ABOUT AN INTEGRAL OPERATOR PRESERVING THE UNIVALENCE

VIRGIL PESCAR

Abstract. In this work an integral operator is studied and the author determines conditions for the univalence of this integral operator.

1. Introduction

Let A be the class of the functions f which are analytic in the unit disc $U = \{z \in C; |z| < 1\}$ and f(0) = f'(0) - 1 = 0.

We denote by S the class of the function $f \in A$ which are univalent in U.

Many authors studied the problem of integral operators which preserve the class S. In this sense an important result is due to J. Pfaltzgraff [4].

Theorem A ([4]). If f(z) is univalent in U, α a complex number and $|\alpha| \leq \frac{1}{4}$, then the function

$$G_{\alpha}(z) = \int_{o}^{z} \left[f'(\xi) \right]^{\alpha} d\xi \tag{1}$$

is univalent in U.

Theorem B ([3]). If the function $g \in S$ and α is a complex number, $|\alpha| \leq \frac{1}{4n}$, then the function defined by

$$G_{\alpha,n}(z) = \int_{a}^{z} \left[g'(u^{n}) \right]^{\alpha} du \tag{2}$$

is univalent in U for all positive integer n.

¹⁹⁹¹ Mathematics Subject Classification: 30C55.

Key words and phrases: univalent functions, integral operators.

2. Preliminaries

For proving our main result we will need the following theorem and lemma.

Theorem C ([1]). If the function f is regular in the unit disc U, $f(z) = z + a_2 z^2 + \dots$ and

$$(1-|z|^2)\left|\frac{zf''(z)}{f'(z)}\right| \le 1$$
 (3)

for all $z \in U$, then the function f is univalent in U.

Lema Schwarz ([2]). If the function g is regular in U, g(0) = 0 and $|g(z)| \le 1$ for all $z \in U$, then the following inequalities hold

$$|g(z)| \le |z| \tag{4}$$

for all $z \in U$, and $|g'(0)| \le 1$, the equalities (in inequality (4) for $z \ne 0$) hold only in the case $g(z) = \epsilon z$, where $|\epsilon| = 1$.

3. Main result

Theorem 1. Let γ be a complex number and the function $g \in A$, $g(z) = z + a_2 z^2 + \dots$ If

$$\left|\frac{g''(z)}{g'(z)}\right| \le \frac{1}{n} \tag{5}$$

for all $z \in U$ and

$$|\gamma| \le \frac{1}{\left(\frac{n}{n+2}\right)^{\frac{n}{2}} \frac{2}{n+2}} \tag{6}$$

then the function

$$G_{\gamma,n}(z) = \int_0^z \left[g'(u^n) \right]^{\gamma} du \tag{7}$$

is univalent in U for all $n \in N^* - \{1\}$.

Proof. Let us consider the function

$$f(z) = \int_0^z \left[g'(u^n) \right]^{\gamma} du. \tag{8}$$

The function

$$h(z) = \frac{1}{\gamma} \frac{f''(z)}{f'(z)},\tag{9}$$

where the constant γ satisfies the inequality (6) is regular in U.

From (9) and (8) it follows that

$$h(z) = \frac{\gamma}{|\gamma|} \left[\frac{nz^{n-1}g''(z^n)}{g'(z^n)} \right]. \tag{10}$$

Using (10) and (5) we have

$$|h(z)| \le 1,\tag{11}$$

for all $z \in U$. From (10) we obtain h(0) = 0 and applying Schwarz-Lemma we have

$$\frac{1}{|\gamma|} \left| \frac{f''(z)}{f'(z)} \right| \le |z|^{n-1} \le |z| \tag{12}$$

for all $z \in U$, and hence, we obtain

$$(1-|z|^2)\left|\frac{zf''(z)}{f'(z)}\right| \le |\gamma|\left(1-|z|^2\right)|z|^n. \tag{13}$$

Let us consider the function Q:[0,1] $\to R$, $Q(x) = (1-x^2) x^n$; $x = |z|, z \in U$, which has a maximum at a point $x = \sqrt{\frac{n}{n+2}}$, and hence

$$Q(x) < \left(\frac{n}{n+2}\right)^{\frac{n}{2}} \frac{2}{n+2} \tag{14}$$

for all $x \in (0,1)$. Using this result and (13) we have

$$(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \le |\gamma| \left(\frac{n}{n+2} \right)^{\frac{n}{2}} \frac{2}{n+2}. \tag{15}$$

From (15) and (6) we obtain

$$\left(1 - |z|^2\right) \left| \frac{zf''(z)}{f'(z)} \right| \le 1 \tag{16}$$

for all $z \in U$. From (16) and (8) and Theorem C it follows that $G_{\gamma,n}$, is in the class S.

Remark. For n=2, we obtain $|\gamma| \leq 4$ and the function $G_{\gamma,2}$ is in the class S.

References

- [1] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schichte Funcktionen, J.Reine Angew. Math., 255(1972),23-43.
- [2] G.M. Goluzin, Gheometriceskaia teoria funktii Kompleksnogo peremennogo, ed. a II-a, Nauka, Moscova, 1966.
- [3] N.N. Pascu, V. Pescar, On the integral operators of Kim-Merkes and Pfaltzgraff, Studia (Mathematica), Univ. Babeş-Bolyai, Cluj-Napoca, 32, 2(1990), 185-192.
- [4] J. Pfaltzgraff, Univalence of the integral $\int_0^z [f'(t)]^c dt$, Bull. London Math. Soc. 7(1975), No. 3, 254-256.

"Transilvania" University of Braşov, Faculty of Science, Department of Mathematics, 2200 Braşov, ROMANIA