The sum theorem for maximal monotone operators in reflexive Banach spaces revisited

Mircea D. Voisei

Dedicated to Professor Gheorghe Moroşanu on the occasion of his 70th anniversary.

Abstract

The goal of this note is to present a new shorter proof for the maximal monotonicity of the Minkowski sum of two maximal monotone multi-valued operators defined in a reflexive Banach space under the classical interiority condition involving their domains.

Mathematics Subject Classification (2010): 47H05, 46N10.
Keywords: Maximal monotone operator, Minkowski sum.

1. Preliminaries

Recall the following sum rule for maximal monotone operators:
Theorem 1.1. (Rockafellar [5, Theorem 1 (a), p. 76]) Let $(X,\|\cdot\|)$ be a reflexive Banach space with topological dual X^{*} and let $A, B: X \rightrightarrows X^{*}$ be multi-valued maximal monotone operators from X to X^{*}. If $D(A) \cap \operatorname{int} D(B) \neq \emptyset$ then $A+B$ is maximal monotone.

Here $D(T):=\{x \in X \mid T(x) \neq \emptyset\}$ is the domain of $T: X \rightrightarrows X^{*}$, "int S " denotes the topological interior of $S \subset X$, and $A+B: X \rightrightarrows X^{*}$ is the Minkowski sum of A and B defined by

$$
(A+B)(x):=A(x)+B(x):=\{y+v \mid y \in A(x), v \in B(x)\}
$$

for $x \in D(A+B):=D(A) \cap D(B)$.
The proof of [5, Theorem 1, p. 76] relies on the use of the duality mapping J of X and the (Minty's style) characterization of maximal monotone operators defined in reflexive Banach spaces. Similar arguments are used in the presence of an improved qualification constraint in a second proof of Theorem 1.1 (see [2, Corollary 3.5, p. 286]). A third proof of the main theorem involves the exact convolution of some specially constructed functions based on the Fitzpatrick functions of A and B (see [10, Corollary

4, p. 1166]). A different proof of Theorem 1.1 is based on the dual-representability $A+B$ in the presence of the qualification constraint (see [8, Remark 1, p. 276]) and the fact that in a reflexive Banach space dual-representability is equivalent to maximal monotonicity (see e.g. [1, Theorem 3.1, p. 2381]). All the previously mentioned proofs make use of the duality mapping J which is characteristic to a normed space.

Our proof relies on the normal cone, is based on full-range characterizations of maximal monotone operators with bounded domain, and uses the representability of sums of representable operators, but, avoids the use of J or the norm. The following intermediary result, is the main ingredient of our argument.

Theorem 1.2. Let X be a reflexive Banach space, let $T: X \rightrightarrows X^{*}$ be maximal monotone, and let $C \subset X$ be closed convex and bounded. If $D(T) \cap \operatorname{int} C \neq \emptyset$ then $T+N_{C}$ is maximal monotone.

Here N_{C} denotes the normal cone to C and is defined by $x^{*} \in N_{C}(x)$ if, for every $y \in C,\left\langle y-x, x^{*}\right\rangle \leq 0$. Here $\langle\cdot, \cdot\rangle$ denotes the coupling or duality product of $X \times X^{*}$ and is defined by

$$
c\left(x, x^{*}\right):=\left\langle x, x^{*}\right\rangle:=x^{*}(x), x \in X, x^{*} \in X^{*}
$$

An element $z=\left(x, x^{*}\right) \in X \times X^{*}$ is monotonically related (m.r. for short) to T if, for every $\left(a, a^{*}\right) \in \operatorname{Graph} T:=\left\{\left(u, u^{*}\right) \in X \times X^{*} \mid u \in D(T), u^{*} \in T(u)\right\}$, $\left\langle x-a, x^{*}-a^{*}\right\rangle \geq 0$.

Recall that a multi-valued operator $T: X \rightrightarrows X^{*}$ is

- monotone if, for every $x_{1}^{*} \in T\left(x_{1}\right), x_{2}^{*} \in T\left(x_{2}\right),\left\langle x_{1}-x_{2}, x_{1}^{*}-x_{2}^{*}\right\rangle \geq 0$.
- maximal monotone if every m.r. to T element $z=\left(x, x^{*}\right) \in X \times X^{*}$ belongs to Graph T.
- representable if there is a proper convex $s_{X} \times w^{*}$-lower semicontinuous h : $X \times X^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that $h \geq c$ and

$$
\text { Graph } T=[h=c]:=\left\{\left(x, x^{*}\right) \in X \times X^{*} \mid h\left(x, x^{*}\right)=\left\langle x, x^{*}\right\rangle\right\} .
$$

Here s_{X} denotes the strong topology of X and w^{*} stands for the weak-star topology of X^{*}.

- NI if $\varphi_{T} \geq c$, where φ_{T} is the Fitzpatrick function of T which is defined by

$$
\begin{equation*}
\varphi_{T}\left(x, x^{*}\right):=\sup \left\{\left\langle x-a, a^{*}\right\rangle+\left\langle a, x^{*}\right\rangle \mid\left(a, a^{*}\right) \in \operatorname{Graph} T\right\}, \quad\left(x, x^{*}\right) \in X \times X^{*} \tag{1.1}
\end{equation*}
$$

2. Proofs of the main result

Proof of Theorem 1.2. The operator $T+N_{C}$ is representable, which follows from the facts that T, N_{C} are maximal monotone thus representable and $D(T) \cap \operatorname{int} C \neq \emptyset$ (see e.g. [6, Corollary 5.6, p. 470] or [7, Theorem 16, p. 818]).

We prove that $R\left(T+N_{C}\right)=X^{*}$ which implies that $T+N_{C}$ is of NI-type and so it is maximal monotone (see [6, Theorem 3.4, p. 465] or [8, Theorem 1 (ii), (7)]).

It suffices to prove that $0 \in R\left(T+N_{C}\right)$ otherwise we replace T by $T-x^{*}$ for an arbitrary $x^{*} \in X^{*}$.

Consider $F\left(x, x^{*}\right):=\varphi_{T}\left(x, x^{*}\right)+g\left(x, x^{*}\right)$, with $g\left(x, x^{*}\right):=\iota_{C}(x)+\sigma_{C}\left(-x^{*}\right)$, where $\iota_{C}(x)=0$, for $x \in C ; \iota_{C}(x)=+\infty$, otherwise, and $\sigma_{C}\left(x^{*}\right):=\sup _{x \in C}\left\langle x, x^{*}\right\rangle$, $x^{*} \in X^{*}$.

Then $F \geq 0$ due to $\varphi_{T}\left(x, x^{*}\right) \geq\left\langle x, x^{*}\right\rangle$ and $\iota_{C}(x)+\sigma_{C}\left(-x^{*}\right) \geq-\left\langle x, x^{*}\right\rangle$ (see f.i. [4]). Hence

$$
\begin{equation*}
0 \leq \inf _{X \times X^{*}} F=-\left(\varphi_{T}+g\right)^{*}(0,0)=-\min _{\left(x, x^{*}\right) \in X \times X^{*}}\left\{\psi_{T}\left(x, x^{*}\right)+g^{*}\left(-x^{*},-x\right)\right\} \tag{2.1}
\end{equation*}
$$

because C is bounded, g is $s_{X} \times s_{X^{*}}$ - continuous on int $C \times X^{*}$, and X is reflexive (see f.i. [9, Theorem 2.8.7, p. 126]), where $s_{X^{*}}$ is the strong topology of X^{*}. Here "min" denotes an infimum that is attained when finite,

$$
\begin{equation*}
\psi_{T}\left(x, x^{*}\right)=\varphi_{T}^{*}\left(x^{*}, x\right),\left(x, x^{*}\right) \in X \times X^{*} \tag{2.2}
\end{equation*}
$$

the convex conjugation being taken with respect to the dual system

$$
\left(X \times X^{*}, X^{*} \times X^{* *}\right)
$$

and, for every $\left(x, x^{*}\right) \in X \times X^{*}, \psi_{T}\left(x, x^{*}\right) \geq\left\langle x, x^{*}\right\rangle$ because T is monotone (see e.g. [8, (12)]).

From $g^{*}\left(x^{*}, x\right)=\iota_{C}(-x)+\sigma_{C}\left(x^{*}\right),\left(x, x^{*}\right) \in X \times X^{*}$ and (2.1) there exists $\left(\bar{x}, \bar{x}^{*}\right) \in X \times X^{*}$ such that $\psi_{T}\left(\bar{x}, \bar{x}^{*}\right)+\iota_{C}(\bar{x})+\sigma_{C}\left(-\bar{x}^{*}\right) \leq 0$ which implies that $\iota_{C}(\bar{x})+\sigma_{C}\left(-\bar{x}^{*}\right)=-\left\langle\bar{x}, \bar{x}^{*}\right\rangle$, i.e., $-\bar{x}^{*} \in N_{C}(\bar{x})$ and $\psi_{T}\left(\bar{x}, \bar{x}^{*}\right)=\left\langle\bar{x}, \bar{x}^{*}\right\rangle$, that is, $\bar{x}^{*} \in T(\bar{x})$ since T is representable (see [8, Theorem 1, p. 270]).

Therefore $0 \in\left(T+N_{C}\right)\left(\bar{x}, \bar{x}^{*}\right)$ and so $0 \in R\left(T+N_{C}\right)$.
Proof of Theorem 1.1. First we prove that we can assume without loss of generality that $D(B)$ is bounded. Indeed, assume that the result is true for that case.

Let $z=\left(x, x^{*}\right)$ be m.r. to $A+B$. Take $C \subset X$ closed convex and bounded with $x \in \operatorname{int} C$ and $D(A) \cap \operatorname{int} D(B) \cap \operatorname{int} C \neq \emptyset$ e.g. $C:=\left[x_{0}, x\right]+U$, where

$$
\left[x_{0}, x\right]:=\left\{t x_{0}+(1-t) x \mid 0 \leq t \leq 1\right\}
$$

and U is a closed convex bounded neighborhood of 0 , and $x_{0} \in D(A) \cap \operatorname{int} D(B)$. Note that z is m.r. to $A+B+N_{C}=A+\left(B+N_{C}\right)$ which is maximal monotone since, according to Theorem $1.2, B+N_{C}$ is maximal monotone, $D\left(B+N_{C}\right)$ is bounded, and $x_{0} \in D(A) \cap \operatorname{int} D\left(B+N_{C}\right) \neq \emptyset$. Hence $z \in \operatorname{Graph}\left(A+B+N_{C}\right)$ or $x^{*} \in(A+B)(x)$ because $N_{C}(x)=\{0\}$. Therefore $A+B$ is maximal monotone.

It remains to prove that, whenever $D(B)$ is bounded, $R(A+B)=X^{*}$ or sufficiently $0 \in R(A+B)$ (since $A+B$ is representable, see again [6, Corollary 5.6]).

Let

$$
F\left(x, x^{*}\right):=\varphi_{A}\left(x, x^{*}\right)+\varphi_{B}\left(x,-x^{*}\right), \quad g\left(x, x^{*}\right):=\varphi_{B}\left(x,-x^{*}\right), \quad\left(x, x^{*}\right) \in X \times X^{*}
$$

Since A, B are maximal monotone, for every $\left(x, x^{*}\right) \in X \times X^{*}$,

$$
\min \left\{\varphi_{A}\left(x, x^{*}\right), \varphi_{B}\left(x, x^{*}\right)\right\} \geq\left\langle x, x^{*}\right\rangle
$$

which imply $F \geq 0$ and so

$$
\begin{equation*}
0 \leq \inf _{X \times X^{*}} F=-\left(\varphi_{A}+g\right)^{*}(0,0)=-\min _{\left(x, x^{*}\right) \in X \times X^{*}}\left\{\psi_{A}(x, x)+\psi_{B}\left(x,-x^{*}\right)\right\} \tag{2.3}
\end{equation*}
$$

because $D(B)$ bounded provides $D(B) \times X^{*} \subset \operatorname{dom} g, g$ is $s_{X} \times s_{X^{*}}-$ continuous on $\operatorname{int} D(B) \times X^{*}$, and X is reflexive (see again [9, Theorem 2.8.7, p. 126]). More precisely, for every $\left(x, x^{*}\right) \in D(B) \times X^{*}$ there is $\bar{x}^{*} \in B(x)$ and so

$$
\begin{aligned}
\varphi_{B}\left(x, x^{*}\right) & :=\sup \left\{\left\langle x-b, b^{*}\right\rangle+\left\langle b, x^{*}\right\rangle \mid\left(b, b^{*}\right) \in \operatorname{Graph} B\right\} \\
& \leq \sup \left\{\left\langle x-b, \bar{x}^{*}\right\rangle+\left\langle b, x^{*}\right\rangle \mid\left(b, b^{*}\right) \in \operatorname{Graph} B\right\} \\
& \leq\left\langle x, \bar{x}^{*}\right\rangle+\left\|x^{*}-\bar{x}^{*}\right\| \sup _{b \in D(B)}\|b\|<+\infty .
\end{aligned}
$$

There exists $\left(\bar{x}, \bar{x}^{*}\right) \in X \times X^{*}$ such that $\psi_{A}\left(\bar{x}, \bar{x}^{*}\right)+\psi_{B}\left(\bar{x},-\bar{x}^{*}\right) \leq 0$ which implies that $\psi_{A}\left(\bar{x}, \bar{x}^{*}\right)=\left\langle\bar{x}, \bar{x}^{*}\right\rangle, \psi_{B}\left(\bar{x},-\bar{x}^{*}\right)=-\left\langle\bar{x}, \bar{x}^{*}\right\rangle$, i.e., $\bar{x}^{*} \in A(\bar{x})$ and $-\bar{x}^{*} \in B(\bar{x})$ from which $0 \in R(A+B)$.

Remark 2.1. Theorem 1.2 still holds if we replace the assumption C bounded with $D(T)$ bounded. In this case an alternate proof of Theorem 1.1 can be performed with $A+N_{C}$ instead of A and a similar argument as in the current proof.

References

[1] Burachik, R.S., Svaiter, B.F., Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131(2003), no. 3, 2379-2383 (electronic)
[2] Chu, L.-J., On the sum of monotone operators, Michigan Math. J., 43(1996), no. 2, 273-289.
[3] Debrunner, H., Flor, P., Ein Erweiterungssatz für monotone Mengen, Arch. Math., 15(1964), 445-447.
[4] Fitzpatrick, S., Representing monotone operators by convex functions, In" "Workshop/Miniconference on Functional Analysis and Optimization" (Canberra, 1988), vol. 20 of Proc. Centre Math. Anal. Austral. Nat. Univ., Austral. Nat. Univ., Canberra, 1988, 59-65.
[5] Rockafellar, R.T., On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149(1970), 75-88.
[6] Voisei, M.D., The sum and chain rules for maximal monotone operators, Set-Valued Anal., 16(2008), no. 4, 461-476.
[7] Voisei, M.D., Maximal monotone normal cones in locally convex spaces, J. Math. Anal. Appl., 476(2019), no. 2, 811-818.
[8] Voisei, M.D., Zălinescu, C., Maximal monotonicity criteria for the composition and the sum under weak interiority conditions, Math. Program., 123(2010), no. 1, Ser. B, 265283.
[9] Zălinescu, C., Convex Analysis in General Vector Spaces, World Scientific Publishing Co. Inc., River Edge, NJ, 2002.
[10] Zălinescu, C., A new proof of the maximal monotonicity of the sum using the Fitzpatrick function, In: Variational analysis and applications, vol. 79 of Nonconvex Optim. Appl., Springer, New York, 2005. 1159-1172.

Mircea D. Voisei
Baltimore, MD-21252, U.S.A.
e-mail: mdvoisei@yahoo.com

