ON THE RELATION BETWEEN ABSOLUTELY SUMMING OPERATORS AND NUCLEAR OPERATORS

CARMEN PÂRVULESCU AND CRISTINA ANTONESCU

Abstract. It is known that every absolutely summing operator acting between $C(\Omega)$, where Ω is an arbitrary compact set, and a space, F, with the Radon-Nikodym property is nuclear.

The purpose of this paper is to show that composing a weakly compact operator with an absolutely summing one we obtain a nuclear operator even the space, F, has not the Radon-Nikodym property.

We give, also, a proof for the "factorisation" theorem and we put an interesting problem.

1. Preliminaries

1.1. Notations. Let E, F be Banach spaces over the field Γ . Γ is the set of real, or complex, numbers.

- 1) $L(E, F) := \{T : E \to F : T \text{ is linear and bounded}\}$.
- 2) $E^* := L(E, \Gamma)$.
- 3) $U_E := \{x \in E : ||x|| \le 1\}$.
- 4) Let $e^* \in E^*$ and $e \in E$, $\langle e, e^* \rangle := e^*(e)$.
- 5) Let $e^* \in E^*$ and $f \in F$. We denote by $e^* \otimes f$ the following operator:
- $e^* \otimes f : E \to F, (e^* \otimes f) (e) = \langle e, e^* \rangle \cdot f.$

1.2. Definition [5]. Let E be a Banach space. A subset $A \subset E$ is said to be weakly compact if it is compact in the weak topology, $\sigma(E, E^*)$.

1.3. Definition [5]. Let E, F be Banach spaces and $T \in L(E, F)$. T is said to be weakly compact if TU_E is relatively weakly compact.

Key words and phrases. Absolutely summing operator, nuclear operator, weak compact operator, space with Radon-Nikodym property, space with the extension property.

1.4. Definition [3]. Let E, F be Banach spaces. An operator $T \in L(E, F)$ is called absolutely summing $(T \in ABS(E, F))$ if there is a constant $c \ge 0$ such that:

$$\sum_{i=1}^n ||Tx_i|| \le c \cdot \sup \left\{ \sum_{i=1}^n |\langle x_i, x^* \rangle| : x^* \in U_{E^*} \right\},\$$

for every finite family of elements $x_1, x_2, ..., x_n \in E$.

For every $T \in ABS(E, F)$ we define: $\pi(T) := \inf c$.

1.5. Definition [3]. Let E, F be Banach spaces. An operator $T \in L(E, F)$ is said to be nuclear if there is a representation:

$$T = \sum_{i=1}^{\infty} e_i^* \otimes f_i,$$

where $e_i^* \in E^*$ and $f_i \in F$, for every natural *i*.

We write $T \in N(E, F)$.

1.6. Definition [1]. Let (Ω, \sum, μ) be a finite real measure space and E a Banach space.

We say that E has the **Radon-Nikodym property** with respect to (Ω, \sum, μ) if, for each μ -continuously vector measure $\vartheta : \sum \to E$ of bounded variation, there is $g \in L_1(\mu, E)$ such that $\vartheta(A) = \int_A g d\mu$ for every $A \in \sum$:

We say that E has the **Radon -Nikodym property** (E has the **R.N.p**) if E has the Radon -Nikodym property with respect to every finite real measure space.

1.7. Examples of spaces with the R.N.p.[1]. 1) Every reflexive space. (Phillips' theorem)

2) Let F be a Banach space. If $E = F^*$ and, in addition, E is separable then E has the R.N.p.

3) Let I be an arbitrary set, $I \neq \emptyset$. Then $l_1(I)$ has the R.N.p.

4) Let $1 and X be a space with the R.N.p. Then <math>L_p(X, \mu)$ has the R.N.p.

90

1.8. Examples of spaces without the R.N.p.[1]. 1) $(c_0, \|\cdot\|_{\infty})$, where $c_0 := \{x = \{x_n\}_n : x_n \in \Gamma \text{ and } x_n \to 0\}$, $\|x\|_{\infty} := \sup_n |x_n|$.

2) $L_1(\mu)$, where μ is a finite and non-purely atomic measure.

1.9. Definition [7]. The Banach space \tilde{F} is said to have the extension property if every $T \in L(E, \tilde{F})$, where E is an arbitrary Banach space, can be extended to any Banach space \tilde{E} containing E as a suspace, where the extension $\tilde{T}: \tilde{E} \to \tilde{F}$ is linear and bounded.

1.10. **Example [7].** The Banach space $(l_{\infty}(\Gamma), ||\cdot||_{\infty})$ has the metric extension theory.

1.11. Theorem (the "Domination" theorem)[3]. Let $T \in L(E, F)$. $T \in ABS(E, F)$ if and only if there is a regular normalized measure μ on U_{E^*} such that:

$$||Tx|| \leq \pi (T) \cdot \int_{U_{E^*}} |\langle x, x^* \rangle| \, d\mu (x^*) \, ,$$

for every $x \in E$.

1.12. Corolar [3]. Let J be the inclusion from $C(\Omega)$ into $L_1(\mu)$, where Ω is a compact set and μ is a measure with the properties from the "domination" theorem. Then:

$$J \in ABS(C(\Omega), L_1(\mu)).$$

1.13. Theorem (the "Factorization" theorem) [3]. Let E, F be Banach spaces, F having the extension property, and $T \in ABS(E, F)$. Then there exist the operators:

1) $A \in L(E, C(U_{E^{\bullet}}))$,

2) $Y \in L(L_1(\mu), F)$, where μ is a regular, positive, normalised, Borel measure on $U_{E^{\bullet}}$, likewise in the "domination" theorem,

such that: $T = Y \circ J \circ A$, where J is the inclusion from $C(U_{E^*})$ into $L_1(\mu)$.

Proof. (authors'adaptation)

Construction

1) Let $A : E \to C(U_{E^*})$ be defined, for every $x \in E$, by: $Ax := J_x$, where $J_x : E^* \to \Gamma, J_x(x^*) = \langle x, x^* \rangle$, for every $x^* \in E^*$.

From the definition it follows that $A \in L(E, C(U_{E^{\bullet}}))$, $||Ax|| = ||J_x|| = ||x||$, the corolar of the Hahn-Banach teorem, and further ||A|| = 1.

2) We consider now the inclusion, J, from $C(U_{E^*})$ into $L_1(\mu)$. From the corolar 1.12 we obtain that $J \in ABS(C(U_{E^*}), L_1(\mu))$.

3) Let $\widetilde{Y} : Im(J \circ A) \to F$ be defined by $\widetilde{Y}((J \circ A)x) := Tx$.

We prove now that $\widetilde{Y} \in L(Im(J \circ A), F)$.

a) The linearity is obvious

b)
$$\|\widetilde{Y}((J \circ A) x)\| = \|Tx\| \le \pi (T) \cdot \int_{U_{E^*}} |\langle x, x^* \rangle| d\mu (x^*) =$$

= $\pi (T) \cdot \int_{U_{E^*}} |J_x (x^*)| d\mu (x^*) = \pi (T) \cdot ||J_x|| = \pi (T) \cdot ||(J \circ A) x||.$
So \widetilde{Y} is bounded on $Im (J \circ A)$.

F has the extension property so \tilde{Y} can be extended to Y defined on $L_1(\mu)$. In conclusion we obtain the announced factorization of T.

1.14. **Remark** [3]. If F has not the extension property the factorization of an operator

 $T \in ABS(E, F)$ is as follows:

 $T = Y \circ J \circ A, \text{ where } A \in L(E, C(U_{E^*})), J \text{ is the inclusion from } C(U_{E^*})$ into $\overline{Im(J \circ A) E} \subset L_1(\mu) \text{ and } Y \in L(\overline{Im(J \circ A) E}, F).$

1.15. Theorem (Davies, Figiel, Johnson, Pelczynski) [5]. Let E, F be Banach spaces. Every weak compact operator $S: E \to F$ can be factorised through a reflexive Banach space.

1.16. Theorem [3]. Let Ω be a compact set and F a space with the R.N.p. Then every $T \in ABS(C(\Omega), F)$ is nuclear.

2. Result

2.1. **Theorem.** Let E, F, G be Banach spaces, F having, in addition, the extension property.

If $S: F \to G$ is weak compact and $T \in ABS(E, F)$ then $S \circ T$ is nuclear.

Proof. From the factorisation theorem it follows that $T = Y \circ J \circ A$, likewise the factorization theorem, and from teorem 1.15 it follows that $S = U \circ V$, where $V \in L(F, R)$, R being a reflexive space, and $U \in L(R, G)$.

Further $S \circ T = U \circ V \circ Y \circ J \circ A$.

From the following facts $V \circ Y \circ J \in ABS(C(U_{E^*}, R))$ and R is a space with the R.N.p. we obtain that $V \circ Y \circ J$ is nuclear.

In conclusion $S \circ T = U \circ V \circ Y \circ J \circ A$ is nuclear.

3. Open Problem

Let E, F be Banach spaces, F having, in addition, the R.N.p. Any $T \in ABS(E, F)$ admits a factorisation, likewise in the "factorization" theorem. So:

 $T = Y \circ J \circ A, \text{ where } A : E \to C(U_{E^*}), J : C(U_{E^*}) \to \overline{Im(J \circ A)} \subset L_1(\mu),$ $Y : \overline{Im(J \circ A)} \to F.$

From the facts that $Y \circ J \in ABS(C(U_{E^*}), F)$ and F is a space with the R.N.p it follows that $Y \circ J$ is nuclear.

In conclusion $T = Y \circ J \circ A$ must be nuclear.

But it is false because we can give a contraexample.

If we consider the identity from l_1 to l_2 , $I : l_1 \to l_2$, this operator is ABS and l_2 , being a Hilbert space, is a space with the R.N.p., it follows that $I : l_1 \to l_2$ must be nuclear. But it is false because $I : l_1 \to l_2$ isn't even compact.

References

- [1] J. Diestel, J.J Uhl, Vector measures, AMS, 1977.
- [2] S.Kwapien, On operators factorisable through L_p-spaces, Bull. Soc. Math. France Mém. 31/34(1972) 215-225.
- [3] A. Pietsch, Operator ideals, North Holland, 1980.
- [4] A. Pietsch, Eigenvalues and s-numbers, Cambridge Univ. Press, Cambridge, 1987.
- [5] Ch. Swartz, An introduction to Functional Analysis, Marcel Dekker Inc., 1992.
- [6] N. Tita, Normed operator ideals, Brasov Univ. Press, Brasov, 1979. (In Romanian).
- [7] N. Tita, Complements of normed operator ideals, Brasov Univ. Press, Brasov, 1983.(In Romanian).

DEPARTMENT OF MATH, "AUTO" SECONDARY SCHOOL, 2200 BRASOV, ROMANIA

FAC. OF SCIENCE, TRANSILVANIA UNIV., 2200 BRASOV, ROMANIA