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Abstract. The goal of this note is to present a new shorter proof for the maximal
monotonicity of the Minkowski sum of two maximal monotone multi-valued oper-
ators defined in a reflexive Banach space under the classical interiority condition
involving their domains.
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1. Preliminaries

Recall the following sum rule for maximal monotone operators:

Theorem 1.1. (Rockafellar [5, Theorem 1 (a), p. 76]) Let (X, ‖ · ‖) be a reflexive
Banach space with topological dual X∗ and let A, B : X ⇒ X∗ be multi-valued
maximal monotone operators from X to X∗. If D(A) ∩ intD(B) 6= ∅ then A + B is
maximal monotone.

Here D(T ) := {x ∈ X | T (x) 6= ∅} is the domain of T : X ⇒ X∗, “intS” denotes
the topological interior of S ⊂ X, and A + B : X ⇒ X∗ is the Minkowski sum of A
and B defined by

(A+B)(x) := A(x) +B(x) := {y + v | y ∈ A(x), v ∈ B(x)},
for x ∈ D(A+B) := D(A) ∩D(B).

The proof of [5, Theorem 1, p. 76] relies on the use of the duality mapping J of
X and the (Minty’s style) characterization of maximal monotone operators defined in
reflexive Banach spaces. Similar arguments are used in the presence of an improved
qualification constraint in a second proof of Theorem 1.1 (see [2, Corollary 3.5, p. 286]).
A third proof of the main theorem involves the exact convolution of some specially
constructed functions based on the Fitzpatrick functions of A and B (see [10, Corollary
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4, p. 1166]). A different proof of Theorem 1.1 is based on the dual-representability
A+B in the presence of the qualification constraint (see [8, Remark 1, p. 276]) and the
fact that in a reflexive Banach space dual-representability is equivalent to maximal
monotonicity (see e.g. [1, Theorem 3.1, p. 2381]). All the previously mentioned proofs
make use of the duality mapping J which is characteristic to a normed space.

Our proof relies on the normal cone, is based on full-range characterizations of
maximal monotone operators with bounded domain, and uses the representability of
sums of representable operators, but, avoids the use of J or the norm. The following
intermediary result, is the main ingredient of our argument.

Theorem 1.2. Let X be a reflexive Banach space, let T : X ⇒ X∗ be maximal mono-
tone, and let C ⊂ X be closed convex and bounded. If D(T ) ∩ intC 6= ∅ then T +NC

is maximal monotone.

Here NC denotes the normal cone to C and is defined by x∗ ∈ NC(x) if, for
every y ∈ C, 〈y − x, x∗〉 ≤ 0. Here 〈·, ·〉 denotes the coupling or duality product of
X ×X∗ and is defined by

c(x, x∗) := 〈x, x∗〉 := x∗(x), x ∈ X, x∗ ∈ X∗.

An element z = (x, x∗) ∈ X × X∗ is monotonically related (m.r. for short) to
T if, for every (a, a∗) ∈ GraphT := {(u, u∗) ∈ X × X∗ | u ∈ D(T ), u∗ ∈ T (u)},
〈x− a, x∗ − a∗〉 ≥ 0.

Recall that a multi-valued operator T : X ⇒ X∗ is

• monotone if, for every x∗1 ∈ T (x1), x∗2 ∈ T (x2), 〈x1 − x2, x∗1 − x∗2〉 ≥ 0.

• maximal monotone if every m.r. to T element z = (x, x∗) ∈ X ×X∗ belongs
to GraphT .

• representable if there is a proper convex sX × w∗−lower semicontinuous h :
X ×X∗ → R ∪ {+∞} such that h ≥ c and

GraphT = [h = c] := {(x, x∗) ∈ X ×X∗ | h(x, x∗) = 〈x, x∗〉}.

Here sX denotes the strong topology of X and w∗ stands for the weak-star topology
of X∗.

• NI if ϕT ≥ c, where ϕT is the Fitzpatrick function of T which is defined by

ϕT (x, x∗) := sup{〈x− a, a∗〉+ 〈a, x∗〉 | (a, a∗) ∈ GraphT}, (x, x∗) ∈ X ×X∗. (1.1)

2. Proofs of the main result

Proof of Theorem 1.2. The operator T +NC is representable, which follows from the
facts that T , NC are maximal monotone thus representable and D(T )∩ intC 6= ∅ (see
e.g. [6, Corollary 5.6, p. 470] or [7, Theorem 16, p. 818]).

We prove that R(T + NC) = X∗ which implies that T + NC is of NI–type and
so it is maximal monotone (see [6, Theorem 3.4, p. 465] or [8, Theorem 1 (ii), (7)]).

It suffices to prove that 0 ∈ R(T +NC) otherwise we replace T by T −x∗ for an
arbitrary x∗ ∈ X∗.
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Consider F (x, x∗) := ϕT (x, x∗) + g(x, x∗), with g(x, x∗) := ιC(x) + σC(−x∗),
where ιC(x) = 0, for x ∈ C; ιC(x) = +∞, otherwise, and σC(x∗) := supx∈C〈x, x∗〉,
x∗ ∈ X∗.

Then F ≥ 0 due to ϕT (x, x∗) ≥ 〈x, x∗〉 and ιC(x) +σC(−x∗) ≥ −〈x, x∗〉 (see f.i.
[4]). Hence

0 ≤ inf
X×X∗

F = −(ϕT + g)∗(0, 0) = − min
(x,x∗)∈X×X∗

{ψT (x, x∗) + g∗(−x∗,−x)}, (2.1)

because C is bounded, g is sX × sX∗−continuous on intC ×X∗, and X is reflexive
(see f.i. [9, Theorem 2.8.7, p. 126]), where sX∗ is the strong topology of X∗. Here
“min” denotes an infimum that is attained when finite,

ψT (x, x∗) = ϕ∗T (x∗, x), (x, x∗) ∈ X ×X∗, (2.2)

the convex conjugation being taken with respect to the dual system

(X ×X∗, X∗ ×X∗∗)

and, for every (x, x∗) ∈ X ×X∗, ψT (x, x∗) ≥ 〈x, x∗〉 because T is monotone (see e.g.
[8, (12)]).

From g∗(x∗, x) = ιC(−x) + σC(x∗), (x, x∗) ∈ X × X∗ and (2.1) there exists
(x̄, x̄∗) ∈ X × X∗ such that ψT (x̄, x̄∗) + ιC(x̄) + σC(−x̄∗) ≤ 0 which implies that
ιC(x̄) + σC(−x̄∗) = −〈x̄, x̄∗〉, i.e., −x̄∗ ∈ NC(x̄) and ψT (x̄, x̄∗) = 〈x̄, x̄∗〉, that is,
x̄∗ ∈ T (x̄) since T is representable (see [8, Theorem 1, p. 270]).

Therefore 0 ∈ (T +NC)(x̄, x̄∗) and so 0 ∈ R(T +NC). �

Proof of Theorem 1.1. First we prove that we can assume without loss of generality
that D(B) is bounded. Indeed, assume that the result is true for that case.

Let z = (x, x∗) be m.r. to A+B. Take C ⊂ X closed convex and bounded with
x ∈ intC and D(A) ∩ intD(B) ∩ intC 6= ∅ e.g. C := [x0, x] + U , where

[x0, x] := {tx0 + (1− t)x | 0 ≤ t ≤ 1}

and U is a closed convex bounded neighborhood of 0, and x0 ∈ D(A)∩ intD(B). Note
that z is m.r. to A + B + NC = A + (B + NC) which is maximal monotone since,
according to Theorem 1.2, B+NC is maximal monotone, D(B+NC) is bounded, and
x0 ∈ D(A) ∩ intD(B +NC) 6= ∅. Hence z ∈ Graph(A+B +NC) or x∗ ∈ (A+B)(x)
because NC(x) = {0}. Therefore A+B is maximal monotone.

It remains to prove that, whenever D(B) is bounded, R(A + B) = X∗ or suffi-
ciently 0 ∈ R(A+B) (since A+B is representable, see again [6, Corollary 5.6]).

Let

F (x, x∗) := ϕA(x, x∗) + ϕB(x,−x∗), g(x, x∗) := ϕB(x,−x∗), (x, x∗) ∈ X ×X∗.

Since A, B are maximal monotone, for every (x, x∗) ∈ X ×X∗,

min{ϕA(x, x∗), ϕB(x, x∗)} ≥ 〈x, x∗〉

which imply F ≥ 0 and so

0 ≤ inf
X×X∗

F = −(ϕA + g)∗(0, 0) = − min
(x,x∗)∈X×X∗

{ψA(x, x) + ψB(x,−x∗)}, (2.3)
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because D(B) bounded provides D(B) × X∗ ⊂ dom g, g is sX × sX∗−continuous
on intD(B) × X∗, and X is reflexive (see again [9, Theorem 2.8.7, p. 126]). More
precisely, for every (x, x∗) ∈ D(B)×X∗ there is x∗ ∈ B(x) and so

ϕB(x, x∗) := sup{〈x− b, b∗〉+ 〈b, x∗〉 | (b, b∗) ∈ GraphB}
≤ sup{〈x− b, x∗〉+ 〈b, x∗〉 | (b, b∗) ∈ GraphB}
≤ 〈x, x∗〉+ ‖x∗ − x∗‖ sup

b∈D(B)

‖b‖ < +∞.

There exists (x̄, x̄∗) ∈ X × X∗ such that ψA(x̄, x̄∗) + ψB(x̄,−x̄∗) ≤ 0 which implies
that ψA(x̄, x̄∗) = 〈x̄, x̄∗〉, ψB(x̄,−x̄∗) = −〈x̄, x̄∗〉, i.e., x̄∗ ∈ A(x̄) and −x̄∗ ∈ B(x̄)
from which 0 ∈ R(A+B). �

Remark 2.1. Theorem 1.2 still holds if we replace the assumption C bounded with
D(T ) bounded. In this case an alternate proof of Theorem 1.1 can be performed with
A+NC instead of A and a similar argument as in the current proof.
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