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CLASSES OF M E N G E R  SPACES W IT H  TH E FIX E D  P O IN T  
P R O P E R T Y  F O R  P R O B A B IL IS T IC  C O N T R A C T IO N S

V IO R E L  R A D U

A b stra c t . We present the most important contributions to the theory 

of probabilistic contractions of Sehgal type and a new method of obtain­

ing fixed point theorems on Menger spaces under Archimedean triangular 

norms.

1. Som e h istory

1.1. In troduction . The notion of a Probabilistic Metric has been introduced by K. 

M enger in 1942 as a function

S x S 3 (p, q) —>■ Fpq G

where V+ is the set of all distribution functions F, for which F (0) =  0, and the 

following axioms are imposed:

I. Fxy =  6q if and only if x =  y 

II. Fxy =  Fyx Vx, y G X.

IIIm - Fxz(t -f s) > T(Fxy(t),

Here T : [0,1] x [0,1] —» [0,1] is supposed to satisfy the conditions: T is nondecreasing 

in each variable , it is symmetric and T (l, 1) =  1 , T(a, 1) > 0 V a >  0.

Thus the the first idea of Menger was to use distribution functions instead 

of nonegative real numbers as values of the metric .The second useful idea was the 

formulation of the triangle inequality (IIIm ) •
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VIOREL RADU

A . W ald in 1943 proposed the following triangle inequality , accepted by 

Menger himself in subsequent works:

(.IIIw) Fpq> F pr*Frq

which admits a natural interpretation

Prob{dist(p, q) < x} > Prob{dist(p, r) +  d?'st(r, q) < x]

if the ’’ distances” are considered independent random variables .

B . Schweizer & A.Sklar in 1960 (see also [47]) reconsidered the problem 

of the triangle ienquality by imposing the associativity for T; thus ([0,1], T) is a 

commutative semigroup with 1 as unity and T(a,b)<Min{a,b}.Min, Prod and W = 

Max {Sum —1,0} are the most important t-norms ; (5, T , T) is called PM-space and 

T a triangular norm or t-norm.

In the same works they introduce two new important notions, the (e,A)- 

topology ( ^-topology, strong topology), generated by {Np(ei A)}e>o, Ae(o,i) and the 
(e, X)-uniformity(  ^-uniformity),generated by {U(e> A)}5r>0j Ae(o,i)(see 2.1. below).

In the same year Schweizer, Sklar and R.Thorp proved that if supa?<1 T (x , x) = 

1, then the (£, A) -uniformity exists and it is metrizable.

Later on, J.Nagata & B.Morrel and, independently, U.Hohle, proved that 

the above condition on T is the weakest one which ensures the existence of the 7- 
uniformity.

In 1962 - 1963, A .N . Serstnev proposed a new formulation of the triangle in­

equality , by means of a nondecreasing (semigroup) operation r on V+( a t-function)

I l ls  Fpq > r(Fpr, Frq) , r : V+ x D+ V + , t(Hq) =  Ho

and has formulated explicitly a metric-like function which seemingly agrees with the 

uniformity , namely

1 ~Fn (k)
2 - F p ^ )
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Later on I observed that d does not verify yhe triangle inequality , and therefore this 

is not an adequate example.Serstnev introduced also the notion of random normed 

space1.

Now we present some results concerning the

1.2. F ixed Point Principles in M enger spaces. In 1966 V.M Sehgal h  A.T 

Bharucha- Reid (see [50] and [51]) have introduced the notion of probabilistic contrac­

tion on Menger spaces, namely functions /  : S -> S' s.t. there is an L , 0 < L < 1, 

for which

(PC) FJpJq{L x )> F „ {x ) ,V x >  0, 

and they proved the following

E l. Any probabilistic contraction on a complete Menger space (S, F, Min) has a fixed 

point , which is the limit of the successive approximations, defined by pn+1 =  /p n> 

that is a principle of Banach- type holds for the. t-norm Min .

In 1976 , G.L.Cain and R.Kasriel proved the above theorem of Sehgal&Bharucha- 

Reid by a different method : If db{p, q) =  sup{x, Fpq < 6} is defined on (S, F, Min), 
then db is a semimetric on S and {db}be(oti) generates the (e, À)-topology ; and they 

obtained the Banach’s principle from a classical result for (5, {<4})-

In 1971 , H.Sherwood gave an example of a complete Menger space (S, T , Tm) 
together with a probabilistic contraction with no fixed points(see also[47]).

A fundamental result has been obtained by O. Hadzic in 1978 (cf [9], [10], 

[11] and [15] )which extended the class of t-norms for which th. BP. holds:

E2. If T is continuous and Tn are equicontinuous at x =  1 , then the B.P. holds in 

every complete Menger space (S, T , T) *

*A t the W est University o f T im işoara  a Sem inar on PM -spaces has been create^ in 1972. T h e m ost part 

o f the con tribu tion s  to  this Sem inar are due to  D .B a rb u ,G h .B ocşan , G h.C onstantin , I.Istraţescu , D .M ihet, V .R adu  

and D .Zah arie. A num ber o f 125 papers have been issued in preprints and m ost o f them  appeared in well known 

p eriod ica ls . A series o f m onographs (three volum es until now ) has been created. Som e o f the topîirs-ot the Sem inar 

are M easures o f noncom pactness , Fixed points , Non Archim edean PM -spaces,C onstruction  o f determ inistic m etrics and 
Random  operators &equations .
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In 1983 I have shown that the condition of continuity of T can be dropped . Also I 

obtained the following characterization of the t-norms of Hadzic- type :

E3.The following are equivalent , for a continuous t-norm T,

a) {T n} is equicontinuous at x =  1

b) V a G [0,1) , 3 6 G [a, 1) such that T(b, b) =  6

By using this result one can obtain the following:

E4. Let T be a continuous t-norm . Then the B.P. holds in every complete Menger 
space (S, T , T) if and only if T is of Hadzic- type.

E5. The following are equivalent

a) There exists a complete (S,!F,Tm) in which the Banach’s Principle fails]

/?) There exists a complete (S, T, Prod) complete, in which the Banach’s Principle 
fails]

7 ) There exists a complete (S ,T ,T), where T is not of Hadzic- type t-norm, in which 

the Banach ’s Principle fails.

E6. E4 is essentially equivalent to the classical Banach Principle.

Remark. In the general case for equicontinuous T ” (at x =  1) one can use a method 

similar to that proposed by Cain & Kasriel, by using a countable family of pseudo­

metrics:

bn Z 11 , T(bn,bn) =  bn

dn(p, q) = inf {t , Fpq(t) > bn}, n= 1,2,...

1.3. Hicks contractions and generalizations. In 1983, T.L.Hicks has introduced 

a different condition for contractions

(ca) 3L <  1 : FPq{t) > 1 — t= >  Ffpfg(Lt) >  1 — Lt

and has shown that
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E7. Every ch-contraction on a complete Menger space (5, T , Min) has a unique fixed 

point , which is the limit of the succesive approximations .

The idea of Hicks’ proof is as follows:

- Construct a metric p on S, for which

- (S,p) is a complete metric space and f is an L strict contraction on (S>p).

- Apply the classical B.P.

I essentially extended the above result in two directions(see e.g. [40, 42]).

(a) E7 remains true for every T >  W and the proof is similar to that of Hicks ;

(b) The result of Hicks is true for every Unorm with the property supt<1 T(t,t) =  1.

If we observe that the condition (c/j) can be rewritten in the forms : 

t > 1 ~ Fpq{t) => Lt > 1 — Ffpfg(Lt)

t > ho Fpq(t) => Lt > ho Ffpjg(Lt)

where h(u) =  1 — u, u G [0,1], we can give more extensions.

Let M. be the family of mappings m:[0,oo] —> [0, oo], such that

a) m(t) — 0 t =  0 ;

b) m is continuous ;

c) m(t +  s) >  m(t) +  ra(s).

Lem m a. Let us/suppose that
/

(i) m E  M  ;

(U) h : [0,1] —> [0,oo] is a continuous decreasing function, and h( 1) =  0; 

(Hi) {S,!F,T) is a Menger space, with T >

Then

p{p,q) =  kmh(p>q) := sup{t . m(t) < h o Fpq(t)} 

gives a metric which generates the (e, X)-uniformity.
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T heorem  1.3. Consider a complete Menger space (5, F ,T ) and a self mapping f  of 

S such that

h o Fpq(t) < m(t) => ho Ffpj q(Lt)] < m(Lt)

where h is as the Lemma , with h(0) < oo. Then f  has a unique fixed point (which is 

the limit of successive approximations).

Remarks.

(1) If T > Th, then f is a p-strict contraction and the classical BP can be applied . 

In this case h(0) may be oo.

(2) The formula

p(p,q) =  su p {t , mi(t) < 1 -  Fpq(m2(t))}

where Fpq(t) =  Prob(d(p, q) < t) ,  gives a metric for the convergence in probability 

, extending the case mi(t) =  m2{t) =  when one obtains the Ky Fan metric.

(3) The above ideas and methods have been used and extended by many authors(see

[4], [5], [6, 7], [11, 13, 14, 15], [25], [48], [54]).

1.4. Som e com parisons. The following examples, essentially taken from the very 

interesting paper [48], clarify the independence of the two types of contractions:

1. Let (5, d) be a metric space, and f  \ S S an L— isometry: d(fpy fq) =  Ld(p, q).

If we set Fpq(x ) — x + d ( p ,q )  ’ then we obtain a Menger space (5, F, Min).

(a) f  is a probabilistic contraction, since Ffpfq(Le) =  Fpq(e).

(b) It is easily seen that p(p, q) — 2d(p, q)/(d(p, q) +  sqr(d2(p, q) +  4d(p, q))) ;and

p(p> <l) 1 f°r d{P) q) —>■ l,so /  cannot be a strict contraction on (S,/?).

2. Let S={0,1,2,...} and d(p,q)= max{Lp, Lq), L G (0,1). Define

0,

1 -  d(p,q), 

1,
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If we take f(p) =  p +  1, then /  is a Hicks contraction . Now if 1 >  x >  £1 , x >  

Ld(p,q), then d{fp,fq) =  Ld(p,q) < x < l,and Ffp }q{x) =  Fp+i ,+ i(x )  =  

1 — d(fp, fq). On the other hand Fpq( ) =  1, that is F/p fq(x) < Fpq(f^) and so 

f  is not a probabilistic contraction.

3. Generally , if we have a probabilistic contraction / ,  then p(py q) < e => € >

1 — Fpq(e) Fpq(e) >  1 —  ̂ ^fpfqi^) ^ FfpfqiLç) ^ ^pq( )̂ ^ 1 ~ ^
p (fp ,fq ) < €y thus p(fp ,fq) < p(p,q),that, is /  is nonexpansive.This explains in 

some sense the counterexamples of type Sherwood.For more details,examples and 

counterexamples, see [48], [42] and [15].

2. T he “ fixed  point p rop erty ” for t-norm s

2.1. P robabilistic (sem i)m etric spaces. Let be the family of all distribution 

functions F  (nondecreasing and left continuous on R, with inf F =  0 and sup F =  1) 

for which F (0) =  0. For every a > 0, ea will be the unique element of T>+ for which 

£<z(a+) -  £«(<*) =  1*

D efin ition  2.1.1 (cf. [46],[47],[7],[42]). Let X  be a nonempty set and T  : X  x X  — > 

V+ a given mapping (F(xyy) will be denoted by Fxy). The pair (XyF)  is called a 

probabilistic semimetric space (shortly PSM-space) if

I. Fxy =  £q if and only if x =  y

II. Fxy =  FyxV x , y e X .

If any kind of ” triangle inequality” is verified we use the term probabilistic 

metric space (PM-space). The weakest one is that proposed in [46]:

IIIss [Fxy{t) =  1, Fyz(t) =  1] => Fxz(t +  s) =  1 

If there exists a triangular norm T [46] such that 

I I I m  Fxz(t - f  s )  >  T(Fxy(t), Fyz(s))

101



VIOREL RADU

then one uses the term Menger space. A more general form for IIIm , giving <r- 

Menger spaces, has been formulated by using some operations cr on [0, oo), instead of 

the addition (cf. [42], [44]).

In [18] is proposed the inequality

IIIH Ve > 0 3Ô > 0 s. t. [Fxy{6) > l - 6 , F yz(6) > 1 - * ]  => Fxz{e) > 1 -6  

which has been generalizated as

Illh  V6 > 0 3S >  0 s.t. [hoFxy(S) < S , hoFyz(S) <  Æ] =>• hoFxz(e) < e 
by using additive generators h (cf. [39], [41], [42]).

For every PSM-space (X, F)  we can consider the sets of the form

U£,x =  { ( x , y ) e X  x X }Fxy{e) > 1 - A } ,  6 > 0, A G (0,1)

which generates a semiuniformity denoted by Ujf and a topology 7jf. Namely,

0 e 7 > i f F V * € 0 3 6 > O ,  A G (0,1) s. t. U£)X( x ) c O

Actually Ut  can also be generated by the family of the sets Vs := Usj.

P roposition  2.1.2. Let (X,F)  be a PSM-space and define the two- place mapping

(1) k(x,y) =  sup{tf|2 < 1 — Fxy(t)}. Then k is a semi-metric (of Ky Fan type) on X  

and

(2) k{x,y) < S Fxy(S) > 1 -  S ,W  > 0,

which shows that k generates the topology Tt  (and the semiuniformity U? ).

The proof is easy to reproduce (cf. [16], [40], [17]).

Examples 2.1.3.

(i) If d is a semi-metric on X  and we set Fxy := £d{x,y) then (^> £</(.,.)) is a PSM- 

space and &(x, y) =  min(d(x, y), 1).

(ii) Let X  be the family of all classes of R-valued random variables on a probability 

measure space (ÎÎ,/C,P). If we set F(x,y) — F\x_y\, the distribution function 

of \x — y I, then (X>F} W) is a Menger space and k is the Ky Fan metric of
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the convergence in probability (cf. [19]). Here R  can be replaced e.g. by any 

separable metric space (with \x — y\ = dist(x, y)).

It is to be noted that, generally, k need not be a metric. In order to ensure the veri­

fication of the triangle inequality for k, T. L. Hicks [17] proposed the following form 

of the triangle inequality for (X,T):

CLASSES OF MBNGER SPACES

I I I1. [Fxy(t) >  1 -  t, Fyz(s) > 1 -  s] => Fxz(t +  s) > 1 -  (t +  s) 

and he observed that the property II I1 holds for every Menger space (X, F , T) for

which T > W.

As a matter of fact one has the following

P roposition  2.1.4. Let T be a t-norm such that the property (III1) holds for every 
Menger space (X , F, T). Then T > W .

Proof. This will follow from the following well known example. Let X  =  {x, y, z} , Fxy =

FyX, FyZ — Fzy i Fxz — Izx > where

0 t < 0

FXy(t) =  < a t G (0,1] 1 FyZ(t) =  <

1 t >  1

0 t < 0

b f  E  ( 0 , 1 ]

1 t > 1

Fzx(t) =  <
0 t < 0 

T(a,6) t 6(0,1]

1 t > 1

and Fxx =  Fyy — Fzz — 6q. Then (X ,F ,T ) is a Menger space (for which T is the 

best Fnorm) and k(x , y) =  1 — a, k(y, z) =  1 — 6, while k(x, 2) =  1 — T(a, b). Thus we 

see that k(xy z) < Aî(æ, y) -f- fc(y, 2) <=> T(a, b) > a -f b — 1. □

Remark 2.1.5. Let (X, F , T) as in the above proof and suppose that T(a, b) < a+b— 1. 

Therefore 0 < a, b < 1 and there exists p > 1 such that ((1 — a) p +  (1 — 6) p )p > 

1 — T(a,6). Thus (1 — a)p +  (1 — 6)p > (1 — T(a,6))p and we see that kp, given by 

Arp(u, v) =  sup{i|fp < 1 — Fuv(^)}, is verifying the triangle inequality. This shows that

103



VIOREL RADU

the more general formulae proposed in [39], [41] and [44] can give metrics in many 

situations.

It is easy to see that for each m E M  there exists tm > 0 such that m 

[0,oo) is strictly increasing and invertible. If we set, for any PSM-space

(lm) km(x,y) =  sup{t|< >  0,m(t) <  1 -  FIj;(i)} 

then km is a semi-metric. Moreover 

(2m) km(x, y) < 6  Fxy(S) >  1 -  m(<î)

from which it follows that km generates Tp and U? .

This suggests the following definition, which extends (III1):

D efinition  2.1.6. A PSM-space (X, T)  for which takes place the following triangle 

inequality

II Im. [Fjpy(t) > 1 -m ( t ) ,F yz(s) > 1 -m(s)]  => Fxz(t + s) > 1 - m ( t  + s) 
is called PM-space of type A4.

In [35] there are presented some fixed point theorems in these classes of PM-

spaces.

2.2. On the fpp  for triangular norm s. As we have seen,probabilistic contractions 

have been introduced by V. M. Sehgal [50]. It is now well known that every proba­

bilistic contraction on a complete Menger space (S, T , Min) has a unique fixed point, 

which is the limit of succesive approximations. In [53] H. Sherwood constructed com­

plete Menger spaces together with probabilistic contractions which do not have fixed 

points. O. Hadzic [9] introduced a class of t-norms for which the contraction principle 

holds [10]. In [38] we proved that a continuous t-norm has the fixed point property 

iff it is of Hadzic-type.

In the present section, we further investigate the fixed point property of t- 

norms, by using the structure of continuous t-norms as given in [32]. Essentially we 

prove that a t-norm does not have the fpp iff in a neighborhood of 1 it has a behavior 

similar to that of W — Max(Sum — 1,0). Thus the counterexample of H. Sherwood 

can be generally used for all t-norms which are not of Hadzic-type.

: [0 ,*m) 

(*,n
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Let /  denote the closed unit interval. A t-norm is a two-place function T : 

I x I I  such that T  is associative, commutative, nondecreasing in each place and 

such that T(a, 1) =  a for each a E / .  For a fixed t-norm T, Tm is defined inductively 

on I  by

(1) Tl (x) — x, Tm+1{ x ) = T { T m(x),x)

We say that T is of h-type (and write T E 71) if {T*71} is equicontinuous at x =  1. 

The following result is a consequence of [37], [38] and [32]:

Lem m a 2.2.1. (i) I fT  verifies the condition

(2) : Va G (0,1), 36 G [a, 1), s.t T(b> b) =  b

then T E71.

(ii) If Te%. and T is continuous, then (2) holds.

T h eorem  2.2.2. Let T be a continuous t-norm. Then T 0 1  iff

(3) 3a G [0,1) such that T(a, a) =  a, T(x} x) < x yVx E (a, 1)

Proof By Lemma 2.1, T £ 7t iff (2) is false. If 3ao E (0,1) such that For each 

b E [ao, 1) one hasT(6,6) < 6, then let 

a =  lim T m(ao).

Since T m+1(ao) <  7im(ao) <  ao, then a G [0,1) always exists. Moreover, 

as T 2m+1(ao) =  T(Tm(ao)y Tm(ao)) and T  is continuous, then a =  T(a,a). Let 

b E (a, ao). If T(b, 6) =  6, then a =  Tm(a) < b =  T™^) <  T m(ao), that is 6 <  a, a 

contradiction.

Thus, if (2) is false then (3) holds. The converse is obvious. □

Remark 2.2.3. The number a in (3 )“is uniquely determined and will be denoted by

From (3) and [32] we obtain the following
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T heorem  2.2.4. Let T be a continuous t-norm. Then T £ H iff there exist aţ E 

[0,1) and an increasing bijection hr ‘ [gt> 1] — [0,1] such that

(4) : T(a,0) =  h^[T.(hT(a), M 0 ))],V a ,/3  > «T

where T+ =  W  or T* =  Prod (T+ depends only on T).

The following lemma is easy to reproduce:

Lem m a 2.2.5. Let T be a continuous t-norm, T

(i) If (S, T  ,W ) is a Menger space, then (S, , Prod) is a Menger space

with the same (e, X)-uniformity;

(ii) If (S, T ,T*) is a Menger space, then (5, ftÿ1 o T,T) is a Menger space 

with the same (e, A)-uniformity;

(Hi) If (S,P,T) is a Menger space, then (5, hr o F,T+) is a Menger space 

with the same (e, \)-uniformity, (the notations are as in Theorem 2.4).

One says [38] that T  has the fixed point property (f.p.p.) iff every probabilistic 

contraction on a complete Menger space (S,!F,T) has a fixed point (it is obvious 

that this fixed point is unique and it can be obtained as the limit of the succesive 

approximations).

If T  E then it is well known that T  has the f.p.p. and this can be proven by

different methods( [10], [38], [3]) or is a consequence of the classical Banach principle 

[37].
For t-norms which are not of h-type we have the following

T heorem  2.2.6. Let T be an arbitrary but fixed t-norm such that T 0 i .  Then the 

following are equivalent

(i) T does not have the f.p.p.;

(ii) Prod does not have the f.p.p.;

(iii) W does not have the f.p.p.

Proof. Firstly we observe that the constructions in Lemma 2.5 do not change the 

property of f of being a probabilistic contraction. Therefore the equivalence (ii)^(iii)
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results for Lemma 2.5 (i), for Prod >  W . The fact that (i)=^(ii) or (iii) is a con­

sequence of Lemma 2.5. (iii). The implication (ii) and (iii)=>(i) is a consequence of 

Lemma 2.5. (ii), and the theorem is proved. □

In [53] it is proved by an example that W  does not have the fixed point property. 

Thus we have the following

C orollary  2.2.7 ([38]). If T is a continuous t-norm such that T 0 1 , then T does 
not have the fixed point property.

3. Som e “ if f”  conditions for the f.p .p . in the archimedean case

From the above it seems very clear that in order to can hope to obtain some 

kind of fixed point theorems in the case of Archimedean (or not of Hadzic type) t- 

norms, one has to impose supplementary conditions either on the probabilistic con­

tractions or on the probabilistic metrics.

Some positive effort has been made in this sense by H. Sherwood [53], R. M. 

Tardiff [55], V. Radu [42, 43] and E. Parau & V. Radu [34, 35].

Nevertheless we think that the problem has not yet a satisfactory answer, 

especially for concrete purposes. This is seen from the following simple case of affine 

mappings on E-spaces:

Example 3,0. Let Lo(0,1) be the space of all classes of random variables on the 

Lebesgue measure space ( (0,1),£,A) and fix the element w defined by the mapping 

t —> e^. Let S be any closed (for the convergence in probability) linear subspace of 

Lo(0,1) which contains w and 1. Now define /on  S by

f p =  Lp+ (l -  L)w

when L is fixed in (0, 1). It is easily seen that

f np0 =  Lnpo +  (1 -  Ln)w - t w  =  fw

On the other hand, the distribution function of w has the value 0 for x < e and 1 — ^  

for x > e, such that lnxdFw(x) =  +oo. Therefore the conditions of [55] are not
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verified for F\WfiW, with À ^  /i. At the same time, for every k >  0,

J wk(t)dt> j  wk(t)dt> j (1 -f =  1 — c — k In c oo

which shows that we cannot hope to work in any Lebesgue space Lfc(0,1): 

P o € M 0 , l ) < * r p £ M 0 , l ) , n > l

The aim of this section is to obtain a characterization of the probabilistic 

contractions, on complete Menger spaces under Archimedean t-norms, which have a 

fixed point. Our method of proof is very simple and is based upon a new family of 

metrics which all generate the strong JF-uniformity and seem to be appropriate for 

studying probabilistic contractions.

3.1. A  fam ily  o f  sem i-m etrics on  P M - spaces. In the following lemma we intro­

duce a family of nonnegative functions which measure the distance between eo and 

the elements of D+.Let k be a (fixed) positive real number.

Lem m a 3.1.1. The one-place mapping 6* : T>+ -> R + , given by

(1) Sk(F) :=sup{xk[ l - F ( x ) ] e - * } ,
£>0

has the following properties:

(i) Sk(F) =  0 < = >  F =  e0;

(ii) I f  Fi < F2, then Sk(F\) > SkiFş);

(iii) 6k( \ o F ) < \ k6k( F ) y \ > l ;

(iv) Sk+1e~s <  Sk(F) < max{<Jfe,<SA:fee~fc},

where S =  <Î(/'T) :=  sup{<|/ < 1 — & the écart of Ky Fan.

(u) Sk(Fn) —» 0 < = >  Fn(x) 1, for each x > 0.

Proof We will give only the proof of (iu):

a) Sk(F) =  sup{£*[l — F(x)]e~x} > ^ [1  — F(J)]e_<5 > Sk+le~s;

b) If 0 <  x < 6, then £*[1 — F(x)]e~x < Sk. If S < a?, then 1 — F(x) < 
l - F ( 6  + Q)< 6.

Therefore a?*[l — F(x)\e~x < 6xkt~x <  Skke~k. □
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P rop osition  3.1.2. Let {S, J7) be a probabilistic metric space and define 

(2) ek(p,q) :=  Sk(Fpq) =  supxfc[l -  Fpq(x)\e~*,Vp,q G S
x > 0

Then

1° e/ç is a sem i-m etric for the strong T-topology;

2° e/t generates the J7-uniformity, if the latter exists;

3° If (S, J7, W) is a Menger space, then

(3) (p ,î) -> M p >«) :=  ( M p -?)}**1

gives a metric on S. Moreover, (S,T) is complete if and only if(S,6k) is complete.

Proof 1° and 2° follow from Lemma 1.1. and the definitions. In order to prove 3Ü, 

let us recall that (S, T , W) is a Menger space iff the following inequality holds

(4) 1 -  Fpq{x) <  1 -  Fpr{tx) +  1 -  Frq[(l -  t )x],Vp,q,re S,Vx G R , Vt G [0,1]

If we fix p,q,r G S , then we have, for each x > 0:

**[1 -  FM(* ) ]e - ' < xfe[l -  Fpr{t.x)]e~tx +  xk[l -  Fr,[ ( l  -  V< € (0,1)

Then

xk[l -  Fpq(x)]e~x <  -jrek(p,r) +  ^ - L p - e fc(r, 9), V< G (0,1)

This implies the inequality

ek(p,q) < ^ e k(P,r) +  j j -L j^ e k{r,q),Vt G (0, 1)

and we easily obtain that

IM P .?)}**1 < {ek{p,r)}ifc +  {e*(r,9)}s+r

that is 6k verifies the triangle inequality.

The last part of the proposition follows from the inequality (iv) of the Lemma

1 .1 . □
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Remark 3.1.3. The above proof shows that if, instead of (4), we have

( 4 ' )  1 -  Fpq{x) <  1 -  Fpr(x) +  1 -  Frg(x),Vp,q}r G S , V æ  G R,

that is (S, T , W)  is non Archimedean, then ek itself is a m etric which generates the 

T  - uniformity.

3.2. A n  iff condition  for probabilistic contractions to  have a fixed point.

We are in position to give a slight improvement of the results from [42, 43] and [34]:

T heorem  3.2.1. Let (5, T, T) be a complete Menger space such that T > W. If 

f  : S —» S is a probabilistic contraction, that is

(5) Ffpfq(x) > Fpqfy ,V x  e  R

for some L G (0,1) and all pairs (p, q) G S x S, then the following are equivalent

(5.1) f  has a fixed point

(5.2) There exist p G S and k G (0,oo) such that

Ek(p) :=  sup{a:fc[l -  -FPyP(x)]} < oo
a?>0

Proof. The implication (5.1) => (5.2) is obvious:

V - f P  => FPfp{x) =  1, Vx > 0 => Ek(p) =  0

Now suppose that Ek{p) < oo for some p G S and k G (0,oo). From the 

definition of Sk we see that 5k{Fpfp) < Ek(p). If we take into account the inequality

(5), then we get

xk[\-FJpPp{x))e~* < xk[ l - Fpfp(f)\e-* = Lk{(%)*[l-Fpfp(j;)]}e-* < LkEk(p),which 

shows that

(6) 6(fp, f 2p) < (Ek(p))sir

no
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If we apply (6) for / n , which verifies (5) with Ln instead of L, then we obtain

oo oo
(8) ! > ( / > , r +1p) < < 00

n=0 n=0

This clearly implies that ( / np)n>o is a Cauchy sequence in the complete metric space 

(SjOfc), thus it converges to some point p* E S. Since (5) implies also the continu­

ity of /  ,then p* is a fixed point which is uniquely determined and globally attrac­

tive: Ffnpp' (x) > Fpp,(j^) —> 1. n

Remarks 3.2.2. a) Simple examples show that /  is generally not contractive relatively 

to 0k (or ek).

b)The suppremum in (5.2) may be infinite for some different values of k or 

for different points in S. This can be seen from the simple case of the Examples.0. 

and fp  =  Lp +  w. Let a E S such that

supx*[l -  F|a|(x)] <  oo

and take p =  \a -F ïh jw . Our condition (5.2) is verified, for p — fp  =  A(1 — L)a. 
Clearly /  has a fixed point p* =  and it is easily seen that Ek(p*) =  oo.

On the other hand the inequality

( 1 0 ) InxdFpq(x) < +oo

does not hold for pairs p =  Ap*, q =  pp* with A ^  p. Thus we could not apply the 

results of Tardiff [55], which imposed (10) for all pairs (p, q) in S x S.

c) Our condition (5.2) is verified if there exists an element p such that 

Fpfp(tp) =  1 for some tp > 0 (H. Sherwood in [53], Corollary) imposed this con­

dition for all Fpq)

d) The condition (5.2) is verified if Fpfp has a finite k moment. Thus Theorem 

2.1. slightly extends our results in [34, 42]:

C orollary  3.2.3. I f T > W  and {S,T,T) is a complete Menger space, then a given 
probabilistic contraction f  on S has a fixed point if and only if there exist k >  0 and
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p G S such that

(11) f  xkdFpfp(x)
J oo

<  +00

Proof. It is well known and easy to see that H i n d o o  xk(l — Fpap(x)) =  0, if (11) 

holds. □

Remark 3.2.4. A t-norm T is Archimedean if and only if there exists an increasing 

homeomorphism h : [0,1] —y [0,1] such that

(12) T(ayb ) = h - l (T*(h(a),h(b)))

where T* =  W  or T* =  Prod (see Theorem 2.2.4).

Since ab > a +  6 — 1 for all a, 6 G [0,1], then we obtain the foolowing.

T heorem  3.2.5. Let (S,F,T) be a complete Menger space such that T > Th for 
some increasing homeomorphism h : [0,1] —> [0,1]. Then a probabilistic contraction 
f  of S has a fixed point if and only if there exist k > 0 and p G S such that

(13) supx>0xk\\ — ho Fpfp{x)\ < +00

The proof follows from the fact that (S,h o T , W) is seen to be a complete Menger 
space, Q.E.D.
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