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SOME PROPERTIES OF THE w-LIMIT POINTS SET OF AN
OPERATOR

BOGDAN RUS, IOAN A. RUS AND DAMIAN TRIF

Abstract. In this paper we study the w -limit points set of an operator, in
the terms of the fixed points set, the periodic points set and the recurrent

points set.

1. Introduction

Let (X, d) be a metric space and A : X — X an operator. In this paper we
shall use the following notations and notions:

P(z):={Y C X|Y #0},

I(A) :={Y € P(X)|A(Y) C Y},

Fj = {z € X|A(z) = z} - the fixed points set of A,

Py:= U . F4n - the periodic points set of A,

Py ::nfi'v € X|A*¥(z) # =,k = T,n—1,A"(z) = z}-the n-order periodic
points set of A,

wa(z) .= {y € X| 3 nx = oo, such that f**(z) 5 y as n — oo} - the w -
limit points set of A,

wa(X) = | wa(),

T€EX

R4 :={z € X|z € wa(z)} - the recurrent points set of A,

Ou(z) := {z, A(z),..., A% (2),...}.

The purpose of this paper is to study the w - limit points set of an operator

A in the terms of Fs, P4, Ra.
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2. F4, P4, P? and wy. Examples. Basic problems
3 3 A

Let (X, d) be a metric space and A : X — X an operator. It is clear that
FpCPyCRyCwa

In what follow we give some examples and counterexamples to these notions.
Ezample 2.1 (see[20], [21] and [23]). Let (X, d) be a metric space and
A : X = X a weakly Picard operator. Then

Fp = Py = Ry =wa(X).
Ezample 2.2 (see [1], [2]). X = {z € C||z| = 1} and A(z) := €'®z. If @ = 1, then
Fa=0, PA=Ra=ws(X)=X.
If a/7 is an irrational real number, then
Fa=Ps=0, Ra=wa(X)=X.

Ezample 2.3 (see [3], [5], [7]). Let A € C([0,1],[0,1]). If P§ # 0, then P} # 0, for all
n € N* (Sarkovskii’s theorem).

Ezample 2.4 (see [19]). Let A € C(R, R) such that A2 = 1g (an involution). Then
F4 = {z*} and P4 = R.

Ezample 2.5 Let (X, d) be a metric space and A : X — X an operator. We suppose
that

HX = 'LeJIXi’ Xi#0, XiNX; #0, i £ 5;

(i) X; € I(A),

(i1)el(X;) = int(X;),i € 1.
Then
wa(X:)[wa(X;) =0,
for all i,j € I,i % j.
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Ezample 2.6 (see [4]). Let A € C([0,1],[0, 1]). Then,

Ezample 2.7 (see [26]). Consider the nonlinear Cauchy problem

du

= —u—ud =
p u—u”, u(0) =U €R,

where w(U) = {0} for all U € R.. Application of the forward Euler numerical method

gives
Unt1 = Un — AYU, + U3), Uy = U,
where U, ~ u(nAt), n =0, 1,... and At is the time step. If A(u) = u — At(u+ u3),
it may be shown that
wa(U)=0 for At(1+U?) €(0,2)
wA(U):{—U,U} for At(l+U2)=2
|[Unl >0 asn— 00 for At(l1+U?) € (2,+00)

Thus, if At < 3 +2U, we obtain the correct asymptotic behaviour of the differen-

tial equation. If U = \/Kzt' — 1 we obtain a spurious period two solution U, =
(-1)*y/Z& — 1,ie. F4#0, P #0for all At € [0,2].

The following problems arise:
Let (X, d) be a metric space and A : X — X an operator.
Problem 2.1 (see [4], [24]). Establish conditions on X and A which imply that

a)Ps #0;

b)P7 # 0.
Problem 2.2 (see [11]). Which are the operators with the following
property:

Pys#0 = Fa#07

Problem 2.3 ([4]). Which are the metric spaces, X, with the following property

A€C(X,X) = Pa=Ra
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Problem 2.4 Let n € N. In which conditions on X, A and n we have:
Fa=Pi=0,k=2n—1 and P #0, k> n.

Problem 2.5 (see [3], [4], [6], [9], [12], [16], [21], [25]).
Establish conditions on X and A which imply that:
a)wa(z) #0, Vz € X;

b)Ra # 0;

c)wa(X) = Fa;
d)wa(X) = Pa;
e)wa(X) = Ra;

f) there exists ¢ € X 1wy (z) = X.
For other examples and countraexamples to the above problems and for some results

see [2], [5], [7], [8], [10] and [25].

3. Periodic points

Theorem 3.1. Let (X, <) be a complete lattice and A : X — X a monoton operator.
Then P4 # 0.
Proof. If the operator A is monoton increasing, then by the fixed point theorem of
Tarski we have that F4 # 0. If the operator A is monoton decreasing then A? is
monoton increasing, so, Fu2 # 0.
Theorem 3.2. Let (X, S, M) be a fized point structure (see [22]) and
A X — X an operator. We suppose that there exists k € N* such that

(i)A* € M(X);

(1i) there ezists Y € S(X) such that A¥(X) C Y.
Then Pp # 0.
Proof. From A* : X — X and A*¥(X) C Y C X we have that Y € I(AX). On the
other hand, A¥ € M(X) implies that A*|y € M(Y), so, Fax # 0.

If in the Theorem 3.2 we consider the fixed point structure of Schauder
(X - Banach space, S(X) = Pep,cv(X) and M(Y) = C(Y,Y)) we have
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Theorem 3.3. Let X be a Banach space and A : X — X a continous operator such
that there exists k € N* such that A¥(X) is relatively compact. Then, P4 # 0.
Proof. If we take Y = ¢0A*(X), then Y € P, cv(X) and we are in the conditions of
the Theorem 3.2.
\ Theorem 3.4. Let X =[—a,a] CR and f: R = R such that A(u) = u+ Atf(u) is
| a contraction on X, A: X — X and A(0) = 0, where At > 0. Then the numerical
method Up41 = A(Uyn), Up = U € X (forward Euler method for the Cauchy problem
4 = f(u),u(0) = U € X) has no spurious period two solutions in X.
Proof. By the above conditions, A2 is a contraction on X and by theorem 3.2. for
the fixed point structure of Banach, A? has a unique fixed point in X and this point
is 0.
Ezample 3.1. Let f(u) = —u — u® and A(u) = u — At(u + u?) for At € (0,1). Let

X = [-y/5A /54 It may be shown that A : X — X and A is a contraction

on X. Thus we have no spurious period two solutions.
Note that all Runge-Kutta methods retain all the equilibria of %‘ti = f(u)
(see [26], Th. 5.3.3.). Consequently, the forward Euler method gives the correct

asymptotic behaviour of this differential equation on X.

4. Recurrent points

Lemma 4.1 (see [9], [18]). Let (X, d) be a compact metric space and
A: X — X a continuous operator. Then Ry # 0.
Theorem 4.1. Let (X, d) be a metric space and A : X — X such that
(i)A is continous;
(ii) there ezists k € N* such that A*(X) is relatively compact.
Then, Ra # 0.
Proof. 1t is clear that clA¥(X) € I(f). So, the operator
A : A¥(X) — A¥(X) satisfies the conditions in the Lemma 4.1.

Theorem 4.2. Let (X,d) be a complete metric space, o : P,(X) = Ry a

measure of noncompactness (see [23]) on X and A : X — X an operator. We suppose
that:
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(i)A is continuous;
(i1)A is a (a,a) - contraction.
Then, Ra # 0.
Proof. Let Y7 := A_()—(T, vy Youg = X(_i/,,_), n € N*. We remark that

Yn € Poat(X)()1(A),n €N*
From the condition (ii) we have that
a(Y,) <aa(Yn_1) <---<a”a(Y) = 0 as n — oo.

But «a is a measure of noncompactness on X, i.e, a satisfies the following conditions
(see [23]):

(a)a(A) =0 = A€ Pp(X),

(b)a(A) = a(A), for all A € Py(X),

(c)AC B = a(A) < a(B), for all A, B € Py(X),

(d) If A, € Pyci(X), Ant1 C An, n €N, and a(A,) = 0 as n — oo, then

Ao = ﬂ Ap #0 and a(Ax) = 0.
neN

From the condition (d) and (a) we have that

Yoo i= [ Ya € Ip(A).
neN

Now the theorem follows from the Lemma 4.1.
Theorem 4.3. Let (X,d) be a bounded metric space, app a Danes-Pasicki measure
of noncompactness (see [23]) and A : X — X an operator. We suppose that
(i) the operator A is continous,
(ii) the operator A is app - condensing.
Then, Ra # 0. _
Proof. Let 2o € X. By Lemma 3.1. in [22], there exists Ag C X such that

cl(f(40) ({20}) = 4o
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This implies that app(Ag) = 0. Thus
Ao € Pep(X) [ I(4).

Now the proof follows from Lemma 4.1.

5. The set wy

In what follow we consider operators on ordered metric space (for the ordered
Banach spaces see [6], [10], [11], [25]). We have
Theorem 5.1. Let (X, d, <) be an ordered metric space and A : X — X an increasing
operator. Then

(i)z <Az = z<wa(z)

and y > A(y) = y2waly);
(1) wa(z) <y = wa(z) <waly) and
z<waly) = wa(z) <waly);
Proof. (i) Let, for example, z < Az. Then z < A™(z) for all n € N. This implies
that z < w4(z).
(ii) Let, for example, z,y € X, such that wa(z) < y. Since
wa(z) € I(A), it follows that wa(z) < T™y for all n € N. Hence we have wy(z) <
wa(y)-
Remark 5.1. The above results improve some results given by E.N. Dancer in [6].
Remark 5.2. From the Theorem 5.1. we have the following results given in [23]:
Theorem 5.2. Let (X, d, <) be an ordered metric space and A : X — X an operator
and z,y € X such that ¢ <y, < A(z), y > A(y). We suppose that
" (i) A is weakly Picard operator;

(ii) A is monoton increasing.
Then

(a) z < A®(z) < A®(y) <,

(b) A (x) is the minimal fized point of A in [z, y] and A®(y) is the mazimal
fized point of A in [z,y].
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