COUNTERPARTS OF ARITHMETIC MEAN-GEOMETRIC MEAN-HARMONIC MEAN INEQUALITY

S.S. DRAGOMIR

Abstract

Some converse inequalities for the celebrated arithmetic meangeometric mean-harmonic mean inequality are given.

1. Introduction

Recall the means

1) weighted arithmetic mean $A_{n}(\mathbf{w}, \mathbf{a})$,

$$
A_{n}(\mathbf{w}, \mathbf{a}):=\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i} a_{i}
$$

2) weighted geometric mean $G_{n}(\mathbf{w}, \mathbf{a})$,

$$
G_{n}(\mathbf{w}, \mathbf{a}):=\left(\prod_{i=1}^{n} a_{i}^{w_{i}}\right)^{\frac{1}{w_{n}}}
$$

and
3) weighted harmonic mean $H_{n}(\mathbf{w}, \mathbf{a})$,

$$
H_{n}(\mathbf{w}, \mathbf{a}):=\frac{W_{n}}{\sum_{i=1}^{n} \frac{w_{i}}{a_{i}}}
$$

where

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{n}\right), a_{i}, w_{i}>0(i=1, \ldots, n)
$$

and $W_{n}:=\sum_{i=1}^{n} w_{i}$.

Key words and phrases. Arithmetic mean-Geometric mean-Harmonic mean inequality.

The following inequality is well known in the literature as arithmetic mean - geometric mean - harmonic mean inequality

$$
\begin{equation*}
A_{n}(\mathbf{w}, \mathbf{a}) \geq G_{n}(\mathbf{w}, \mathbf{a}) \geq H_{n}(\mathbf{w}, \mathbf{a}) . \tag{1.1}
\end{equation*}
$$

The equality holds in (1.1) if and only if $a_{1}=\ldots=a_{n}$. Note that (1.1) is equivalent to

$$
\begin{equation*}
1 \leq \frac{A_{n}(\mathbf{w}, \mathbf{a})}{G_{n}(\mathbf{w}, \mathbf{a})}, \quad 1 \leq \frac{G_{n}(\mathbf{w}, \mathbf{a})}{H_{n}(\mathbf{w}, \mathbf{a})} \tag{1.2}
\end{equation*}
$$

The main aim of this note in to point out upper bounds for the quotients

$$
\frac{A_{n}(\mathbf{w}, \mathbf{a})}{G_{n}(\mathbf{w}, \mathbf{a})}, \quad \frac{G_{n}(\mathbf{w}, \mathbf{a})}{H_{n}(\mathbf{w}, \mathbf{a})} .
$$

2. The Results

In the recent paper [1], Dragomir and Goh, by the use of an inequality for convex functions, have proved the following analytic inequality for the logarithmic mapping.

Lemma 1. Let $\xi, p_{i}>0(i=1, \ldots, n)$ where $\sum_{i=1}^{n} p_{i} \bar{\sigma}$. Then

$$
\begin{align*}
& 0 \leq \sum_{i=1}^{n} p_{i} \ln \xi_{i}-\ln \left(\sum_{i=1}^{n} p_{i} \xi_{i}\right) \tag{2.1}\\
& \leq \sum_{i=1}^{n} \frac{p_{i}}{\xi_{i}} \sum_{i=1}^{n} p_{i} \xi_{i}-1=\frac{1}{2} \sum_{i, j=1}^{n} p_{i} p_{j} \frac{\left(\xi_{i}-\xi_{j}\right)^{2}}{\xi_{i} \xi_{j}} \\
& =\sum_{1 \leq i<j \leq n} p_{i} p_{j} \frac{\left(\xi_{i}-\xi_{j}\right)^{2}}{\xi_{i} \xi_{j}} .
\end{align*}
$$

The equalities hold iff $\xi_{1}=\ldots=\xi_{n}$

Using this result, we can state the following theorem containing a converse of A.-G.-H. inequalities.

Theorem 2. Let \mathbf{w}, \mathbf{a} be as in Introduction. Then

$$
\begin{align*}
& 1 \leq \frac{A_{n}(\mathbf{w}, \mathbf{a})}{G_{n}(\mathbf{w}, \mathbf{a})} \leq \exp \left[\frac{A_{n}(\mathbf{w}, \mathbf{a})}{H_{n}(\mathbf{w}, \mathbf{a})}-1\right] \tag{2.2}\\
& \quad=\exp \left[\frac{1}{2 W_{n}^{2}} \sum_{i, j=1}^{n} w_{i} w_{j} \frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i} a_{j}}\right] \\
& =\exp \left[\frac{1}{W_{n}^{2}} \sum_{1 \leq i<j \leq n}^{n} w_{i} w_{j} \frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i} a_{j}}\right]=: B_{n}(\mathbf{w}, \mathbf{a})
\end{align*}
$$

and

$$
\begin{equation*}
1 \leq \frac{G_{\mathbf{n}}(\mathbf{w}, \mathbf{a})}{H_{n}(\mathbf{w}, \mathbf{a})} \leq B_{n}(\mathbf{w}, \mathbf{a}) \tag{2.3}
\end{equation*}
$$

The equalities hold in both inequalities iff $a_{1}=\ldots=a_{n}$.
Proof. The proof of (2.2) follow by (2.1) choosing $p_{i}=\frac{w_{i}}{W_{n}}$ and $\xi_{i}=a_{i}(i=1, \ldots, n)$.
The proof of (3) follows by (2.2) choosing $\frac{1}{a}$ instead of a and taking into account that $B_{n}\left(\mathbf{w}, \frac{1}{\mathbf{a}}\right)=B_{n}(\mathbf{w}, \mathbf{a})$.

We point out another results which does not use the concavity property of log-mapping, but an inequality between the geometric and logarithmic mean of two positive numbers.

Theorem 3. Let \mathbf{w}, \mathbf{a} be as in Introduction. Then

$$
\begin{align*}
1 \leq \frac{A_{n}(\mathbf{w}, \mathbf{a})}{G_{n}(\mathbf{w}, \mathbf{a})} & \leq \exp \left[\frac{1}{\left[A_{n}(\mathbf{w}, \mathbf{a})\right]^{1 / 2}} \cdot \frac{1}{W_{n}} \sum_{i=1}^{n} \frac{w_{i}}{\sqrt{a_{i}}}\left|A_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right|\right] \\
& \leq \exp \left[\frac{\left[\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i}\left[A_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right]^{2}\right]^{1 / 2}}{\left[A_{n}(\mathbf{w}, \mathbf{a}) H_{n}(\mathbf{w}, \mathbf{a})\right]^{1 / 2}}\right] \tag{2.4}
\end{align*}
$$

The equality holds iff $a_{1}=\ldots=a_{n}$.

Proof. We recall the following well known inequality between the geometric mean $G(a, b):=\sqrt{a b}(a, b>0)$ and the logarithmic mean (see for example [2, p. 346])

$$
L(a, b):=\left\{\begin{array}{c}
a \text { if } b=a \\
\frac{b-a}{\ln b-\ln a} \text { if } b \neq a
\end{array} \quad(a, b>0)\right.
$$

i.e.,

$$
\begin{equation*}
G(a, b) \leq L(a, b) \text { for all } a, b>0 \tag{2.5}
\end{equation*}
$$

Note that (2.5) is equivalent to

$$
\begin{equation*}
|\ln b-\ln a| \leq \frac{|b-a|}{\sqrt{a b}}, a, b>0 \tag{2.6}
\end{equation*}
$$

The equality holds in (2.6) iff $a=b$.
Now, choose in (2.6)

$$
b:=A_{n}(\mathbf{w}, \mathbf{a}), a=a_{i}(i=1, \ldots, n)
$$

to get

$$
\begin{equation*}
\left|\ln A_{n}(\mathbf{w}, \mathbf{a})-\ln a_{i}\right| \leq \frac{\left|A_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right|}{\sqrt{A_{n}(\mathbf{w}, \mathbf{a}) a_{i}}} \tag{2.7}
\end{equation*}
$$

for all $i \in\{1, \ldots, n\}$.
Multiplying by $w_{i}>0$ and summing over $i \in\{1, \ldots, n\}$, we deduce

$$
\begin{gathered}
\left|W_{n} \ln A_{n}(\mathbf{w}, \mathbf{a})-\sum_{i=1}^{n} w_{i} \ln a_{i}\right| \\
\leq \sum_{i=1}^{n} w_{i}\left|\ln A_{n}(\mathbf{w}, \mathbf{a})-\ln a_{i}\right| \\
\leq \sum_{i=1}^{n} w_{i} \frac{\left|A_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right|}{\sqrt{A_{n}(\mathbf{w}, \mathbf{a}) a_{i}}} \\
=\frac{1}{\left[A_{n}(\mathbf{w}, \mathbf{a})\right]^{1 / 2}} \sum_{i=1}^{n} \frac{w_{i}}{\sqrt{a_{i}}}\left|A_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right|
\end{gathered}
$$

from where results the first inequality in (4).

Using the Cauchy-Buniakowski-Schwarz's discrete inequality, we get

$$
\begin{gathered}
\frac{1}{W_{n}} \sum_{i=1}^{n} \frac{w_{i}}{\sqrt{a_{i}}}\left|A_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right| \\
\leq\left[\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i}\left[A_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right]^{2}\right]^{1 / 2}\left(\frac{1}{W_{n}} \sum_{i=1}^{n} \frac{w_{i}}{a_{i}}\right)^{1 / 2} \\
=\frac{\left[\frac{1}{W_{n}} \sum_{i=1}^{n} w_{i}\left[A_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right]^{2}\right]^{1 / 2}}{\left[H_{n}(\mathbf{w}, \mathbf{a})\right]^{1 / 2}}
\end{gathered}
$$

and the second inequality in (4) also holds.
The case of equality is obvious.
The following corollary which provides an upper bound for the quotient

$$
\frac{G_{n}(\mathbf{w}, \mathbf{a})}{H_{n}(\mathbf{w}, \mathbf{a})}
$$

holds.

Corollary 4. Let \mathbf{w}, a be as in Introduction. Then

$$
\begin{gathered}
1 \leq \frac{G_{n}(\mathbf{w}, \mathbf{a})}{H_{n}(\mathbf{w}, \mathbf{a})} \leq \exp \left[\frac{1}{\left[H_{n}(\mathbf{w}, \mathbf{a})\right]^{1 / 2}} \cdot \frac{1}{W_{n}} \sum_{i=1}^{n} \frac{w_{i}}{\sqrt{a_{i}}}\left|H_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right|\right] \\
\leq \exp \left[\left[\frac{A_{n}(\mathbf{w}, \mathbf{a})}{H_{n}(\mathbf{w}, \mathbf{a})}\right]^{1 / 2} \cdot \frac{1}{W_{n}} \sum_{i=1}^{n} \frac{w_{i}}{a_{i}^{2}}\left[H_{n}(\mathbf{w}, \mathbf{a})-a_{i}\right]^{2}\right]
\end{gathered}
$$

The equality holds iff $a_{1}=\ldots=a_{n}$.
The proof follows by the inequality (4) putting $\frac{1}{a}$ instead of a and taking into account that

$$
A_{n}\left(\mathbf{w}, \frac{1}{\mathbf{a}}\right)=H^{-1}(\mathbf{w}, \mathbf{a})
$$

We omit the details.
For an extensive literature on weighted means and their inequalities, the author recommends the monograph [2].

References

[1] S.S. Dragomir and C.J. Goh, A counterpart of Jensen's discrete inequality for differentiable convex mappings and applications in information theory, Math. Compute. Modelling, 24(2)(1996), 1-11.
[2] P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and Their Inequalities, D. Reidel Publishing Company, 1988.

School of Communications and Informatics,, Victoria University of Technology, PO Box 14428, Melbourne City, MC 8001 Australia.
E-mail address: sever@matilda.vut.edu.au

