NON-ANALYTIC n-STARLIKE AND n-SPIRALLIKE FUNCTIONS

SORIN G. GAL

Abstract

In this paper properties of geometric kind for non-analytic n starlike and n-spirallike functions, $n \in \mathbb{N} \cup\{0\}$, are obtained. They are extensions of some results in the case of non-analytic (usual) starlike and convex functions proved in [3] and in the case of analytic n-starlike functions in [2].

1. Introduction

A well-known method in complex analysis by which can be introduced new classes of functions is by using differential inequalities of the form

$$
F\left(f, D(f)(z), \ldots, D^{n}(f)(z)\right)>0, z \in U=\{z \in \mathbb{C} ;|z|<1\}
$$

where $D(f)(z)=z \frac{\partial f}{\partial z}-\bar{z} \frac{\partial f}{\partial \bar{z}}, D^{n}(f)(z)=D\left[D^{n-1}(f)\right](z)$ (if f is analytic then $\left.D(f)(z)=z f^{\prime}(z)\right)$.

In this sense let us mention the following two examples:
(i) the class of analytic n-starlike $(n \in \mathbb{N} \cup\{0\})$ functions on U, introduced in [6];
(ii) the class of analytic logarithmically n-starlike functions on U, introduced in [2].

In Section 2 we extend to non-analytic n-starlike functions some properties of nonanalytic usual starlike and convex functions in [3].

Section 3 is concerned with the case of non-analytic n-spirallike functions.

2. Non-analytic \boldsymbol{n}-starlike functions

We say that $f: U \rightarrow \mathbb{C}$ is in $\mathbb{C}^{n}(U), n \in \mathbb{N}$ fixed, if it is continuous and has continuous all partial derivatives of order n with respect $x=\operatorname{Re} z$ and $y=\operatorname{Im} z$. For
$f \in C^{n+1}(U), n \in \mathbb{N} \cup\{0\}$, we consider the operator (see [3])

$$
D(f)(z)=z \frac{\partial f}{\partial z}-\bar{z} \frac{\partial f}{\partial \bar{z}}
$$

where

$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left[\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right], \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left[\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right], \quad i=\sqrt{-1},
$$

and the iterates $D^{n+1}(f)=D\left[D^{n}(f)\right], D^{0}(f) \equiv f$.
Definition 2.1. Let $f \in C^{n+1}(U)$. We say that f is n-starlike in U if $f(0)=0, f$ is univalent on $U, D^{n}(f)(z) \neq 0, \forall z \in U \backslash\{0\}$ and

$$
\begin{equation*}
\operatorname{Re} \frac{D^{n+1}(f)(z)}{D^{n}(f)(z)}>0, \forall z \in U \backslash\{0\} \tag{1}
\end{equation*}
$$

Remarks.

1) For $n=0$ and $n=1$, the condition (1) means the geometric condition of starlikeness and of convexity in the case of non-analytic functions, respectively, considered for the first time in [3].
2) If f is analytic then $D(f)(z)=z f^{\prime}(z)$ and the classes of functions satisfying (1) were considered for the first time in [6].

The following result can be considered, in a certain sense, a property of geometric kind of the left hand-side in (1).
Lemma 2.2. For fixed $r \in(0,1)$, let us denote $C_{r}=\partial U_{r}, U_{r}=\{z \in U ;|z|<r\}$, $\gamma_{r}(\theta)=f\left(\partial U_{r}\right), z=r e^{i \theta}, \theta \in[0,2 \pi)$. If $f \in C^{n+1}(U)$ and $D^{n}(f)(z) \neq 0$ for all $z \in U \backslash\{0\}$, then

$$
\operatorname{Re} \frac{D^{n+1}(f)(z)}{D^{n}(f)(z)}=\frac{\partial}{\partial \theta}\left[\arg \gamma_{r}^{(n)}\right], \quad z=r e^{i \theta}, \quad \theta \in[0,2 \pi)
$$

Proof. Let $f=A+i B$. We have

$$
\begin{gathered}
D(f)(z)=x \frac{\partial B}{\partial y}-y \frac{\partial B}{\partial x}+i\left[y \frac{\partial A}{\partial x}-x \frac{\partial A}{\partial y}\right], \\
z=x+i y=r[\cos \theta+i \sin \theta], \\
\gamma_{r}^{\prime}(\theta)= \\
\frac{\partial A}{\partial x} \cdot \frac{\partial x}{\partial \theta}+\frac{\partial A}{\partial y} \cdot \frac{\partial y}{\partial \theta}+i\left[\frac{\partial B}{\partial x} \cdot \frac{\partial x}{\partial \theta}+\frac{\partial B}{\partial y} \cdot \frac{\partial y}{\partial \theta}\right]= \\
= \\
x \frac{\partial A}{\partial y}-y \frac{\partial A}{\partial x}+i\left[x \frac{\partial B}{\partial y}-y \frac{\partial B}{\partial x}\right]=i D(f)(z) .
\end{gathered}
$$

By the general formula $\frac{\partial g}{\partial \theta}=i D(g)$ (see [3]), we get

$$
\begin{gathered}
\gamma_{r}^{\prime \prime}(\theta)=\frac{\partial}{\partial \theta}[i D(f)(z)]=i^{2} D^{2}(f)(z)=-D^{2}(f)(z) \\
\gamma_{r}^{\prime \prime \prime}(\theta)=\frac{\partial}{\partial \theta}\left[-D^{2}(f)(z)\right]=-i D^{3}(f)(z) \\
\gamma_{r}^{(4)}(\theta)=\frac{\partial}{\partial \theta}\left[-i D^{3}(f)(z)\right]=D^{4}(f)(z)
\end{gathered}
$$

and finally,

$$
\frac{\partial}{\partial \theta}\left[\arg \gamma_{r}^{(n)}\right]=\frac{\partial}{\partial \theta}\left[\arg \left(c D^{n}(f)(z)\right]=(\text { see }[3])=\operatorname{Re} \frac{D\left[c D^{n}(f)(z)\right.}{c D^{n}(f)(z)}=\operatorname{Re} \frac{D^{n+1}(f)(z)}{D^{n}(f)(z)}\right.
$$

where $c \in\{-1,+1, i,-i\}$, which proves the theorem.
In the analytic case, in [6] was proved that the condition (1) and $f(0)=$ $f^{\prime}(0)-1=0$, imply the univalence of f and that as function of n, the classes of n-starlike functions form a decreasing sequence (in respect with the inclusion).

In the non-analytic case, as was pointed out in [3] for $n=0$ and $n=1$, these conditions do not imply the univalence of f and additional conditions are required for that.

In this order of ideas, concerning the classes introduced by Definition 2.1, we have the followiong extension to non-analytic case of Corollary 2.1 in [6].
Theorem 2.3. Let $m, n \in \mathbb{N} \cup\{0\}, m<n$. If $f \in C^{n+1}(U)$ satisfies:

$$
f(0)=0, \quad f(z) \prod_{i=1}^{n} D^{i}(f)(z) \neq 0, \quad z \in U \backslash\{0\}, \quad J(f)(z)>0, \quad z \in U
$$

(here $J(f)$ means the Jacobian of f), then the condition $\operatorname{Re} \frac{D^{n+1}(f)(z)}{D^{n}(f)(z)}>0, \forall z \in$ $U \backslash\{0\}$, implies $\operatorname{Re} \frac{D^{m+1}(f)(z)}{D^{m}(f)(z)}>0, \forall z \in U \backslash\{0\}$ and the fact that f is univalent on U.

Proof. A direct consequence of the proofs of Theorem 1 and of Lemmas 1, 2, 3 in [4], is the following:
if $F \in C^{2}(U), F(0)=0, J(F)(0)>0, F(z) D(F)(z) \neq 0, \forall z \in U \backslash\{0\}$ and $\operatorname{Re} \frac{D^{2}(F)(z)}{D(F)(z)}>0, \forall z \in U \backslash\{0\}$, then $\operatorname{Re} \frac{D(F)(z)}{F(z)}>0, \forall z \in U \backslash\{0\}$. Also, we have $f(0)=D(f)(0)=\cdots=D^{n}(f)(0)=0$.

On the other hand, we have $J[D(f)](0)=J(f)(0), J\left[D^{k}(f)\right](0)=[J(f)(0)]>$ $0, k=\overline{1, n}$.

Applying the above result for $F=D^{n-1}(f), F=D^{n-2}(f), \ldots, F=f$, we easily obtain $\operatorname{Re} \frac{D^{m+1}(f)(z)}{D^{m}(f)(z)}>0, \forall z \in U \backslash\{0\}$, for any $m \in\{0,1, \ldots, n-1\}$.

Taking $m=0$ and applying Theorem 1 in [3] it follows that f is univalent on U, which proves the theorem.

3. Non-analytic n-spirallike functions

Keeping the notations in Section 2, we introduce the following.
Definition 3.1. Let $f \in C^{n+1}(U), n \in \mathbb{N} \cup\{0\}$. We say that f is logarithmically n-spirallike of type $\gamma \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if $f(0)=0, D^{n}(f)(z) \neq 0, \forall z \in U \backslash\{0\}, f$ is univalent on U and

$$
\begin{equation*}
\operatorname{Re}\left[e^{i \gamma} \frac{D^{n+1}(f)(z)}{D^{n}(f)(z)}\right]>0, \forall z \in U \backslash\{0\} \tag{2}
\end{equation*}
$$

We say that f is Archimedean n-spirallike on U if $f(0)=0, D^{n}(f)(z) \neq$ $0, \forall z \in U \backslash\{0\}, f$ is univalent on U and

$$
\begin{equation*}
\operatorname{Re}\left[\left(1-i\left|D^{n}(f)(z)\right|\right) \frac{D^{n+1}(f)(z)}{D^{n}(f)(z)}\right]>0, \forall z \in U \backslash\{0\} \tag{3}
\end{equation*}
$$

We say that f is hyperbolic n-spirallike on U if $f(0)=0, D^{n}(f)(z) \neq 0, \forall z \in$ $U \backslash\{0\}, f$ is univalent on U and

$$
\begin{equation*}
\operatorname{Re}\left[\left(\left|D^{n}(f)(z)\right|+i\right) \frac{D^{n+1}(f)(z)}{D^{n}(f)(z)}\right]>0, \forall z \in U \backslash\{0\} \tag{4}
\end{equation*}
$$

Remarks.

1) Taking $n=0$ in Definition 3.1, we obtain the classes of usual non-analytic spirallike functions studied in [1].
2) For $n=1$ and f analytic on U, the class of functions defined by (2) was for the first time considered in [5]. In this case, the situation is different from the starlike case, because as was pointed out in [5], even for analytic functions f, the conditions (2), $f(0)=0, f^{\prime}(z) \neq 0, z \in U$, do not imply in general the univalence of f. However, in e.g. the paper [5], was proved that for $0<\cos \gamma \leq 0.2315$, these above conditions imply the univalence of f.
3) The analytic logarithmically n-spirallike functions were considered in [2].
4) For $\gamma=0$ in (2) we obtain the classes of n-starlike functions introduced by Definition 2.1.

The following result can be considered in a certain sense, of geometric kind for the relations (2), (3), (4), respectively.

Theorem 3.2. For fixed $r \in(0,1)$, let us denote $C_{r}=\partial U_{r}, U_{r}=\{z \in \mathbb{C} ;|z|<r\}$, $\gamma_{r}(\theta)=f\left(\partial U_{r}\right), z=r e^{i \theta}, \theta \in[0,2 \pi)$. Let $f \in C^{n+1}(U)$ be with $D^{n}(f)(z) \neq 0, \forall z \in$ $U \backslash\{0\}, D(f)(z)=z \frac{\partial f}{\partial z}-\bar{z} \frac{\partial f}{\partial \bar{z}}$.
(i) Let us consider the family of logarithmically spirals

$$
w_{\phi}(t)=e^{t \cos \gamma} e^{i(\phi-t \sin \gamma)}, \quad t \in(-\infty,+\infty)
$$

where $\phi \in[0,2 \pi)$ is a parameter. Then (2) is equivalent with

$$
\begin{equation*}
\frac{\partial \phi}{\partial \theta}>0, \forall \theta \in[0,2 \pi) \tag{5}
\end{equation*}
$$

where $\phi=\phi(\theta, r)$ is the solution of the equation

$$
\begin{equation*}
w_{\phi}(t)=\gamma_{r}^{(n)}(\theta) \tag{6}
\end{equation*}
$$

(ii) Let us consider the family of Archimedean spirals

$$
w_{\phi}(t)=t e^{i(t+\phi)}, \quad t \in(0,+\infty)
$$

where $\phi \in[0,2 \pi)$ is a parameter. Then (3) is equivalent with (5), where ϕ is given by (6).
(iii) Let us consider the family of hyperbolic spirals

$$
w_{\phi}(t)=e^{i(t+\phi)} / t, \quad t \in(0,+\infty), \quad \phi \in[0,2 \pi)
$$

Then (4) is equivalent with (5), where ϕ is given by (6).
Proof. From the proof of Lemma 2.2 we have

$$
\gamma_{r}^{(n)}(\theta)=c D^{n}(f)(z), \quad c \in\{-1,+1, i,-i\}
$$

(i) $\mathrm{By}(6)$ we get (as in the proof of Theorem 1 in [1])

$$
\begin{gathered}
t \cos \gamma=\log \left|c D^{n}(f)(z)\right| \\
\phi-t \sin \gamma=\arg \left(c D^{n}(f)(z)\right),
\end{gathered}
$$

and consequently

$$
\begin{gathered}
\phi=\arg \left[c D^{n}(f)(z)\right]+\operatorname{tg} \gamma \log \left|c D^{n}(f)(z)\right|, \\
\frac{\partial \phi}{\partial \theta}=\frac{1}{\cos \gamma} \operatorname{Re}\left[e^{i \gamma} \frac{c D^{n+1}(f)(z)}{c D^{n}(f)(z)}\right]=\frac{1}{\cos \gamma} \operatorname{Re}\left[e^{i \gamma} \frac{D^{n+1}(f)(z)}{D^{n}(f)(z)}\right] .
\end{gathered}
$$

(ii) Replacing in the statement (iii) of Theorem 2 in [1] $f(z)$ by $c D^{n}(f)(z)$, we obtain (5).
(iii) Replace $f(z)$ by $c D^{n}(f)(z)$ in the statement (iii) of Theorem 3 in [1].

The theorem is proved.

References

[1] H. Al-Amiri and P.T. Mocanu, Spirallike non-analytic functions, Proc. Amer. Math. Soc., 82(1981), 61-65.
[2] S.G. Gal and P.T. Mocanu, On the analytic n-starlike and n-spirallike functions, Mathematica (Cluj), submitted.
[3] P.T. Mocanu, Starlikeness and convexity for non-analytic functions in the unit disc, Mathematica (Cluj), 22(45), No.1(1980), 77-83.
[4] P.T. Mocanu, Alpha-convex non-analytic functions, Mathematica (Cluj), 29(52), No.1(1987), 49-55.
[5] M.S. Robertson, Univalent functions $f(z)$ for which $z f^{\prime}(z)$ is spirallike, Michigan Math. J., 16(1969), 97-101.
[6] G.S. Sălăgean, Subclasses of univalent functions, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.

Department of Mathematics, University of Oradea, Str. Armatei Române 5, 3700 Oradea, Romania
E-mail address: galso@math.uoradea.ro

