ON THE RELATION BETWEEN ABSOLUTELY SUMMING OPERATORS AND NUCLEAR OPERATORS

CARMEN PARVULESCU AND CRISTINA ANTONESCU

Abstract

It is known that every absolutely summing operator acting between $C(\Omega)$, where Ω is an arbitrary compact set, and a space, F, with the Radon-Nikodym property is nuclear.

The purpose of this paper is to show that composing a weakly compact operator with an absolutely summing one we obtain a nuclear operator even the space, F, has not the Radon-Nikodym property.

We give, also, a proof for the "factorisation" theorem and we put an interesting problem.

1. Preliminaries

1.1. Notations. Let E, F be Banach spaces over the field $\Gamma . \Gamma$ is the set of real, or complex, numbers.

1) $L(E, F):=\{T: E \rightarrow F: T$ is linear and bounded $\}$.
2) $E^{*}:=L(E, \Gamma)$.
3) $U_{E}:=\{x \in E:\|x\| \leq 1\}$.
4) Let $e^{*} \in E^{*}$ and $e \in E,\left\langle e, e^{*}\right\rangle:=e^{*}(e)$.
5) Let $e^{*} \in E^{*}$ and $f \in F$. We denote by $e^{*} \otimes f$ the following operator:

$$
e^{*} \otimes f: E \rightarrow F,\left(e^{*} \otimes f\right)(e)=\left\langle e, e^{*}\right\rangle \cdot f .
$$

1.2. Definition [5]. Let E be a Banach space. A subset $A \subset E$ is said to be weakly compact if it is compact in the weak topology, $\sigma\left(E, E^{*}\right)$.
1.3. Definition [5]. Let E, F be Banach spaces and $T \in L(E, F) . T$ is said to be weakly compact if $T U_{E}$ is relatively weakly compact.

[^0]1.4. Definition [3]. Let E, F be Banarh spaces. An operator $T \in L(E, F)$ is called absolutely summing ($T \in A B S(E, F)$) if there is a constant $c \geq 0$ such that:
$$
\sum_{i=1}^{n}\left\|T x_{i}\right\| \leq c \cdot \sup \left\{\sum_{i=1}^{n}\left|\left\langle x_{i}, x^{*}\right\rangle\right|: x^{*} \in U_{E^{*}}\right\}
$$
for every finite family of elements $x_{1}, x_{2}, \ldots, x_{n} \in E$.
For every $T \in A B S(E, F)$ we define: $\pi(T):=\inf c$.
1.5. Definition [3]. Let E, F be Banach spaces. An operator $T \in L(E, F)$ is said to be nuclear if there is a representation:
$$
T=\sum_{i=1}^{\infty} e_{i}^{*} \otimes f_{i}
$$
where $e_{i}^{*} \in E^{*}$ and $f_{i} \in F$, for every natural i.
We write $T \in N(E, F)$.
1.6. Definition [1]. Let $\left(\Omega, \sum, \mu\right)$ be a finite real measure space and E a Banach space.

We say that E has the Radon-Nikodym property with respect to $\left(\Omega, \sum, \mu\right)$ if, for each μ-continuously vector measure $\vartheta: \sum \rightarrow E$ of bounded variation, there is $g \in L_{1}(\mu, E)$ such that $\vartheta(A)=\int_{A} g d \mu$ for every $A \in \sum$:

We say that E has the Radon-Nikodym property (E has the R.N.p) if E has the Radon -Nikodym property with respect to every finite real measure space.
1.7. Examples of spaces with the R.N.p.[1]. 1) Every reflexive space.(Phillips' theorem)
2) Let F be a Banach space. If $E=F^{*}$ and, in addition, E is separable then E has the R.N.p.
3) Let I be an arbitrary set, $I \neq \emptyset$. Then $l_{1}(I)$ has the R.N.p.
4) Let $1<p<\infty$ and X be a space with the R.N.p. Then $L_{p}(X, \mu)$ has the R.N.p.
1.8. Examples of spaces without the R.N.p.[1]. 1) $\left(c_{0},\|\cdot\|_{\infty}\right)$, where $c_{0}:=$ $\left\{x=\left\{x_{n}\right\}_{n}: x_{n} \in \Gamma\right.$ and $\left.x_{n} \rightarrow 0\right\}, \quad\|x\|_{\infty}:=\sup _{n}\left|x_{n}\right|$.
2) $L_{1}(\mu)$, where μ is a finite and non-purely atomic measure.
1.9. Definition [7]. The Banach space \widetilde{F} is said to have the extension property if every $T \in L(E, \widetilde{F})$, where E is an arbitrary Banach space, can be extended to any Banach space \tilde{E} containing E as a suspace, where the extension $\widetilde{T}: \widetilde{E} \rightarrow \tilde{F}$ is linear and bounded.
1.10. Example [7]. The Banach space $\left(l_{\infty}(\Gamma),\|\cdot\|_{\infty}\right)$ has the metric extension theory.
1.11. Theorem (the "Domination" theorem)[3]. Let $T \in L(E, F) . T \in$ $A B S(E, F)$ if and only if there is a regular normalized measure μ on U_{E}. such that:

$$
\|T x\| \leq \pi(T) \cdot \int_{U_{E}}\left|\left\langle x, x^{*}\right\rangle\right| d \mu\left(x^{*}\right)
$$

for every $x \in E$.
1.12. Corolar [3]. Let J be the inclusion from $C(\Omega)$ into $L_{1}(\mu)$, where Ω is a compact set and μ is a measure with the properties from the "domination" theorem. Then:

$$
J \in A B S\left(C(\Omega), L_{1}(\mu)\right) .
$$

1.13. Theorem (the "Factorization" theorem) [3]. Let E, F be Banach spaces, F having the extension property, and $T \in A B S(E, F)$. Then there exist the operators:

1) $A \in L\left(E, C\left(U_{E} \cdot\right)\right)$,
2) $Y \in L\left(L_{1}(\mu), F\right)$, where μ is a regular, positive, normalised, Borel measure on $U_{E^{*}}$, likewise in the "domination" theorem, such that: $T=Y \circ J \circ A$, where J is the inclusion from $C\left(U_{E} \cdot\right)$ into $L_{1}(\mu)$.

Proof. (authors'adaptation)

Construction

1) Let $A: E \rightarrow C\left(U_{E^{\bullet}}\right)$ be defined, for every $x \in E$, by: $A x:=J_{x}$, where $J_{x}: E^{*} \rightarrow \Gamma, J_{x}\left(x^{*}\right)=\left\langle x, x^{*}\right\rangle$, for every $x^{*} \in E^{*}$.

From the definition it follows that $A \in L\left(E, C\left(U_{E} \cdot\right)\right),\|A x\|=\left\|J_{x}\right\|=\|x\|$, the corolar of the Hahn-Banach teorem, and further $\|A\|=1$.
2) We consider now the inclusion, J, from $C\left(U_{E^{*}}\right)$ into $L_{1}(\mu)$. From the corolar 1.12 we obtain that $J \in A B S\left(C\left(U_{E^{*}}\right), L_{1}(\mu)\right)$.
3) Let $\tilde{Y}: \operatorname{Im}(J \circ A) \rightarrow F$ be defined by $\tilde{Y}((J \circ A) x):=T x$.

We prove now that $\tilde{Y} \in L(\operatorname{Im}(J \circ A), F)$.
a) The linearity is obvious
b) $\|\tilde{Y}((J \circ A) x)\|=\|T x\| \leq \pi(T) \cdot \int_{U_{E^{*}}}\left|\left\langle x, x^{*}\right\rangle\right| d \mu\left(x^{*}\right)=$
$=\pi(T) \cdot \int_{U_{E}}\left|J_{x}\left(x^{*}\right)\right| d \mu\left(x^{*}\right)=\pi(T) \cdot\left\|J_{x}\right\|=\pi(T) \cdot\|(J \circ A) x\|$.
So \tilde{Y} is bounded on $\operatorname{Im}(J \circ A)$.
F has the extension property so \tilde{Y} can be extended to Y defined on $L_{1}(\mu)$.
In conclusion we obtain the announced factorization of T.
1.14. Remark [3]. If F has not the extension property the factorization of an operator
$T \in A B S(E, F)$ is as follows:
$T=Y \circ J \circ A$, where $A \in L\left(E, C\left(U_{E} \cdot\right)\right), J$ is the inclusion from $C\left(U_{E} \cdot\right)$ into $\overline{\operatorname{Im}(J \circ A) E} \subset L_{1}(\mu)$ and $Y \in L(\overline{\operatorname{Im}(J \circ A) E}, F)$.
1.15. Theorem (Davies, Figiel, Johnson, Pelczynski) [5]. Let E, F be Banach spaces. Every weak compact operator $S: E \rightarrow F$ can be factorised through a reflexive Banach space.
1.16. Theorem [3]. Let Ω be a compact set and F a space with the R.N.p. Then every $T \in A B S(C(\Omega), F)$ is nuclear.

2. Result

2.1. Theorem. Let E, F, G be Banach spaces, F having, in addition, the extension property.

If $S: F \rightarrow G$ is weak compact and $T \in A B S(E, F)$ then $S \circ T$ is nuclear.
Proof. From the factorisation theorem it follows that $T=Y \circ J \circ A$, likewise the factorization theorem, and from teorem 1.15 it follows that $S=U \circ V$, where $V \in$ $L(F, R), R$ being a reflexive space, and $U \in L(R, G)$.

Further $S \circ T=U \circ V \circ Y \circ J \circ A$.
From the following facts $V \circ Y \circ J \in A B S\left(C\left(U_{E} \cdot, R\right)\right)$ and R is a space with the R.N.p. we obtain that $V \circ Y \circ J$ is nuclear.

In conclusion $S \circ T=U \circ V \circ Y \circ J \circ A$ is nuclear.

3. Open Problem

Let E, F be Banach spaces, F having, in addition, the R.N.p. Any $T \in$ $A B S(E, F)$ admits a factorisation, likewise in the "factorization" theorem. So:
$T=Y \circ J \circ A$, where $A: E \rightarrow C\left(U_{E^{*}}\right), J: C\left(U_{E^{*}}\right) \rightarrow \overline{\operatorname{Im}(J \circ A)} \subset L_{1}(\mu)$, $Y: \overline{\operatorname{Im}(J \circ A)} \rightarrow F$.

From the facts that $Y \circ J \in A B S\left(C\left(U_{E} \cdot\right), F\right)$ and F is a space with the R.N.p it follows that $Y \circ J$ is nuclear.

In conclusion $T=Y \circ J \circ A$ must be nuclear.
But it is false because we can give a contraexample.
If we consider the identity from l_{1} to $l_{2}, I: l_{1} \rightarrow l_{2}$, this operator is $A B S$ and l_{2}, being a Hilbert space, is a space with the R.N.p., it follows that $I: l_{1} \rightarrow l_{2}$ must be nuclear. But it is false because $I: l_{1} \rightarrow l_{2}$ isn't even compact.

References

[1] J. Diestel, J.J Uhl, Vector measures, AMS, 1977.
[2] S.Kwapien, On operators factorisable through L_{p}-spaces, Bull. Soc. Math. France Mém. 31/34(1972) 215-225.
[3] A. Pietsch, Operator ideals, North Holland, 1980.
[4] A. Pietsch, Eigenvalues and s-numbers, Cambridge Univ. Press, Cambridge, 1987.
[5] Ch. Swartz, An introduction to Functional Analysis, Marcel Dekker Inc., 1992.
[6] N. Tita, Normed operator ideals, Brasov Univ. Press, Brasov, 1979.(In Romanian).
[7] N. Tita, Complements of normed operator ideals, Brasov Univ. Press, Brasov, 1983.(In Romanian).

Department of Math, "Auto" Secondary School, 2200 Brasov, Romania
Fac. of Science, Transilvania Univ., 2200 Brasov, Romania

[^0]: Key words and phrases. Absolutely summing operator, nuclear operator, weak compact operator, space with Radon-Nikodym property, space with the extension property.

