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ON THE RELATION BETWEEN ABSOLUTELY SUMMING
OPERATORS AND NUCLEAR OPERATORS

CARMEN PARVULESCU AND CRISTINA ANTONESCU

Abstract. It is known that every absolutely summing operator acting
between C (), where Q is an arbitrary compact set, and a space, F, with
the Radon-Nikodym property is nuclear.

The purpose of this paper is to show that composing a weakly
compact operator with an absolutely summing one we obtain a nuclear
operator even the space, F, has not the Radon-Nikodym property.

We give, also, a proof for the "factorisation” theorem and we put

an interesting problem.

1. Preliminaries

1.1. Notations. Let E, F be Banach spaces over the field T'. T' is the set of real,
or complex, numbers.

1) L(E,F):={T : E — F : T is linear and bounded}.

2) E* .= L(E,T).

) Ug:={cx€E ||| <1}.

4) Let e* € E* and e € E, (e,e*) :=¢* (e) .

5) Let e* € E* and f € F. We denote by e* ® f the following operator:

e Q@f:E— F,(e"®f)(e) =(e,e*)f.

1.2. Definition [5]. Let F be a Banach space. A subset A C FE is said to be
weakly compact if it is compact in the weak topology, o (E, E*) .

1.3. Definition [5].  Let E, F be Banach spaces and T € L(E, F). T is said to be
weakly compact if TUg is relatively weakly compact.
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1.4. Definition [3].  Let E,F be Banach spaces. An operator T € L(E,F) is
called absolutely summing (T" € ABS(E, F)) if there is a constant ¢ > 0 such
that:

n n
Z"ngll <c-sup {Z (i, z*)| : 2* € UE.} ,

i=1 i=1
for every finite family of elements ¢, z,,...,z, € E.

For every T € ABS(E, F) we define: « (T) :=infec.

1.5. Definition [3].  Let E, F be Banach spaces. An operator T € L(E, F) is said

to be nuclear if there is a representation:

0
T= ZC: ® fis
i=1

where e € E* and f; € F, for every natural i.

We write T € N(E, F).

1.6. Definition [1].  Let (©2,)_, u)be a finite real measure space and E a Banach
space.

We say that E has the Radon -Nikodym property with respect to (2, _, u)
if, for each u—continuously vector measure ¥ : ) — E of bounded variation, there is
g € Ly (p, E) such that ¢ (A) = [gdp for every A€} :

We say that E has the l{adon -Nikodym property ( E has the R.N.p) if

E has the Radon -Nikodym property with respect to every finite real measure space.

1.7. Examples of spaces with the R.N.p.[1]. 1) Every reflexive space.(Phillips’
theorem)

2) Let F be a Banach space. If £ = F* and, in addition, F is separable then
E has the R.N.p.

3) Let I be an arbitrary set, / # @. Then [; (I) has the R.N.p.

4) Let 1 < p < 0o and X be a space with the R.N.p. Then L, (X, u) has the
R.N.p.
920
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1.8. Examples of spaces without the R.N.p.[1]. 1) (co,]|||lo,), Where co =
{z ={zn}, :2n €T and z, - 0}, ||2||, :=sup|e,].
. n

2) Ly (p), where p is a finite and non-purely atomic measure.

1.9. Definition[7].  The Banach space F is said to have the extension property
ifevery T € L(E, F), where E is an arbitrary Banach space, can be extended to any
Banach space E containing F as a suspace, where the extension T :E — F is linear

and bounded.

1.10. Example [7}.  The Banach space (I (T),]||lo,) has the metric extension
theory.

1.11. Theorem (the ”Domination” theorem)[3]. Let T € L(E,F). T €

ABS(FE, F) if and only if there is a regular normalized measure p on Ug. such that:

ITz]| < = (T) / (z, 2%} dpe (27)
Uge

for every z € E.

1.12. Corolar [3].  Let J be the inclusion from C () into Ly (), where Q is a
compact set and p is a measure with the properties from the ”domination” theorem.

Then:

J € ABS (C (), L1 ().

1.13. Theorem (the ”Factorization” theorem) [3]. Let E,F be Banach
spaces, F' having the extension property, and T' € ABS(E, F). Then there exist
the operators:

1) A€ L(E,C(Ug-)),

2)Y € L(Ly (p),F), where p is a regular, positive, normalised, Borel mea-
sure on Ug-, likewise in the ”domination” theorem,
such that: T=Y o J o A, where J is the inclusion from C (Ug.) into L, () .
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Proof. ( authors’adaptation)
Construction
1) Let A: E — C(Ug.) be defined, for every ¢ € E, by: Az := J;, where
Jg : E* 5 T, Jg (2*) = (2, 2*), for every z* € E*.
From the definition it follows that A € L (E,C (Ug.)), ||Az|| = ||J=|| = |||,
the corolar of the Hahn-Banach teorem, and further ||A]j = 1.
2) We consider now the inclusion,J, from C (Ug.) into Ly (4). From the
corolar 1.12 we obtain that J € ABS (C (Ug-), L1 (n)) -
3) Let Y : Im (J o A) — F be defined by ¥ ((J 0 4) z) := Tx.
We prove now that Y € L (Im (J o A), F).
a) The linearity is obvious

b) |7 (7 0 4)2)| = liT2l| < 7 () - Mool dn(a) =
=n(T): [ Ve (@)ldp(a) = (D) el = (7)o )]l
So Y is bounded on Im (J o A).

F has the extension property so Y can be extended to Y defined on L; ().

In conclusion we obtain the announced factorization of 7T O

1.14. Remark [3]. If F has not the extension property the factorization of an
operator

T € ABS(E, F) is as follows:

T=YoJoA, where A€ L(E,C(Ug+)), J is the inclusion from C (Ug.)
into Im(JoA)EC Ly (p)and Y € L (m, F) .

1.15. Theorem (Davies, Figiel, Johnson, Pelczynski) [5]. Let E, F be Ba-
nach spaces. Every weak compact operator S : E — F can be factorised through a

reflexive Banach space.

1.16. Theorem [3]. Let 2 be a compact set and F' a space with the R.N.p. Then
every T'e ABS(C (), F) is nuclear.
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2. Result

2.1. Theorem. Let E, F, G be Banach spaces, F having, in addition, the extension
property.
If S: F — G is weak compact and T € ABS(E, F) then S o T is nuclear.

Proof. From the factorisation theorem it follows that 7' = Y o J o A, likewise the
factorization theorem, and from teorem 1.15 it follows that S = U o V, where V €
L(F, R), R being a reflexive space, and U € L(R,G).

Further SoT'=UoV oY oJoA.

From the following facts VoY oJ € ABS (C (Ug-, R)) and R is a space with
the R.N.p. we obtain that V oY o J is nuclear.

In conclusion SoT =U oV oY oJ o A is nuclear. O

3. Open Problem

Let E, F be Banach spaces, F' having, in addition, the R.N.p. Any T €

ABS(E, F') admits a factorisation, likewise in the ”factorization” theorem. So:

T=YoJoA,where A: E— C(Ug),J:C(Ug:) = Im(JoA)C Ly (u),
Y :Tm(Jod) = F.

From the facts that Y o J € ABS (C (Ug.),F) and F is a space with the
R.N.p it follows that Y o J is nuclear.

In conclusion T'=Y o J o A must be nuclear.

But it is false because we can give a contraexample.

If we consider the identity from {; to ls, I : l; — Iy, this operator is ABS and
Iy , being a Hilbert space, is a space with the R.N.p., it follows that I : {; — 5 must

be nuclear. But it is false because I :l; — I3 isn’t even compact.
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