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Hardy-Littlewood-Stein-Weiss type theorems
for Riesz potentials and their commutators
in Morrey spaces

Canay Aykol and Javanshir J. Hasanov

Abstract. In this paper we consider weighted Morrey spaces Lp,λ,|·|γ (Rn). We
prove the Hardy-Littlewood-Stein-Weiss type Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn) the-
orems for Riesz potential Iα and its commutators [b, Iα] and |b, Iα|, where
0 < α < n, 0 ≤ λ < n − α, 1 < p < n−λ

α
, −n + λ ≤ γ < n(p − 1) + λ,

µ = qγ
p

, 1
p
− 1

q
= α

n−λ , b ∈ BMO(Rn). As a result of these we obtain the con-

ditions for the boundedness of the commutator |b, Iα| from Besov-Morrey spaces
Bsp,θ,λ,|·|γ (Rn) to Bsq,θ,λ,|·|µ(Rn). Furthermore, we consider the Schrödinger oper-

ator −∆ + V on Rn and obtain weighted Morrey Lp,λ,|·|γ (Rn) estimates for the

operators V s(−∆ + V )−β and V s∇(−∆ + V )−β . Finally we apply our results to
various operators which are estimated from above by Riesz potentials.
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1. Introduction

The well known Morrey spaces Lp,λ(Ω) introduced by Charles Morrey (see [24])
in 1938 in relation to the study of partial differential equations, and presented in
various books, see e.g. [11, 16, 39]. They were widely investigated during the last
decades, including the study of classical operators of harmonic analysis maximal,
singular and potential operators on Morrey spaces and their various generalizations
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have found wide applications in many problems of real analysis and partial differential
equations. Morrey spaces are defined by the norm

‖f‖Lp,λ = sup
x, t>0

t−
λ
p ‖f‖Lp(B(x,t)),

where 0 ≤ λ < n, 1 ≤ p < ∞ and B(x, t) is the open ball in Rn of radius t centered
at x. In the theory of partial differential equations, together with weighted Lebesgue
spaces, Morrey spaces play an important role. Later, Morrey spaces found important
applications to Navier-Stokes ([22], [39]) and Schrödinger ([28], [29], [30], [33], [34])
equations, elliptic problems with discontinuous coefficients ([5], [8]), and potential
theory ([1], [2]).

The results on the boundedness of potential operators and classical Calderón-
Zygmund singular operators go back to [1] and [27], respectively, while the bounded-
ness of the maximal operator in the Euclidean setting was proved in [6].

Hardy-Littlewood-Stein-Weiss inequality in the Lebesgue spaces was proved by
H.G. Hardy and J.E. Littlewood [12] in the one-dimensional case and by E.M. Stein
and G. Weiss [37] in the case n > 1. In the Lebesgue and Morrey spaces with variable
exponent the Hardy-Littlewood-Stein-Weiss inequality was proved by S.G. Samko [31]
and J.J. Hasanov [13], respectively.

Let f be a locally integrable function on Rn. The so-called fractional maximal
function is defined by the formula

Mαf(x) = sup
t>0
|B(x, t)|−1+α/n

∫
B(x,t)

|f(y)|dy, 0 ≤ α < n,

where |B(x, t)| is the Lebesgue measure of the ball B(x, t) such that |B(x, t)| = ωnt
n

in which ωn denotes the volume of the unit ball in Rn. It coincides with the Hardy-
Littlewood maximal function Mf ≡M0f . Maximal operators play an important role
in the differentiability properties of functions, singular integrals and partial differential
equations. They often provide a deeper and more simplified approach to understanding
problems in these areas than other methods.

Fractional maximal operator is intimately related to the Riesz potential

Iαf(x) =

∫
Rn

f(y)dy

|x− y|n−α
, 0 < α < n,

such that

Mαf(x) ≤ ω
α
n−1
n (Iα|f |(x)).

The aim of this paper is to give the necessary and sufficient conditions for the
boundedness of Riesz potential Iα and its commutators from weighted Morrey
spaces Lp,λ,|·|γ (Rn) to Lp,λ,|·|µ(Rn). We also obtain the necessary conditions for the
boundedness of the commutator |b, Iα| from Besov-Morrey spaces Bsp,θ,λ,|·|γ (Rn) to

Bsq,θ,λ,|·|µ(Rn). Furthermore, we consider the Schrödinger operator −∆ + V on Rn

and obtain weighted Morrey Lp,λ,|·|γ (Rn) estimates for the operators V s(−∆ + V )−β

and V s∇(−∆ + V )−β . Finally we apply our results to various operators which are
estimated from above by Riesz potentials.



Hardy-Littlewood-Stein-Weiss type theorems 615

Throughout the paper we use the letters c, C for positive constants, independent
of appropriate parameters and not necessarily the same at each occurrence. If A ≤ CB
and B ≤ CA, we write A ≈ B and say that A and B are equivalent.

2. Preliminaries

We use the following notation. For 1 ≤ p <∞, Lp(Rn) is the space of all classes
of measurable functions on Rn for which

‖f‖Lp =

∫
Rn

|f(x)|pdx

 1
p

<∞,

up to the equivalence of the norms

‖f‖Lp ∼ sup
‖g‖

Lp
′≤1

∣∣∣∣∫
Rn
f(y)g(y)dy

∣∣∣∣ (2.1)

and also WLp(Rn), the weak Lp space defined as the set of all measurable functions
f on Rn such that

‖f‖WLp
= sup

r>0
r |{x ∈ Rn : |f(x)| > r}|1/p <∞.

For p =∞ the space L∞(Rn) is defined by means of the usual modification

‖f‖L∞ = ess sup
x∈Rn

|f(x)|.

For 1 ≤ p <∞ let Lp,ω(Rn) be the space of measurable functions on Rn such that

‖f‖Lp,ω = ‖fω1/p‖Lp(Rn) =

∫
Rn

|f(x)|pω(x)dx

1/p

<∞,

and for p =∞ the space L∞,ω(Rn) = L∞(Rn).

Definition 2.1. The weight function ω belongs to the class Ap(Rn) for 1 ≤ p < ∞, if
the following statement

sup
x∈Rn,t>0

1

|B(x, t)|

∫
B(x,t)

ω(y)dy

 1

|B(x, r)|

∫
B(x,r)

ω−
1
p−1 (y)dy


p−1

is finite and ω belongs to A1(Rn), if there exists a positive constant C such that for
any x ∈ Rn and t > 0

|B(x, t)|−1
∫

B(x,t)

ω(y)dy ≤ C ess sup
y∈B(x,t)

1

ω(y)
.

The following theorem was proved in [37].

Theorem 2.2. Let 0 < α < n, 1 < p < n
α , 1

p −
1
q = α

n , αp− n < γ < n(p− 1), µ = qγ
p .

Then the operators Mα and Iα are bounded from Lp,|·|γ (Rn) to Lq,|·|µ(Rn).
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Theorem 2.3. [36] Let 1 < p < ∞ and −n < γ < n(p − 1). Then the operator M is
bounded on Lp,|·|γ (Rn).

Let M ] be the sharp maximal function defined by

M ]f(x) = sup
t>0
|B(x, t)|−1

∫
B(x,t)

|f(y)− fB(x,t)|dy,

where fB(x,t)(x) = |B(x, t)|−1
∫
B(x,t)

f(y)dy.

Definition 2.4. We define the BMO(Rn) space as the set of all locally integrable
functions f with finite norm

‖f‖BMO = sup
x∈Rn, t>0

|B(x, t)|−1
∫
B(x,t)

|f(y)− fB(x,t)|dy

or

‖f‖BMO = inf
C

sup
x∈Rn, t>0

|B(x, t)|−1
∫
B(x,t)

|f(y)− C|dy.

Definition 2.5. We define the BMOp,ω(Rn) (1 ≤ p <∞) space as the set of all locally
integrable functions f with finite norm

‖f‖BMOp,ω = sup
x∈Rn, t>0

‖(f(·)− fB(x,t))χB(x,t)‖Lp,ω(Rn)
‖χB(x,t)‖Lp,ω(Rn)

.

Theorem 2.6. [14, Theorem 4.4] Let 1 ≤ p < ∞ and ω be a Lebesgue measurable
function. If ω ∈ Ap(Rn), then the norms ‖ · ‖BMOp,ω and ‖ · ‖BMO are mutually
equivalent.

We find it convenient to define the Morrey and weighted Morrey spaces in the
form as follows.

Definition 2.7. Let 1 ≤ p <∞. Morrey spaces Lp,λ(Rn) and weighted Morrey spaces
Lp,λ,|·|γ (Rn) are defined by the norms

‖f‖Lp,λ = sup
x∈Rn,t>0

t−
λ
p ‖f‖Lp(B(x,t))

and

‖f‖Lp,λ,|·|γ = sup
x∈Rn,t>0

t−
λ
p ‖f‖Lp,|·|γ (B(x,t)),

respectively.

For 1 ≤ p, θ ≤ ∞ and 0 < s < 1, Besov-Morrey space Bsp,θ,λ,|·|γ (Rn) consists of

all functions f ∈ Lp,λ,|·|γ (Rn) such that

‖f‖Bs
p,θ,λ,|·|γ

= ‖f‖Lp,λ,|·|γ +

(∫
Rn

‖f(x− ·)− f(·)‖θLp,λ,|·|γ
|x|n+sθ

dx

)1/θ

<∞.



Hardy-Littlewood-Stein-Weiss type theorems 617

3. Riesz potential operator in the spaces Lp,λ,|·|γ (Rn)

In this section we prove the Hardy-Littlewood-Stein-Weiss type Lp,λ,|·|γ (Rn) to
Lq,λ,|·|µ(Rn) -theorem for Riesz potential Iα, where −n + λ ≤ γ < n(p − 1) + λ,

1 < p < n−λ
α , µ = qγ

p and 1
p −

1
q = α

n−λ .

First we give following theorems which we use while proving our main results.

Theorem 3.1. [25] Let 1 < p < ∞, then M : Lp,ϕ(Rn) → Lp,ϕ(Rn) if and only if
ϕ ∈ Ap(Rn).

Theorem 3.2. [15] Let 1 < p < ∞, 0 ≤ λ < n, ϕ ∈ Ap(Rn), then M : Lp,λ,ϕ(Rn) →
Lp,λ,ϕ(Rn).

Theorem 3.3. Let 0 < α < n, 0 ≤ λ < n−α, 1 < p < n−λ
α , −n+λ ≤ γ < n(p−1)+λ

and µ = qγ
p . Then the operator Iα is bounded from Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn) if and

only if 1
p −

1
q = α

n−λ .

Proof. Sufficiency: Let 1
p −

1
q = α

n−λ and f ∈ Lp,λ,|·|γ (Rn). Then

|Iαf(x)| =

 ∫
B(x,t)

+

∫
Rn\B(x,t)

 |f(y)||x− y|α−ndy

≡ F1(x, t) + F2(x, t).

First we estimate F1(x, t). By using Hölder’s inequality we have

F1(x, t) =

∫
B(x,t)

|f(y)||x− y|α−ndy

≤
−1∑

j=−∞

(
2jt
)α−n ∫

B(x,2j+1t)\B(x,2jt)

|f(y)|dy

≤ CtαMf(x). (3.1)

Now we estimate F2(x, t). By using Hölder’s inequality we get

F2(x, t) ≤
∫

Rn\B(x,t)

|f(y)||x− y|α−ndy

≤
∞∑
j=0

(
2jt
)α−n ∫

B(x,2j+1t)\B(x,2jt)

|f(y)|dy

≤
∞∑
j=0

(
2jt
)α−n ∥∥χB(x,2j+1t)

∥∥
L
p′(·),|·|γ/(1−p)

∥∥fχB(x,2j+1t)

∥∥
Lp,|·|γ

≤ Ctα−
n−λ
p |x|−

γ
p ‖f‖Lp,λ,|·|γ

∞∑
j=0

2j(α−
n−λ
p )

≤ Ctα−
n−λ
p |x|−

γ
p ‖f‖Lp,λ,|·|γ
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Thus

F2(x, t) ≤ Ctα−
n−λ
p |x|−

γ
p ‖f‖Lp,λ,|·|γ . (3.2)

Therefore from (3.1) and (3.2) we get

|Iαf(x)| ≤ CtαMf(x) + Ctα−
n−λ
p |x|−

γ
p ‖f‖Lp,λ,|·|γ .

Minimizing with respect to t =
[
(Mf(x))−1 ‖f‖Lp,λ,|·|γ

] p
n−λ |x|−

γ
n−λ we arrive at

|Iαf(x)| ≤ C

(
Mf(x)

‖f‖Lp,λ,|·|γ

)1− pα
n−λ

|x|−
γα
n−λ .

It is obvious that

|x|γ = |x|µ−
γαq
n−λ .

From Theorem 3.2, taking ϕ(x) = |x|γ we get∫
B(x,t)

|Iαf(y)|q|y|µdy ≤ C ‖f‖q−pLp,λ,|·|γ

∫
B(x,t)

(Mf(y))
p |y|γdy

≤ Ctλ ‖f‖q−pLp,λ,|·|γ
‖f‖pLp,λ,|·|γ

= Ctλ ‖f‖qLp,λ,|·|γ .

Therefore Iαf ∈ Lq,λ,|·|µ(Rn) and we obtain

‖Iαf‖Lq,λ,|·|µ ≤ C‖f‖Lp,λ,|·|γ .

Necessity: Let Iα be bounded from Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn), 1 < p < n−λ
α . Define

ft(x) =: f(tx), t > 0. Then(
r−λ

∫
B(x,r)

|ft(y)|p|y|γdy

)1/p

= t−
n+γ
p

(
r−λ

∫
B(x,tr)

|f(y)|p|y|γdy

)1/p

= t−
n−λ+γ

p

(
(tr)−λ

∫
B(x,tr)

|f(y)|p|y|γdy

)1/p

≤ t−
n−λ+γ

p ‖f‖Lp,λ,|·|γ .

Therefore we get

‖ft‖Lp,λ,|·|γ ≤ t
−n−λ+γp ‖f‖Lp,λ,|·|γ .

Since

Iαft(x) = t−αIαf(tx),
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we obtain(
r−λ

∫
B(x,r)

|Iαft(y)|q |y|µdy

)1/q

= t−α

(
r−λ

∫
B(x,r)

|Iαf(ty)|q |y|µdy

)1/q

= t−α−
n−λ+µ

q

(
(tr)−λ

∫
B(x,tr)

|Iαf(y)|q |y|µdy

)1/q

≤ t−α−
n−λ+µ

q ‖Iαf‖Lq,λ,|·|µ .

Therefore we get

‖Iαft‖Lq,λ,|·|µ ≤ t
−α−n−λ+µq ‖Iαf‖Lq,λ,|·|µ .

Since the operator Iα is bounded from Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn), we have

‖Iαft‖Lq,λ,|·|µ ≤ Ct
−α−n−λ+µq +n−λ+γ

p ‖f‖Lp,λ,|·|γ , (3.3)

where C depends on p,q,λ,γ,µ and n.
If 1

p >
1
q + α

n−λ , from the inequality (3.3), ‖Iαft‖Lq,λ,|·|µ = 0 for all f ∈ Lp,λ,|·|γ (Rn)

as t→ 0.
If 1

p <
1
q + α

n−λ , from the inequality (3.3), ‖Iαft‖Lq,λ,|·|µ = 0 for all f ∈ Lp,λ,|·|γ (Rn)

as t→∞. Therefore 1
p −

1
q = α

n−λ . �

Remark 3.4. The proof of the sufficiency part of Theorem 3.3 is also given with
different methods in [26].

Corollary 3.5. [26] Let 0 < α < n, 0 ≤ λ < n − α, 1 < p < n−λ
α , −n + λ ≤ γ <

n(p − 1) + λ, µ = qγ
p and 1

p −
1
q = α

n−λ . Then the operator Mα is bounded from

Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn).

4. Commutators of the Riesz potential operator in the spaces
Lp,λ,|·|γ (Rn)

It is well-known that the commutator is an important integral operator and it
plays a key role in harmonic analysis. In this section we consider commutators of the
Riesz potential defined by the following equality

[b, Iα]f(x) =

∫
Rn

(b(x)− b(y))|x− y|α−n f(y)dy, 0 < α < n.

Given a measurable function b the operator |b, Iα| is defined by

|b, Iα|f(x) =

∫
Rn

|b(x)− b(y)| |x− y|α−n |f(y)|dy, 0 < α < n.

The following statement holds:
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Lemma 4.1. [9] Let 1 < s < ∞ and b ∈ BMO(Rn). Then there exists a positive
constant C, independent of f and x, such that

M ]([b, Iα]f(x)) ≤ C‖b‖BMO

[
(M |Iαf(x)|s)

1
s + (Msα|f(x)|s)

1
s

]
.

Proposition 4.2. ([36], Lemma 3.5) Let 1 < p < ∞. Then for all f ∈ Lp(Rn) and

g ∈ Lp′(Rn) there exists a positive constant C such that∣∣∣∣∫
Rn
f(y)g(y)dy

∣∣∣∣ ≤ C ∣∣∣∣∫
Rn
M ]f(y)Mg(y)dy

∣∣∣∣ .
The following lemma is valid.

Lemma 4.3. Let 1 < p < ∞, ϕ ∈ Ap(Rn). Then there exists a positive constant C,
independent of f, such that

‖fϕ
1
p ‖Lp(Rn) ≤ C‖ϕ

1
pM ]f‖Lp(Rn).

Proof. By (2.1) we have

‖fϕ
1
p ‖Lp(Rn) ≤ C sup

‖g‖L
p′ (R

n)≤1

∣∣∣∣∫
Rn
f(y)g(y)ϕ

1
p (y)dy

∣∣∣∣ .
According to Proposition 4.2,

‖fϕ
1
p ‖Lp(Rn) ≤ C sup

‖g‖L
p′ (R

n)≤1

∣∣∣∣∫
Rn
M ]f(y)M(gϕ

1
p )(y)dy

∣∣∣∣ .
From Hölder inequality and Theorem 3.1, we obtain

‖fϕ
1
p ‖Lp(Rn) ≤ C sup

‖g‖L
p′ (R

n)≤1
‖ϕ

1
pM ]f‖Lp(Rn)‖ϕ

− 1
pM(gϕ

1
p )‖Lp′ (Rn)

≤ C sup
‖g‖

Lp
′
(Rn)
≤1
‖ϕ

1
pM ]f‖Lp(Rn)‖g‖Lp′ (Rn) ≤ C‖ϕ

1
pM ]f‖Lp(Rn). �

Corollary 4.4. Let 1 < p < ∞, ϕ = ψ| · |γ ∈ Ap(Rn). Then there exists a positive
constant C, independent of f, such that

‖fψ
1
p ‖Lp,|·|γ (Rn) ≤ C‖ψ

1
pM ]f‖Lp,|·|γ (Rn).

Lemma 4.5. Let 1 < p <∞, 0 ≤ λ < n. Then the following inequality holds

‖f‖Lp,λ,|·|γ ≤ C
∥∥M ]f

∥∥
Lp,λ,|·|γ

.

Proof. If 0 < θ < 1, ψ(x) = (MχB(x,r))
θ ∈ Ap(Rn), from Lemma 4.3 we have

‖f‖Lp,|·|γ (B(x,r)) ≤ ‖fψ
1
p ‖Lp,|·|γ (Rn) ≤ C‖ψ

1
pM ]f‖Lp,|·|γ (Rn) ≤ C‖M

]f‖Lp,|·|γ (B(x,r)).

Therefore we get

‖f‖Lp,λ,|·|γ = sup
x∈Rn,r>0

r−
λ
p ‖f‖Lp,|·|γ (B(x,t))

≤ C sup
x∈Rn,r>0

r−
λ
p ‖M ]f‖Lp,|·|γ (B(x,r)) = C‖M ]f‖Lp,λ,|·|γ .

Thus the lemma has been proved. �
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In the following theorem we give the necessary and sufficient conditions for the
boundedness of the commutator [b, Iα] from Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn).

Theorem 4.6. Let 0 < α < n, 0 ≤ λ < n−α, 1 < p < n−λ
α , −n+λ ≤ γ < n(p−1)+λ,

µ = qγ
p and 1

p −
1
q = α

n−λ . Then the commutator [b, Iα] is bounded from Lp,λ,|·|γ (Rn)

to Lq,λ,|·|µ(Rn) if and only if b ∈ BMO.

Proof. Let f ∈ Lp,λ,|·|γ (Rn) and b ∈ BMO(Rn). From Lemma 4.5, we have

‖[b, Iα]f‖Lq,λ,|·|µ ≤ C1‖M ]([b, Iα]f)‖Lq,λ,|·|µ .

From Lemma 4.1, we get

‖M ]([b, Iα]f)‖Lq,λ,|·|µ ≤ C2‖b‖BMO

∥∥∥(M |Iαf |s)
1
s + (Mαs|f |s)

1
s

∥∥∥
Lq,λ,|·|µ

≤ C3‖b‖BMO

[∥∥∥(M |Iαf |s)
1
s

∥∥∥
Lq,λ,|·|µ

+
∥∥∥(Mαs|f |s)

1
s

∥∥∥
Lq,λ,|·|µ

]
.

From Theorem 3.2 and Theorem 3.3, we have∥∥∥(M |Iαf |s)
1
s

∥∥∥
Lq,λ,|·|µ

= ‖M |Iαf |s‖
1
s

L q
s
,λ,|·|µ

≤ C ‖|Iαf |s‖
1
s

L q
s
,λ,|·|µ

= C ‖Iαf‖Lq,λ,|·|µ ≤ C ‖f‖Lp,λ,|·|µ .

Similarly it can be shown that∥∥∥(Mαs|f |s)
1
s

∥∥∥
Lq,λ,|·|µ

≤ C ‖f‖Lp,λ,|·|γ .

Therefore we obtain

‖[b, Iα]f‖Lq,λ,|·|µ ≤ C2‖b‖BMO ‖f‖Lp,λ,|·|γ .

(i) ⇒ (ii) Now, let us prove the ”only if” part. Let [b, Iα] be bounded from
Lp,λ,|·|γ to Lq,λ,|·|µ(Rn), 1 < p < n−λ

α . Now we consider f = χB(x,r). It is easy to
compute that

∥∥χB(x,r)

∥∥
Lp,λ,|·|γ

≈ sup
t>0, x∈Rn

t−λ ∫
B(y,t)

χB(x,r)(y)|y|γdy


1/p

≈ sup
B(y,t)⊂B(x,r)

t−λ ∫
B(y,t)

|y|γdy


1/p

≈ r
n−λ+γ

p .
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Then
1

|B(x, t)|

∫
B(x,t)

|b(z)− bB(x,t)|dz

=
1

|B(x, t)|

∫
B(x,t)

∣∣∣∣∣∣∣b(z)−
1

|B(x, t)|

∫
B(x,t)

b(y)dy

∣∣∣∣∣∣∣ dz
≤ 1

|B(x, t)|1+α
n

∫
B(x,t)

1

|B(x, t)|1−αn

∣∣∣∣∣∣∣
∫

B(x,t)

(b(z)− b(y)) dy

∣∣∣∣∣∣∣ dz
≤ 1

|B(x, t)|1+α
n

∫
B(x,t)

∣∣∣∣∣∣∣
∫

B(x,t)

(b(z)− b(y)) |x− y|α−ndy

∣∣∣∣∣∣∣ dz
≤ 1

|B(x, t)|1+α
n

∫
B(x,t)

∣∣[b, Iα]χB(x,t)(z)
∣∣ dz

≤ Ct−n−α+λ‖[b, Iα]χB(x,t)‖Lq,λ,|·|µ‖χB(x,t)‖L
q′,λ,|·|

µ
1−q

≤ Ct−n−α+
n−λ+γ

p +n−n−λ+µq ≤ C.
Hence we get

|B(x, t)|−1
∫
B(x,t)

|b(y)− bB(x,t)|dy ≤ C,

which shows that b ∈ BMO(Rn).
Thus the theorem has been proved. �

Theorem 4.7. Let 0 < α < n, 0 ≤ λ < n−α, 1 < p < n−λ
α , −n+λ ≤ γ < n(p−1)+λ,

µ = qγ
p and b ∈ BMO. Then the commutator |b, Iα| is bounded from Lp,λ,|·|γ (Rn) to

Lq,λ,|·|µ(Rn) if and only if 1
p −

1
q = α

n−λ .

Proof. 1) The sufficiency follows from Theorem 4.6.
Necessity: Let 1 < p < n−λ

α and |b, Iα| be bounded from Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn).
Define ft(x) =: f(tx), t > 0. Then(

r−λ
∫
B(x,r)

|ft(y)|p|y|γdy

)1/p

= t−
n+γ
p

(
r−λ

∫
B(x,tr)

|f(y)|p|y|γdy

)1/p

= t−
n−λ+γ

p

(
(tr)−λ

∫
B(x,tr)

|f(y)|p|y|γdy

)1/p

≤ t−
n−λ+γ

p ‖f‖Lp,λ,|·|γ .

Therefore we get

‖ft‖Lp,λ,|·|γ ≤ t
−n−λ+γp ‖f‖Lp,λ,|·|γ .
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Since

|b, Iα|ft(x) = t−α|b, Iα|f(tx),

we obtain (
r−λ

∫
B(x,r)

[||b, Iα|ft|]q (y)|y|µdy

)1/q

= t−α

(
r−λ

∫
B(x,r)

[||b, Iα|f |]q (ty)|y|µdy

)1/q

= t−α−
n−λ+µ

q

(
(tr)−λ

∫
B(x,tr)

[||b, Iα|f |]q (y)|y|µdy

)1/q

≤ t−α−
n−λ+µ

q ‖|b, Iα|f‖Lq,λ,|·|µ .

Therefore we get

‖|b, Iα|ft‖Lq,λ,|·|µ ≤ t
−α−n−λ+µq ‖|b, Iα|f‖Lq,λ,|·|µ .

Since the operator |b, Iα| is bounded from Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn), we have

‖|b, Iα|ft‖Lq,λ,|·|µ ≤ Ct
−α−n−λ+µq +n−λ+γ

p ‖b‖BMO ‖f‖Lp,λ,|·|γ , (4.1)

where C depends on p,q,λ,γ,µ and n.

If 1
p >

1
q+ α

n−λ , from the inequality (4.1), ‖|b, Iα|ft‖Lq,λ,|·|µ = 0 for all f ∈ Lp,λ,|·|γ (Rn)

as t→ 0.

If 1
p <

1
q+ α

n−λ , from the inequality (4.1), ‖|b, Iα|ft‖Lq,λ,|·|µ = 0 for all f ∈ Lp,λ,|·|γ (Rn)

as t→∞. Therefore 1
p −

1
q = α

n−λ . �

The following theorem gives the conditions for the boundedness of the commu-
tator |b, Iα| from Bsp,θ,λ,|·|γ (Rn) to Bsq,θ,λ,|·|µ(Rn).

Theorem 4.8. Let 0 < α < n, 0 ≤ λ < n−α, 1 < p < n−λ
α , −n+λ ≤ γ < n(p−1)+λ,

µ = qγ
p , 0 < s < 1, 1 ≤ θ ≤ ∞, 1

p −
1
q = α

n−λ and b ∈ BMO(Rn). Then the

commutator |b, Iα| is bounded from Bsp,θ,λ,|·|γ (Rn) to Bsq,θ,λ,|·|µ(Rn).

Proof. From the definition of the Besov-Morrey type spaces it suffices to show that

‖|b, Iα|f(x− ·)− |b, Iα|f(·)‖Lp,λ,|·|γ ≤ C ‖b‖BMO ‖f(x− ·)− f(·)‖Lp,λ,|·|γ .

Hence we have

|[b, Iα]f(x− ·)− |b, Iα|f | ≤ |b, Iα|(|f(x− ·)− f |).

Taking Lp,λ,|·|γ (Rn) norm of both sides of the above inequality, from the bounded-
ness of |b, Iα| from Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn), we obtain the desired result. Thus
Theorem 4.8 has been proved. �
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5. The weighted Morrey estimates for the operators V s(−∆ + V )−β

and V s∇(−∆ + V )−β

In this section we consider the Schrödinger operator −∆ + V on Rn, where the
nonnegative potential V belongs to the reverse Hölder class Bq(Rn) for some q1 ≥ n.
We obtain weighted Morrey Lp,λ,|·|γ (Rn) estimates for the operators V s(−∆ + V )−β

and V s∇(−∆ + V )−β .
Schrödinger operators on the Euclidean space Rn with nonnegative potentials

which belong to the reverse Hölder class have been studied by many authors (see [10,
32, 40]). Shen [32] studied the Schrödinger operator−∆+V , assuming the nonnegative
potential V belongs to the reverse Hölder class Bq(Rn) for q ≥ n/2 and he proved the

Lp boundedness of the operators (−∆ + V )is, ∇2(−∆ + V )−1, ∇(−∆ + V )−
1
2 and

∇(−∆ + V )−1. Kurata and Sugano generalized Shens’ results to uniformly elliptic
operators in [18]. Sugano [38] also extended some results of Shen to the operator
V s(−∆ + V )−β , 0 ≤ s ≤ β ≤ 1 and V s∇(−∆ + V )−β , 0 ≤ s ≤ 1

2 ≤ β ≤ 1 and

β− s ≥ 1
2 . Later, Lu [21] and Li [19] investigated the Schrödinger operators in a more

general setting.
We investigate the weighted Morrey Lp,λ,|·|γ − Lq,λ,|·|µ boundedness of the operators

T1 = V s(−∆ + V )−β , 0 ≤ s ≤ β ≤ 1,

T2 = V s∇(−∆ + V )−β , 0 ≤ s ≤ 1

2
≤ β ≤ 1, β − s ≥ 1

2
.

Note that the operators V (−∆ + V )−1 and V
1
2∇(−∆ + V )−1 in [19] are the special

case of T1 and T2, respectively.
It is worth pointing out that we need to establish pointwise estimates for T1,

T2 and their adjoint operators by using the estimates of fundamental solution for
the Schrödinger operator on Rn in [19]. And we give the Morrey estimates by using
Lp,λ,|·|γ − Lq,λ,|·|µ boundedness of the fractional maximal operators.

Definition 5.1. 1) A nonnegative locally Lp integrable function V on Rn is said to
belong to the reverse Hölder class Bp (1 < p <∞) if there exists a positive constant
C such that the reverse Hölder inequality(

1

|B|

∫
B

V (x)pdx

) 1
p

≤ C

|B|

∫
B

V (x)dx

holds for every ball B in Rn.
2) Let V ≥ 0. We say V ∈ B∞, if there exists a positive constant C such that

the inequality

‖V ‖L∞(B) ≤
C

|B|

∫
B

V (x)dx

holds for every ball B in Rn.

Clearly, B∞ ⊂ Bp for 1 < p < ∞. But it is important that the Bp class has a
property of ”self-improvement”; that is, if V ∈ Bp, then V ∈ Bp+ε for some ε > 0
(see [19]).
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The following two pointwise estimates for T1 and T2 were proved in [40] with
the potential V ∈ B∞.
Theorem A. Suppose V ∈ B∞ and 0 ≤ s ≤ β ≤ 1. Then there exists a positive
constant C such that

|T1f(x)| ≤ CMαf(x), f ∈ C∞0 (Rn),

where α = 2(β − s).
Theorem B. Suppose V ∈ B∞, 0 ≤ s ≤ 1

2 ≤ β ≤ 1 and β − s ≥ 1
2 . Then there exists

a positive constant C such that

|T2f(x)| ≤ CMαf(x), f ∈ C∞0 (Rn),

where α = 2(β − s)− 1.
Note that the similar estimates for the adjoint operators T ∗1 and T ∗2 with the

potential V ∈ Bq1 for some q1 >
n
2 are also valid (see [20]).

Theorem C. Suppose V ∈ Bq1 for some q1 >
n
2 , 0 ≤ s ≤ β ≤ 1 and let 1

q2
= 1 − α

q1
.

Then there exists a positive constant C such that

|T ∗1 f(x)| ≤ C
(
Mαq2

(
|f |q2

)
(x)
) 1
q2 , f ∈ C∞0 (Rn),

where α = 2(β − s).
Theorem D. Suppose V ∈ Bq1 for some q1 >

n
2 , 0 ≤ s ≤ 1

2 ≤ β ≤ 1 and β − s ≥ 1
2 .

And let
1

q1
=

{
1− s

q1
, if q1 > n,

1− α+1
q1

+ 1
n , if n

2 < q1 < n.

Then there exists a positive constant C such that

|T ∗2 f(x)| ≤ C
(
Mαq2

(
|f |q2

)
(x)
) 1
q2 , f ∈ C∞0 (Rn),

where α = 2(β − s)− 1.

The above theorems will yield the weighted Morrey estimates for T1 and T2.

Corollary 5.2. Assume that V ∈ B∞, and 0 ≤ s ≤ β ≤ 1. Let 1 < p < n
s , −n + λ ≤

γ < n(p− 1) + λ, µ = qγ
p , 1

p −
1
q = α

n−λ and 0 ≤ λ < n, where α = 2(β − s) < n.

Then for any f ∈ C∞0 (Rn) there exists a positive constant C such that

‖T1f‖Lq,λ,|·|µ ≤ C‖f‖Lp,λ,|·|γ .

Corollary 5.3. Let V ∈ B∞, 0 ≤ s ≤ 1
2 ≤ β ≤ 1, β− s ≥ 1

2 , 1 < p < n
α , 1

p −
1
q = α

n−λ ,

−n+ λ ≤ γ < n(p− 1) + λ, µ = qγ
p and 0 ≤ λ < n, where α = 2(β − s)− 1 < n.

Then for any f ∈ C∞0 (Rn) there exists a positive constant C such that

‖T2f‖Lq,λ,|·|µ ≤ C‖f‖Lp,λ,|·|γ .
Corollary 5.4. Assume that V ∈ Bq1 for q1 >

n
2 , and 0 ≤ s ≤ β ≤ 1.

Let 1
q2

= 1 − α
q1

, 1 < p < 1
α
q1

+α
n

, 1
p −

1
q = α

n
q2
−λ , −n + λ ≤ γ < n(p − 1) + λ,

µ = qγ
p and 0 ≤ λ < nq2, where α = 2(β − s) < n.

Then for any f ∈ C∞0 (Rn) there exists a positive constant C such that

‖T1f‖Lq,λ,|·|µ ≤ C‖f‖Lp,λ,|·|γ .
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Corollary 5.5. Assume that V ∈ Bq1 for q1 >
n
2 , and{

0 ≤ s ≤ 1
2 ≤ β ≤ 1, if q1 > n,

0 ≤ s ≤ 1
2 < β ≤ 1, if n

2 < q1 < n.

Let α = 2(β − s)− 1 < n and β − s ≥ 1
2 , and let 1 < p < 1

α
q1

+α
n

, 1
p −

1
q = α

n
q2
−λ ,

1
q2

= 1− α
q1

, −n+ λ ≤ γ < n(p− 1) + λ, µ = qγ
p and 0 ≤ λ < nq2, where

1

p1
=

{ α
q1
, if q1 > n,

α+1
q1

+ 1
n , if n

2 < q1 < n.

Then for any f ∈ C∞0 (Rn) there exists a positive constant C such that

‖T2f‖Lq,λ,|·|µ ≤ C‖f‖Lp,λ,|·|γ .

6. Some applications

The theorems of the Section 3 can be applied to various operators which are
estimated from above by Riesz potentials. Now we give some examples.

Suppose that L is a linear operator on L2 which generates an analytic semigroup
e−tL with the kernel pt(x, y) satisfying a Gaussian upper bound, that is,

|pt(x, y)| ≤ c1
tn/2

e−c2
|x−y|2

t (6.1)

for x, y ∈ Rn and all t > 0.
For 0 < α < n, the fractional powers L−α/2 of the operator L are defined by

L−α/2f(x) =
1

Γ(α/2)

∫ ∞
0

e−tLf(x)
dt

t−α/2+1
.

Note that if L = −4 is the Laplacian on Rn, then L−α/2 is the Riesz potential Iα.
(See, for example, Chapter 5 in [36].)

Theorem 6.1. Let 0 < α < n, 0 ≤ λ < n−α, 1 < p < n−λ
α , −n+λ ≤ γ < n(p−1)+λ,

µ = qγ
p and condition (6.1) be satisfied. Then condition 1

p −
1
q = α

n−λ is sufficient for

the boundedness of L−α/2 from Lp,λ,|·|γ (Rn) to Lq,λ,|·|µ(Rn).

Proof. Since the semigroup e−tL has the kernel pt(x, y) which satisfies condition (6.1),
it follows that

|L−α/2f(x)| ≤ CIα|f |(x)

for all x ∈ Rn (see [7]). Therefore from the aforementioned theorems we have

‖L−α/2f‖Lq,λ,|·|µ ≤ C‖I
α|f |‖Lq,λ,|·|µ ≤ C‖f‖Lp,λ,|·|γ . �

Large classes of differential operators satisfies condition (6.1). Now we investigate
two of them:

(i) Let us consider a magnetic potential ~a, i. e., a real-valued vector potential
~a = (a1, a2, . . . , an), and an electric potential V . Assume that for any k = 1, 2, . . . , n,
ak ∈ Lloc2 and 0 ≤ V ∈ Lloc1 . The magnetic Schrödinger operator, L, is defined by

L = −(∇− i~a)2 + V (x).
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From the well-known diamagnetic inequality (see [35], Theorem 2.3) we have the
following pointwise estimate. For any t > 0 and f ∈ L2,

|e−tLf | ≤ e−t4|f |,

which implies that the semigroup e−tL has the kernel pt(x, y) that satisfies upper
bound (6.1).

(ii) Let A = (aij(x))1≤i,j≤n be an n × n matrix with complex-valued entries
aij ∈ L∞ satisfying

Re

n∑
i,j=1

aij(x)ζiζj ≥ λ|ζ|2

for all x ∈ Rn, ζ = (ζ1, ζ2, . . . , ζn) ∈ Cn and some λ > 0. Consider the divergence
form operator

Lf ≡ −div(A∇f),

which is interpreted in the usual weak sense via the appropriate sesquilinear form.
It is known that the Gaussian bound (6.1) for the kernel of e−tL holds when

A has real-valued entries (see, for example, [3]), or when n = 1, 2 in the case of
complex-valued entries (see [4, Chapter 1]).

Finally we note that under the appropriate assumptions (see [23]; [36], Chapter
5; [4], pp. 58-59) one can obtain results similar to Theorem 6.1 for a homogeneous
elliptic operator L in L2 of order 2m in the divergence form

Lf = (−1)m
∑

|α|=|β|=m

Dα
(
aαβD

βf
)
.

In this case estimate (6.1) should be replaced by

|pt(x, y)| ≤ c3
tn/2m

e
−c4

(
|x−y|
t1/(2m)

)2m/(2m−1)

for all t > 0 and all x, y ∈ Rn.
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