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CLASSES OF MENGER SPACES WITH THE FIXED POINT
PROPERTY FOR PROBABILISTIC CONTRACTIONS

VIOREL RADU

Abstract. We present the most important contributions to the theory
of probabilistic contractions of Sehgal type and a new method of obtain-
ing fixed point theorems on Menger spaces under Archimedean triangular

norms.

1. Some history

1.1. Introduction. The notion of a Probabilistic Metric has been introduced by K.

Menger in 1942 as a function
]-'
Sx 53 (p,q) > Fpq €Dy

where D, is the set of all distribution functions F, for which F(0) = 0, and the
following axioms are imposed:
I. Fzy=¢pifandonlyifz =y

. Fpy =Fy, Vz,y€ X.

Iy Foz(t+8) > T(Foy(t), Fy:(s))
Here T': [0, 1] x [0, 1] — [0, 1] is supposed to satisfy the conditions: T is nondecreasing
in each variable , it is symmetric and T(1,1) =1, T(a,1) >0V a > 0.

Thus the the first idea of Menger was to use distribution functions instead

of nonegative real numbers as values of the metric .The second useful idea was the

formulation of the triangle inequality (I1pr) .
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A. Wald in 1943 proposed the following triangle inequality , accepted by

Menger himself in subsequent works:
({1y) Fpq > Fprx Frq
which admits a natural interpretation
Prob{dist(p,q) < } > Prob{dist(p,r) + dist(r,q) < z}

if the ”distances” are considered independent random variables .

. B.Schweizer &A.Sklar in 1960 (see also [47]) reconsidered the problem
of the triangle ienquality by imposing the associativity for T; thus ([0,1],T) is a
commutative semigroup with 1 as unity and T(a,b)<Min{a,b} Min, Prod and W =
Maz{Sum — 1,0} are the most important t-norms ; (S, F,T) is called PM-space and
T a triangular norm or t-norm.

In the same works they introduce two new important notions, the (g, A)-
topology ( F-topology, strong topology), generated by {Np(e,A)}e>0, e(0,1) and the
(€, A)-uniformity( F-uniformity),generated by {U(e, A)}eso, ae(o,1)(see 2.1. below).

In the same year Schweizer, Sklar and R.Thorp proved that ifsup, ., T(x, z) =
1, then the (g, \) -uniformity exists and it is metrizable.

Later on, J.Nagata & B.Morrel and, independently, U.Hohle, proved that
the above condition on T is the weakest one which ensures the existence of the F-

uniformity.

In 1962 -1963, A.N. Serstnev proposed a new formulation of the triangle in-

equality , by means of a nondecreasing (semigroup) operation 7 on D4( a t-function)
IlIs Fpq> 7(Fpr,Frq), 7: Dy X Dy = Dy ,7(Ho) = Ho

and has formulated explicitly a metric-like function which seemingly agrees with the

uniformity , namely
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Later on I observed that d does not verify yhe triangle inequality , and therefore this
is not an adequate example.Serstnev introduced also the notion of random normed
space!.

Now we present some results concerning the

1.2. Fixed Point Principles in Menger spaces. In 1966 V.M Sehgal & A.T
Bharucha- Reid(see [50] and [51]) have introduced the notion of probabilistic contrac-
tion on Menger spaces, namely functions f : S — S s.t. thereisan L , 0 < L <1,

for which

(PC)  Fip,rq(Lz) > Fpy(2),Vz >0,
and they proved the following
E1. Any probabilistic contraction on a complete Menger space (S, F, Min) has a fired
point , which is the limit of the successive approzimations, defined by pny1 = fpn,

that is a principle of Banach- type holds for the.t-norm Min .

In 1976 , G.L.Cain and R.Kasriel proved the above theorem of Sehgal&Bharucha-
Reid by a different method :  If dy(p, q) = sup{z, Fpq < b} is defined on (S, F, Min),
then dy is a semimetric on S and {db}sc(0,1) generates the (g, A)-topology ; and they
obtained the Banach’s principle from a classical result for (S, {ds}).

In 1971, H.Sherwood gave an example of a complete Menger space (S, F, Tr,)
together with a probabilistic contraction with no fixed points(see also[47]).

A fundamental result has been obtained by O. Hadzié¢ in 1978 (cf [9], [10],
[11] and [15] )which extended the class of t-norms for which th. BP. holds:
E2. If T 1s continuous and T™ are equicontinuous at = 1 , then the B.P. holds in

every complete Menger space (S, F,T)

LAt the West University of Timigoara a Seminar on PM-spaces has been createg in 1972. The most part
of the contributions to this Seminar are due to D.Barbu,Gh.Bocsan, Gh.Constantin, I.Istri\escu, D.Mihet, V.Radu
and D.Zaharie. A number of 125 papers have been issued in preprints and most of them aﬁxeared in well known
periodicals. A series of monographs (three volumes until now) has been created. Some of the ',oiﬁbso( the Seminar
are Measures of noncompactness , Fized points , NonArchimedean PM-spaces,Construction of deterministic metrics and

Random operators &equations.
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In 1983 I have shown that the condition of continuity of T can be dropped . Also I
obtained the following characterization of the t-norms of Hadzié- type :

E3.The following are equivalent , for a continuous t-norm T,
a) {T"} is equicontinuous at = =1

b) Ya€(0,1), 3b € [a,1) such that T'(b,b) =b

By using this result one can obtain the following:

E4. Let T be a continuous t-norm . Then the B.P. holds in every complete Menger
space (S, F,T) if, and only if, T is of Hadzicé- type.

ES5.The following are equivalent

a) There exists a complete (S, F,Ty,) in which the Banach’s Principle fails;

B) There exists a complete (S,F, Prod) complete, in which the Banach’s Principle
fails;

v) There exists a complete (S, F,T), where T is not of Had%ié- type t-norm, in which
the Banach’s Principle fails.

E6. EJ s essentially equivalent to the classical Banach Principle.

Remark. In the general case for equicontinuous T™ (at £ = 1) one can use a method
similar to that proposed by Cain & Kasriel, by using a countable family of pseudo-

metrics:

by /‘ 1, T(bmbn) = b,

da(p,q) = inf{t, Fpe(t) > bu},n=1,2,..

i
1.3. Hicks contractions and generalizations. In 1983, T,L.Hickks has introduced

a different condition for contractions

(en) 3L <1:Fpy(t)>1~t = Fyppq(Lt) > 1— Lt

and has shown that
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E7. Every ci-contraction on a complete Menger space (S, F, Min) has a unique fized
point , which is the limit of the succesive approzimations .
The idea of Hicks’ proof is as follows:

- Construct a metric p on S, for which

- (S, p) is a complete metric space and f is an L strict contraction on (S, p).
- Apply the classical B.P.

I essentially extended the above result in two directions(see e.g. [40, 42]).

(a) E7 remains true for every T > W and the proof is similar to that of Hicks ;
(b) The result of Hicks is true for every t-norm with the property sup, ., T'(t,t) = 1.

If we observe that the condition (cj) can be rewritten in the forms :

t>1— Fpe(t) = Lt >1— Fyppe(Lt)

t>hoFpg(t) = Lt>hoFrppe(Lt)

where h(u) = 1 — u, u € [0, 1], we can give more extensions.

Let M be the family of mappings m:[0, co] — [0, o0], such that

a) m(t) =0 <= t=0;
b) m is continuous ;

c) m(t+ s) > m(t) + m(s).

Lemma. Let US/{suppose that
/
(i) meM;
(ii) h :[0,1] = [0,00] is @ continuous decreasing function, and k(1) = 0;

(iti) (S, F,T) is a Menger space,with T > T),.

Then

P(P,9) = kmn(p, q) := sup{t , m(t) < ho Fpy(t)}

gives a metric which generates the (g, A)-uniformity.
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Theorem 1.3. Consider a complete Menger space (S, F,T) and a self mapping f of
S such that

h o Fpq(t) < m(t) = ho Fyppq(Lt)] < m(Lt)

where h is as the Lemma , with h(0) < co. Then f has a unique fized point (which is

the limit of successive approzimations).

Remarks.

(1) If T' > T4, then f is a p-strict contraction and the classical BP can be applied .
In this case h(0) may be oo.
(2) The formula

p(p,q) = sup{t, m(t) <1 - Fpq(ma(t))}

where F,q(t) = Prob(d(p, ¢) < t), gives a metric for the convergence in probability
, extending the case m; (t) = ma(t) = ¢, when one obtains the Ky Fan metric.
(3) The above ideas and methods have been used and extended by many authors(see

[4], 5], [6, 7], [11, 13, 14, 15], [25], [48], [54]).

1.4. Some comparisons. The followi : examples, essentially taken from the very
interesting paper [48], clarify tl@azfdence of the two types of contractions:
1. Let (S, d) be a metric spa('e”, and f:S — S an L— isometry: d(fp, fq) = Ld(p, q).
If we set Fpq(z) = 7Td(p.)» then we obtain a Menger space (S, F, Min).
(a) fis a probabilistic contraction, since Fyprq(Le) = Fpq(€).
(b) Tt is easily seen that p(p, ) = 2d(p, ¢)/(d(p, q) + sqr(d®(p, q) + 4d(p, q))) ;and

p(p,q) = 1 for d(p, qg) = 1,50 f cannot be a strict contraction on (S,p).
2. Let $={0,1,2,...} and d(p,q)= max{L?, L7}, L € (0,1). Define

0, z < d(p,q)
Fpe(z) =4 1-d(p,q), d(p,g)<z<1
1, z>1
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If we take f(p) = p+ 1, then f is a Hicks contraction . Now if 1 >z > L; , z >
Ld(p,q), then d(fp,fq) = Ld(p,q) < = < Land Fyp 1q(z) = Fpy1441(z) =
1—d(fp, fg). On the other hand qu(Lll) =1, that is Fyp yq(2) < Fpq(£5) and so

f is not a probabilistic contraction.

3. Generally , if we have a probabilistic contraction f, then p(p,¢) < ¢ = e >
L= Fpg(e) = Fpgle) > 1—€ = Frppele) 2 Frppq(Le) 2 Fpgle) > 1—€ =
p(fp, f1) < e, thus p(fp, fq) < p(p, ¢),that is f is nonexpansive.This explains in
some sense the counterexamples of type Sherwood.For more details,examples and

counterexamples, see [48], [42] and [15].

2. The “fixed point property” for t-norms

2.1. Probabilistic (semi)metric spaces. Let D, be the family of all distribution
functions F' (nondecreasing and left continuous on R, with inf F = 0 and sup F = 1)
for which F(0) = 0. For every a > 0, ¢, will be the unique element of D4 for which
€a(a+) — €afa) = 1.

Definition 2.1.1 (cf. [46],[47],[7],[42]). Let X be a nonempty set and F : X x X —
D, a given mapping (F(z,y) will be denoted by Fyy). The pair (X, F) is called a
probabilistic semimetric space (shortly PSM-space) if

I. Fpy=¢pifandonlyifz =y

II. Fpy =Fy: Y2,y € X.

If any kind of ”triangle inequality” is verified we use the term probabilistic

metric space (PM-space). The weakest one is that proposed in [46):
Ilgs [Foy(t) =1, Fy,(t) =1] = Fp(t+s) =1
If there exists a triangular norm T [46] such that

Iy oot +5) > T(Fay(t), Fya(s))
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then one uses the term Menger space. A more general form for 111y, giving o-

Menger spaces, has been formulated by using some operations o on [0, 00), instead of
the addition (cf. [42], [44]).

In [18] is proposed the inequality
IIIg Ve > 036 > 0s.t. [Fpy(d) > 1-0, Fy,(8) > 1-6] = Fz,(e) > 1-¢

which has been generalizated as

Iy Ve > 038> 0 5.6 [hoFay(8) <8, hoFy(8) < 8] = hoFyy(e) < ¢
by using additive generators h (cf. [39], [41], [42]).
For every PSM-space (X, F) we can consider the sets of the form

Uepr ={(z,y) € X x X, Fpy(e) >1-1}, e>0,1€(0,1)
which generates a semiuniformity denoted by 4+ and a topology 7. Namely,
OeTriftVee O3>0, Ae(0,1)s. t. Usa(z) CO

Actually Ur can also be generated by the family of the sets V5 := Us 5.

Proposition 2.1.2. Let (X,F) be a PSM-space and define the two- place mapping
(1) k(z,y) = sup{t|t < 1— Fyy(t)}. Then k is a semi-metric (of Ky Fan type) on X

and
(2) k(z,y) <0 & Foy(d) >1-46,V6 >0,

which shows that k generates the topology Tr (and the semiuniformity Ur ).
The proof is easy to reproduce (cf. [16], [40], [17]).

Ezamples 2.1.3.

(i) If d is a semi-metric on X and we set Fry := €4(¢,y) then (X, €q(,)) is a PSM-

space and k(z,y) = min(d(z,y),1).

(i1) Let X be the family of all classes of R-valued random variables on a probability
measure space (2, K, P). If we set F(z,y) = Fjz—y, the distribution function
of |z — y|, then (X, F,W) is a Menger space and k is the Ky Fan metric of
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the convergence in probability (cf. [19]). Here R can be replaced e.g. by any
separable metric space (with |z — y| = dist(z, y)).
It is to be noted that, generally, k¥ need not be a metric. In order to ensure the veri-
fication of the triangle inequality for k, T. L. Hicks [17] proposed the following form
of the triangle inequality for (X, F):

IIT . [Foy(t) > 1—t, Fys(8) > 1~ s8] = [pp(t+s) > 1—(t+s)
and he observed that the property I11! holds for every Menger space (X, F,T) for
which T > W.

As a matter of fact one has the following

Proposition 2.1.4. Let T be a t-norm such that the property (I11') holds for every
Menger space (X, F,T). Then T > W.

Proof. This will follow from the following well known example. Let X = {z,y, z}, Fzy =
Fye, Fy; = Foy, Fzy, = Fyp, where

0 t<0 0 t<0
Foy(t) =4 a t€(0,1] , Fp:(t) =4 b te(0,1] ,
1 t>1 1 t>1
0 t<0
Fpe(t) =< T(a,b) te(0,1]
1 t>1

and Fyr = Fyy = F,, = 9. Then (X,F,T) is a Menger space (for which T is the
best t-norm) and k(z,y) = 1 —a, k(y, z) = 1 —b, while k(z,2) =1 —T(a,b). Thus we
see that k(z,2) < k(z,y) + k(y,2) & T(a,b) >a+b-1. |

Remark 2.1.5. Let (X, F,T) as in the above proof and suppose that T'(a, ) < a+b—1.
Therefore 0 < a@,b < 1 and there exists p > 1 such that ((1 — a)i +(1=b)F)P >
1—T(a,b). Thus (1 —a)r + (1—b)7 > (1— T(a,b))7 and we see that k,, given by
kp(u,v) = sup{t[tP < 1— F,,(t)}, is verifying the triangle inequality. This shows that
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the more general formulae proposed in [39], [41] and [44] can give metrics in many

situations.

It is easy to see that for each m € M there exists ¢,, > 0 such that m : [0,t,,) —
[0, 00) is strictly increasing and invertible. If we set, for any PSM-space (X, F),
(1m) km(z,y) = sup{t|t > 0,m(t) <1 - Fry(t)}

then k,, is a semi-metric. Moreover
(2m) km(z,y) < 6 & Fzy(d) > 1 —m(d)

from which it follows that k,, generates 7 and Ur.

This suggests the following definition, which extends (I11'):

Definition 2.1.6. A PSM-space (X, F) for which takes place the following triangle
inequality

IIT™ . [Fpy(t) > 1—=m(t), Fy;(s) > 1—m(s)] = Fe(t+s) > 1—m(t+s)
is called PM-space of type M.

In [35] there are presented some fixed point theorems in these classes of PM-

spaces.

2.2. On the fpp for triangular norms. As we have seen,probabilistic contractions
have been introduced by V. M. Sehgal [50]. It is now well known that every proba-
bilistic contraction on a complete Menger space (S, F, Min) has a unique fixed point,
which is the limit of succesive approximations. In [53] H. Sherwood constructed com-
plete Menger spaces together with probabilistic contractions which do not have fixed
points. O. Hadzié [9] introduced a class of t-norms for which the contraction principle
holds [10]. In [38] we proved that a continuous t-norm has the fixed point property
iff it is of Hadzi¢-type.

In the present section, we further investigate the fixed point property of t-
norms, by using the structure of continuous t-norms as given in [32]. Essentially we
prove that a t-norm does not have the fpp iff in a neighborhood of 1 it has a behavior
similar to that of W = Max(Sum — 1,0). Thus the counterexample of H. Sherwood
can be generally used for all t-norms which are not of Hadzié-type.
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Let I denote the closed unit interval. A t-norm is a two-place function T :
I x I = I such that T is associative, commutative, nondecreasing in each place and
such that T'(a,1) = a for each a € I. For a fixed t-norm T', T™ is defined inductively
on I by

1) THe)=g, T (2) = T(T™(2),2)

We say that T is of h-type (and write T' € H) if {T™} is equicontinuous at z = 1.
The following result is a consequence of [37], [38] and [32)]:

Lemma 2.2.1. (i) If T verifies the condition
(2):Va €(0,1),3b € [a,1), st T(b,0)=0b

then T €.
(i) If TeM. and T is continuous, then (2) holds.

Theorem 2.2.2. Let T be a continuous t-norm. Then T ¢} iff

(3) 3a € [0,1) such that T'(a,a) = a,T(z,z) < z,Vz € (a,1)

Proof. By Lemma 2.1, T ¢ H iff (2) is false. If 3ag € (0,1) such that For each
b € [ao,1) one hasT(b,b) < b, then let

a=lim T™(ao).

Since T™*!(ag) < T™(ao) < ao, then a € [0,1) always exists. Moreover,
as T?™*1(ag) = T(T™(ao),T™(ao)) and T is continuous, then a = T(a,a). Let
b € (a,a0). If T(b,b) = b, then a = T™(a) < b =T™(b) < T™(ag), that is b < a, a
contradiction.

Thus, if (2) is false then (3) holds. The converse is obvious. O

Remark 2.2.3. The number a in (3)-is uniquely determined and will be denoted by

ar.

From (3) and [32] we obtain the following
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Theorem 2.2.4. Let T be a continuous t-norm. Then T ¢ H iff there exist ar €

[0,1) and an increasing bijection ht : [ar, 1] — [0, 1] such that

(4) : T(a, B) = hp' [T (hr(e), b (8))], Vo, B > ar

where T, = W or T, = Prod (T. depends only on T).
The following lemma is easy to reproduce:

Lemma 2.2.5. Let T be a continuous t-norm, T ¢H

(i) If (S, F,W) is a Menger space, then (S,e”~!, Prod) is a Menger space
with the same (g, A)-uniformity;

(ii) If (S, F,T.) is a Menger space, then (S,h3' o F,T) is a Menger space
with the same (e, \)-uniformity;

(i) If (S, F,T) is a Menger space, then (S,hr o F,T,) is a Menger space

with the same (g, A)-uniformity. (the notations are as in Theorem 2.4).

One says [38] that T has the fized point property (f.p.p.) iff every probabilistic
contraction on a complete Ménger space (S, F,T) has a fixed point (it is obvious
that this fixed point is unique and it can be obtained as the limit of the succesive
approximations).

If T € H, then it is well known that T has the f.p.p. and this can be proven by
different methods( [10], [38], [3]) or is a consequence of the classical Banach principle
[37].

For t-norms which are not of h-type we have the following

Theorem 2.2.6. Let T be an arbitrary but fized t-norm such that T ¢H. Then the
following are equivalent

(i) T does not have the f.p.p.;

(i1) Prod does not have the f.p.p.;

(iii) W does not have the f.p.p.

Proof. Firstly we observe that the constructions in Lemma 2.5 do not change the
property of f of being a probabilistic contraction. Therefore the equivalence (ii)< (iii)
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results for Lemma 2.5 (i), for Prod > W. The fact that (i)=(ii) or (iii) is a con-
sequence of Lemma 2.5. (iii). The implication (ii) and (iii)=>(i) is a consequence of

Lemma 2.5. (ii), and the theorem is proved. O

In [53] it is proved by an example that W does not have the fixed point property.

Thus we have the following

Corollary 2.2.7 ([38]). If T is a continuous t-norm such that T' ¢H, then T does
not have the fized point property.

3. Some “iff”conditions for the f.p.p. in the archimedean case

From the above it seems very clear that in order to can hope to obtain some
kind of fixed point theorems in the case of Archimedean(or not of Hadzic type) t-
norms, one has to impose supplementary conditions either on the probabilistic con-
tractions or on the probabilistic metrics.

Some positive effort has been made in this sense by H. Sherwood [53], R. M.
Tardiff [55], V. Radu [42, 43] and E. Par3u & V. Radu [34, 35].

Nevertheless we think that the problem has not yet a satisfactory answer,
especially for concrete purposes. This is seen from the following simple case of affine

mappings on E-spaces:

Ezxample 3.0. Let Lg(0,1) be the space of all classes of random variables on the
Lebesgue measure space ((0,1), £, A) and fix the element w defined by the mapping
t — et. Let S be any closed (for the convergence in probability) linear subspace of

Ly(0, 1) which contains w and 1. Now define fon S by
fp=Lp+(1-Ljw
when L is fixed in (0, 1). It is easily seen that
ffpo=L"po+(1-L"w—-w=fw

On the other hand, the distribution function of w has the value 0 for z < e and 1— -

for ¢ > e, such that [ InzdF, () = +oo. Therefore the conditions of [55] are not
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verified for I'\yuw, With X # u. At the same time, for every k£ > 0,
1 1 1 k €m0
/ wk (¢)dt > / wk (t)dt > / (14 7)dt=1-c—klnc— oo
0 € €
which shows that we cannot hope to work in any Lebesgue space Lg(0,1):
Po € Lk(O, 1) fPpé Le(0,1),n > 1

The aim of this section is to obtain a characterization of the probabilistic
contractions, on complete Menger spaces under Archimedean t-norms, which have a
fixed point. Our method of proof is very simple and is based upon a new family of
metrics which all generate the strong F-uniformity and seem to be appropriate for

studying probabilistic contractions.

3.1. A family of semi-metrics on PM- spaces. In the following lemma we intro-
duce a family of nonnegative functions which measure the distance betwecn €¢ and

the elements of Dy .Let k be a (fixed) positive real number.

Lemma 3.1.1. The one-place mapping éx : Dy — Ry, given by
(1) O(F):= 21;15{1"‘[1 - F(z)le™"},
has the following properties:
(7)) dk(F)=0 <=> F = ¢q;
(i¢) If Fy < Fy, then 8x(F1) > 6x(F2);
(#5) Ok(Ao F) < MR8, (F),YA > 1;
(iv) §*He~® < 8k (F) < max{d*,dkke %},
where § = §(F') := sup{t|t <1— F(t)} is the écart of Ky Fan.
(v) 6k(fn) = 0<=> Fp(z) = 1, for each z > 0.

Proof. We will give only the proof of (iv):

a) 6k (F) = sup{z*[l - F(z)]e™=} > 6*[1 - F(8)]e=® > 6"+ e~?;

b) If 0 < & < 6, then zF[1 — F(z)]e=* < 6*. If § < =z, then 1 — F(z) <
1-F(6+0)<34.

Therefore z¢[1 — F(z)]e™® < dzFe™* < dkFe*. 0
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Proposition 3.1.2. Let (S, F) be a probabilistic metric space and define
(2) ex(p, 9) := 0k (Fpq) = sup 2" [~ Fpq(z)le™®,Vp,0 €S
z

Then
1° ex is a semi-metric for the strong F-topology;
2° e generates the F-uniformity, if the latter exists;

3° If (S, F,W) is a Menger space, then

(3) (p)q) - ok(P, ‘I) = {ek(p, q)}iﬁ

gives a metric on S. Moreover, (S, F) is complete if and only if (S,0%) is complete.

Proof. 1° and 2° follow from Lemma 1.1. and the definitions. In order to prove 3¢,

let us recall that (S, F, W) is a Menger space iff the following inequality holds
(4) 1= Fpe(x) < 1— Fpr(tz) + 1= Fro[(1 —t)2),Vp,q,7 € S,Vz € R,Vt € [0,1]
If we fix p,q,r € S, then we have, for each z > 0:

g¥[1 = Fpq(2)]le™ < 2F[1 — Fpp(tz)]e™™ + 2F[1 — Fq[(1 - t)z]e~ 797, vt € (0,1)

Then

1

2*[1 = Fpq(z)]e™® < v ex(p,r) + (1—_12)—1‘—6[,(1', q9),Vte€ (0,1)

This implies the inequality.
1 1
ek(pv q) S t_kek(p’ 'I’) + Wek(ra Q),Vt € (0) 1)
and we easily obtain that
{ex(p, )} P < {ex(p,r)} ™ + {en(r, )}

that is f; verifies the triangle inequality.
The last part of the proposition follows from the inequality (v) of the Lemma
1.1. 0O
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Remark 3.1.8. The above proof shows that if, instead of (4), we have
(4) 1= Fpg(z) < 1= Fpr(z) +1— Fry(x),VYp,q,7 € S,Vz €R,

that is (S, F, W) is nonArchimedean, then e, itself is a metric which generates the

F - uniformity.

3.2. An iff condition for probabilistic contractions to have a fixed point.

We are in position to give a slight improvement of the results from [42, 43] and [34]:

Theorem 3.2.1. Let (S,F,T) be a complete Menger space such that T > W. If

f:S — S is a probabilistic contraction, that is
z
(8) Frpsq(z) > qu(f)»v” €R

for some L € (0,1) and all pairs (p,q) € S x S, then the following are equivalent
(5.1) f has a fized point
(5.2) There exist p € S and k € (0,00) such that

Ex(p) = i\;po{m"[l — Fppp(@)]} < 00

Proof. The implication (5.1) = (5.2) is obvious:

p=fp = Fpp(x)=1,V2>0=> Ex(p)=0

Now suppose that Ej(p) < oo for some p € S and k € (0,00). From the
definition of d; we see that dx(Fpsp) < Ex(p). If we take into account the inequality
(5), then we get
(1= Fyppap(@)le™® < 1= Fypp(£)]e™ = L¥{()H 1= Fppp(£)]}e™ < I¥ B (p),which
shows that

. 1

(6) 6(fp, f2p) < L7+ (Ex(p)) 7+
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If we apply (6) for f*, which verifies (5) with L" instead of L, then we obtain

8) D 0u(fp, f+p) < {D (LFT) HEk(p)} T < o0
n=0

n=0
This clearly implies that (f”p)n >0 is a Cauchy sequence in the complete metric space
(S, 0k), thus it converges to some point p. € S. Since (5) implies also the continu-
ity of f ,then p, is a fixed point which is uniquely determined and globally attrac-
tive: Fynpp, (2) > Fpp, ({5) = L. O

Remarks 3.2.2. a) Simple examples show that f is generally not contractive relatively
to i (or ex).

b)The suppremum in (5.2) may be infinite for some different values of k or
for different points in S. This can be seen from the simple case of the Example3.0.

and fp = Lp+ w. Let a € S such that
sup z*[1 — Fq(2)] < 00

and take p = Aa + tiyw. Our condition (5.2) is verified, for p — fp = A(1 — L)a.
Clearly f has a fixed point p, = -l—_l-zw and it is easily seen that Ex(p.) = oo.
On the other hand the inequality

(10) / InzdFpe(z) < 400
1

does not hold for pairs p = Ap., ¢ = pp. with A # p. Thus we could not apply the
results of Tardiff [55], which imposed (10) for all pairs (p,q) in S x S.

¢) Our condition (5.2) is verified if there exists an element p such that
Fpgp(tp) = 1 for some ¢, > 0 (H. Sherwood in [53], Corollary) imposed this con-
dition for all F,,) '

d) The condition (5.2) is verified if Fp s, has a finite k moment. Thus Theorem
2.1. slightly extends our results in [34, 42]:

Corollary 3.2.3. If T > W and (S, F,T) is a complete Menger space, then a given
probabilistic contraction f on S has a fired point if and only if there exist k > 0 and
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p € S such that
0
1) [ etdBygp(a) < +oo
[ee]

Proof. Tt is well known and easy to see that lim;c 2%(1 — Fpap(z)) = 0, if (11)

holds. O

Remark 3.2.4. A t-norm T is Archimedean if and only if there exists an increasing

homeomorphism & : [0, 1] — [0, 1] such that
(12) T(a,b) = h™'(Ti(h(a), h(})))

where T, = W or T, = Prod (see Theorem 2.2.4).
Since ab > a+ b — 1 for all a,b € [0, 1], then we obtain the foolowing.

Theorem 3.2.5. Let (S,F,T) be a complete Menger space such that T > Ty for
some increasing homeomorphism h : [0,1] — [0,1]. Then a probabilistic contraction
f of S has a fized point if and only if there erist k > 0 and p € S such that

(13) sup,s0¥[L = h o Fpyp(a)] < +o0
The proof follows from the fact that (S,h o F, W) is seen to be a complete Menger
space, Q.E.D.
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