0

= −λε
∫ 1

0

G(t, s)f(s, u(s))ds+ (1 + λ)z0

= −ε
λε
∫ 1

0
G(t, s)f(s, u(s))ds+ (1− λ)z0

ε
+ 2z0

= Tv(t), t ∈ [0, 1].
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Therefore

λ(I − F )(P(α, a)) + (1− λ)z0 ⊂ T (Ω).

Let λ ∈ [0, 1] be fixed and u ∈ P(β, d) be arbitrarily chosen. Take

w(t) =
2(1− λ)z0 + λε

∫ 1

0
G(t, s)f(s, u(s))ds

ε
, t ∈ [0, 1].

We have v(t) ≥ 0, t ∈ [0, 1], and

w(t) ≤ εAB + 2z0
ε

≤ d, t ∈ [0, 1].

Moreover,

min
t∈[ η3 ,

η
2 ]
w(t) ≥

λε
∫ η

2
η
3

min
t∈[ η3 ,

η
2 ]
G(t, s)f(s, u(s))ds+ 2(1− λ)z0

ε

≥
λε
(
η
2 −

η
3

)
η
3

(
1− η

2

)
Ã+ (1− λ)z0

ε

≥
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
ε

=
min

{
εη

2

18

(
1− η

2

)
Ã, z0

}
dε

d

≥ k1 max
t∈[0,1]

w(t).

Therefore w ∈ Ω. Also,

λ(I − F )u(t) = λ

(
2z0 − ε

∫ 1

0

G(t, s)f(s, u(s))ds

)

= −ε
ε
∫ 1

0
G(t, s)f(s, u(s))ds+ 2(1− λ)z0

ε
+ 2z0

= −εw(t) + 2z0

= Tw(t), t ∈ [0, 1].

Therefore

λ(I − F )(P(β, d)) ⊂ T (Ω).

By Theorem 3.1, it follows that the BVP (4.1) has at least one solution in
{y ∈ P : a < α(y) and β(y) < d} ∩ Ω ⊂ P (α, β, a, d) ∩ Ω.
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4.1.2. An Example. Consider the BVP

y′′ + 1
300(1+t2)(1+y) + 1

300 = 0, t ∈ (0, 1),

y(0) = y
(
1
2

)
, y(1) = 0.

(4.4)

Here

f(t, y) =
1

300(1 + t2)(1 + y)
+

1

300
, t ∈ (0, 1), y ∈ [0,∞), k = 1, η =

1

2
.

Note that for the function f we can not apply Theorem 4.1 in [20] because it is a
decreasing function with respect to y for t, y ∈ [0,∞). Take the constants

ε = 41
40 , B = 3, A = 1

123 , Ã = 1
300 , b = 1, d = 1

2 ,

z0 = 1
400 , a = 1

400 .

We have

a < d < b, 2z0 = 2a =
1

200
<

41

80
= εd,

(ε− 1)b+ 2z0 =
1

40
+

1

200
=

3

100
<

1

4
=
d

2
,

(ε− 1)b+ εAB =
1

40
+

41

40
· 3

123
=

1

40
+

1

40
=

1

20
<

1

2
= d,

1

400
= a <

εAB + 2z0
ε

=
40

41
·
(

41

40
· 3

123
+

1

200

)
<

1

2
= d.

Thus, (B2) holds. Next, f ∈ C([0, 1]× R+) and

1

300
≤ f(t, y) =

1

300(1 + t2)(1 + y)
+

1

300
≤ 1

150
≤ 1

123
= A,

i.e., (B1) holds. By Theorem 3.1, it follows that the BVP (4.4) has at least one
nonnegative solution.

4.2. A Two-Point BVP

In this subsection, we will investigate the following BVP

x′′(t) + g(x(t)) = 0, t ∈ (0, 1),

x(0) = 0 = x′(1),
(4.5)

where

(C1). g ∈ C(R+), 0 < Ã1 ≤ g(x) ≤ A1, x ∈ [0,∞), for some positive constants

A1 ≥ Ã1.
(C2). The nonnegative constants z1, a1, b1, c1, d1, ε1 satisfy

ε1 ∈ (1, 2), (ε1 − 1)b1 + 2z1 <
d1
2
, (ε1 − 1)b1 + ε1A1 < d1,

c1 = 0, 2z1 < ε1 min{b1, d1},
z1
ε1

+ z1 > max{a1, c1}, z1 = a1,

a1 < d1 < b1, a1 <
ε1A1 + 2z1

ε1
≤ d1.
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Our main result in this subsection is as follows.

Theorem 4.2. Suppose (C1) and (C2). Then the BVP (4.5) has at least one non
trivial nonnegative solution.

The BVP (4.5) is investigated in [2] under the following conditions

(C1.1). τ ∈ (0, 1) is fixed, b and c are positive constants with 3b ≤ c, g : [0,∞)→
[0,∞) is a continuous function such that

1. g(w) > c
τ(1−τ) , w ∈

[
c, cτ
]
,

2. g is decreasing on [a, bτ ] with g(bτ) ≥ g(w) for w ∈ [bτ, b].

3.
∫ τ
0
sg(s)ds ≤ 2b−g(bτ)(1−τ2)

2 ,

and it is proved that the BVP (4.5) has at least one nonnegative solution. Note that
there are cases for the function g for which we can apply Theorem 4.2 and we can not
apply Theorem 5.1 in [2] and conversely. For instance, if g(x) = x

1+x + 1, x ∈ [0,∞),
then it is bounded above and below and we can apply Theorem 4.2. On the other
hand, g is an increasing function on [0,∞) and we can not apply Theorem 5.1 in [2].
If g(x) = 1√

x
+ ex−2, x ∈ (0,∞), as it is shown in [2], we can apply for it Theorem

5.1 in [2]. Since it is unbounded above, we can not apply Theorem 4.2. Therefore our
main result Theorem 3.1 and the main result Theorem 4.1 in [2] are complementary.

After the proof of Theorem 4.2, we will give an example for a function g and

constants A1, Ã1, z1, a1, b1, c1, d1, ε1 that satisfy (C1) and (C2).

4.2.1. Proof of Theorem 4.2. Let E = C([0, 1]) be endowed with the maximum norm

‖x‖ = max
t∈[0,1]

|x(t)|.

Define

G1(t, s) = min{t, s}, (t, s) ∈ [0, 1]× [0, 1].

Note that

0 ≤ G1(t, s) ≤ 1, (t, s) ∈ [0, 1]× [0, 1],

and

G1(t, s) ≥ 1

3
, t, s ∈

[
1

3
,

1

2

]
.

On E, define the following functionals

α1(x) = min
t∈[0,1]

|x(t)|+ z1, β1(x) = max
t∈[0,1]

|x(t)|.

In [2] it is proved that the solution of the BVP (4.5) can be represented in the form

x(t) =

∫ 1

0

G1(t, s)g(x(s))ds, t ∈ [0, 1].

Set

k2 =
min

{
ε1Ã1

3 , z1

}
d1ε1

.
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Define

P1 = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1], min
t∈[ 1

3 ,
1
2 ]
x(t) ≥ k2 max

t∈[0,1]
x(t)},

Ω1 =

{
x ∈ P1 : ‖x‖ ≤ 2z1 + ε1A1

ε1

}
.

Note that 0 ∈ Ω1 and Ω1 ⊂ P1. For x ∈ P1, define the following operators.

T1x(t) = −ε1x(t) + 2z1,

F1x(t) = x(t)− 2z0 + ε1

∫ 1

0

G1(t, s)g(x(s))ds, t ∈ [0, 1].

Now, the proof of Theorem 4.2 follows similar arguments to those in the proof of
Theorem 4.1.

4.2.2. An Example. Consider the BVP

x′′(t) + x(t)
400(1+x(t)) + 1

400 = 0, t ∈ (0, 1),

x(0) = 0 = x′(1).

(4.6)

Here

g(x) =
x

400(1 + x)
+

1

400
, x ∈ [0,∞).

Note that the function g is an increasing function on [0,∞) and then we can not apply
Theorem 5.1 in [2]. Take

ε1 =
41

40
, A1 =

1

123
, Ã1 =

1

400
, b1 = 1, d1 =

1

2
,

z1 =
1

400
, a1 =

1

400
, c1 = 0.

Then, ε1 > 1 and

(ε1 − 1)b1 + 2z1 =
1

40
+

1

200
<

1

4
=
d1
2
,

(ε1 − 1)b1 + ε1A1 =
1

40
+

41

40
· 1

123
=

1

40
+

1

120
<

1

2
= d1,

ε1 min{b1, d1} =
41

40
· 1

2
=

41

80
>

1

200
= 2z1,

z1
ε1

+ z1 =
1

400
41
40

=
1

410
+

1

400
>

1

400
= max{a1, c1},

a1 < d1 < b1,

a1 =
1

400
<
ε1A1 + 2z1

ε1
=

41
40 ·

1
123 + 1

200
41
40

=
1

120 + 1
200

41
40

=
1
3 + 1

5

41
=

8

615
<

1

2
= d1.
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Thus, (C2) holds. Next,

1

400
≤ g(x) ≤ 1

200
, x ∈ [0,∞).

So, (C1) holds. Hence, applying Theorem 4.2, we conclude that the BVP (4.6) has at
least one nonnegative solution.
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