Certain sufficient conditions for ϕ - like functions in a parabolic region

Hardeep Kaur, Richa Brar and Sukhwinder Singh Billing

Abstract

To obtain the main result of the present paper we use the technique of differential subordination. As special cases of our main result, we obtain sufficient conditions for $f \in \mathcal{A}$ to be ϕ-like, starlike and close-to-convex in a parabolic region.

Mathematics Subject Classification (2010): 30C80, 30C45.
Keywords: Analytic function, differential subordination, parabolic ϕ-like function, parabolic starlike function, close-to-convex function.

1. Introduction

Let us denote the class of analytic functions in the unit disk $\mathbb{E}=\{z \in \mathbb{C}:|z|<1\}$ by \mathcal{H}. For $a \in \mathbb{C}$ and $n \in \mathbb{N}$, let $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of the functions of the form

$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots
$$

Let \mathcal{A} be the class of functions f, analytic in the unit disk \mathbb{E} and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$.
Let \mathcal{S} denote the class of all analytic univalent functions f defined in the open unit disk \mathbb{E} which are normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. The Taylor series expansion of any function $f \in \mathcal{S}$ is

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

Let the functions f and g be analytic in \mathbb{E}. We say that f is subordinate to g written as $f \prec g$ in \mathbb{E}, if there exists a Schwarz function ϕ in \mathbb{E} (i.e. ϕ is regular in $|z|<1$,

[^0]@๑ఆ囚 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
$\phi(0)=0$ and $|\phi(z)| \leq|z|<1)$ such that
$$
f(z)=g(\phi(z)),|z|<1
$$

Let $\Phi: \mathbb{C}^{2} \times \mathbb{E} \rightarrow \mathbb{C}$ be an analytic function, p an analytic function in \mathbb{E} with $\left(p(z), z p^{\prime}(z) ; z\right) \in \mathbb{C}^{2} \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E}. Then the function p is said to satisfy first order differential subordination if

$$
\begin{equation*}
\Phi\left(p(z), z p^{\prime}(z) ; z\right) \prec h(z), \Phi(p(0), 0 ; 0)=h(0) \tag{1.1}
\end{equation*}
$$

A univalent function q is called dominant of the differential subordination (1.1) if $p(0)=q(0)$ and $p \prec q$ for all p satisfying (1.1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1.1), is said to be the best dominant of (1.1). The best dominant is unique up to the rotation of \mathbb{E}.
A function $f \in \mathcal{A}$ is said to be starlike in the open unit disk \mathbb{E}, if it is univalent in \mathbb{E} and $f(\mathbb{E})$ is a starlike domain. The well known condition for the members of class \mathcal{A} to be starlike is that

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{E}
$$

Let \mathcal{S}^{*} denote the subclass of \mathcal{S} consisting of all univalent starlike functions with respect to the origin.
A function $f \in \mathcal{A}$ is said to be close-to-convex in \mathbb{E}, if there exists a convex function g (not necessarily normalized) such that

$$
\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0, z \in \mathbb{E}
$$

In addition, if g is normalized by the conditions $g(0)=0=g^{\prime}(0)-1$, then the class of close-to-convex functions is denoted by \mathcal{C}.
A function $f \in \mathcal{A}$ is called parabolic starlike in \mathbb{E}, if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, z \in \mathbb{E} \tag{1.2}
\end{equation*}
$$

and the class of such functions is denoted by S_{P}.
A function $f \in \mathcal{A}$ is said to be uniformly close-to-convex in \mathbb{E}, if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\left|\frac{z f^{\prime}(z)}{g(z)}-1\right|, z \in \mathbb{E} \tag{1.3}
\end{equation*}
$$

for some $g \in \mathcal{S}_{P}$. Let UCC denote the class of all such functions. Note that the function $g(z) \equiv z \in \mathcal{S}_{P}$. Therefore, for $g(z) \equiv z$, condition (1.3) becomes:

$$
\begin{equation*}
\Re\left(f^{\prime}(z)\right)>\left|f^{\prime}(z)-1\right|, z \in \mathbb{E} . \tag{1.4}
\end{equation*}
$$

Ronning [6] and Ma and Minda [2] studied the domain Ω and the function $q(z)$ defined below:

$$
\Omega=\left\{u+i v: u>\sqrt{(u-1)^{2}+v^{2}}\right\}
$$

Clearly the function

$$
q(z)=1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}
$$

maps the unit disk \mathbb{E} onto the domain Ω. Hence the conditions (1.2) and (1.4) are equivalent to

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), z \in \mathbb{E}
$$

and

$$
f^{\prime}(z) \prec q(z) .
$$

Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0)=0$ and $\operatorname{Re}\left(\phi^{\prime}(0)\right)>0$. Then, the function $f \in \mathcal{A}$ is said to be ϕ - like in \mathbb{E}, if

$$
\Re\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)>0, z \in \mathbb{E} .
$$

This concept was introduced by Brickman [1]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ - like for some analytic function ϕ. Later, Ruscheweyh [7] investigated the following general class of ϕ-like functions:
Let ϕ be analytic in a domain containing $f(\mathbb{E})$, where $\phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for some $w \in f(\mathbb{E}) \backslash\{0\}$, then the function $f \in \mathcal{A}$ is called ϕ-like with respect to a univalent function $q, q(0)=1$, if

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), z \in \mathbb{E}
$$

A function $f \in \mathcal{A}$ is said to be parabolic ϕ - like in \mathbb{E}, if

$$
\begin{equation*}
\Re\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)>\left|\frac{z f^{\prime}(z)}{\phi(f(z))}-1\right|, z \in \mathbb{E} \tag{1.5}
\end{equation*}
$$

Equivalently, condition (1.5) can be written as:

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z)=1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}
$$

In 2005, Ravichandran et al. [5] proved the following result for ϕ-like functions:
Let $\alpha \neq 0$ be a complex number and $q(z)$ be a convex univalent function in \mathbb{E}.
Suppose $h(z)=\alpha q^{2}(z)+(1-\alpha) q(z)+\alpha z q^{\prime}(z)$ and

$$
\Re\left\{\frac{1-\alpha}{\alpha}+2 q(z)+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0, z \in \mathbb{E}
$$

If $f \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{\phi(f(z))}\left(1+\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{\alpha\left(f^{\prime}(z)-(\phi(f(z)))^{\prime}\right.}{\phi(f(z))}\right) \prec h(z)
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), z \in \mathbb{E},
$$

and $q(z)$ is best dominant. Later on, Shanmugam et al. [8] and Ibrahim [4] also obtained the results for ϕ-like functions similar to the above mentioned results of

Ravichandran [5].
In this paper, we investigate the differential operator

$$
\left(\frac{z f^{\prime}(z)}{\phi(g(z))}\right)^{\gamma}\left[a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(g(z)))^{\prime}}{\phi(g(z))}\right)\right]^{\beta}
$$

where $f, g \in \mathcal{A}$ and β, γ be complex numbers such that $\beta \neq 0$. Also ϕ is an analytic function in a domain containing $g(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$, for real numbers $a, b(\neq 0)$. As consequences of our main results, we obtain sufficient conditions for ϕ-like, parabolic ϕ-like, starlike, parabolic starlike, close-to-convex and uniformly close-to-convex functions.
We shall need the following lemma to prove our main result.
Lemma 1.1. ([3], Theorem 3.4h, p. 132) Let q be univalent in \mathbb{E} and let θ and φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\varphi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set

$$
Q_{1}(z)=z q^{\prime}(z) \varphi[q(z)], h(z)=\theta[q(z)]+Q_{1}(z)
$$

and suppose that either
(i) h is convex, or
(ii) Q_{1} is starlike.

In addition, assume that
(iii) $\Re\left(\frac{z h^{\prime}(z)}{Q_{1}(z)}\right)>0$ for all $z \in \mathbb{E}$.

If p is analytic in \mathbb{E}, with $p(0)=q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$
\theta[p(z)]+z p^{\prime}(z) \varphi[p(z)] \prec \theta[q(z)]+z q^{\prime}(z) \varphi[q(z)], z \in \mathbb{E},
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

2. Main results

Theorem 2.1. Let β and γ be complex numbers such that $\beta \neq 0$. Let $q(z) \neq 0$, be a univalent function in \mathbb{E}, such that

$$
\begin{equation*}
\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\left(\frac{\gamma}{\beta}-1\right) \frac{z q^{\prime}(z)}{q(z)}\right]>\max \left\{0,-\frac{a}{b}\left(1+\frac{\gamma}{\beta}\right) \Re(q(z))\right\} \tag{2.1}
\end{equation*}
$$

where a and $b(\neq 0)$ are real numbers. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
\begin{align*}
\left(\frac{z f^{\prime}(z)}{\phi(g(z))}\right)^{\gamma}\left[a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right.\right. & \left.\left.-\frac{z(\phi(g(z)))^{\prime}}{\phi(g(z))}\right)\right]^{\beta} \\
& \prec(q(z))^{\gamma}\left[a q(z)+b \frac{z q^{\prime}(z)}{q(z)}\right]^{\beta} \tag{2.2}
\end{align*}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec q(z), \quad z \in \mathbb{E}
$$

and $q(z)$ is the best dominant.
Proof. On writing $\frac{z f^{\prime}(z)}{\phi(g(z))}=p(z)$ in (2.2), we obtain:

$$
(p(z))^{\gamma}\left(a p(z)+b \frac{z p^{\prime}(z)}{p(z)}\right)^{\beta} \prec(q(z))^{\gamma}\left(a q(z)+b \frac{z q^{\prime}(z)}{q(z)}\right)^{\beta}
$$

or

$$
a(p(z))^{\frac{\gamma}{\beta}+1}+b(p(z))^{\frac{\gamma}{\beta}-1} z p^{\prime}(z) \prec a(q(z))^{\frac{\gamma}{\beta}+1}+b(q(z))^{\frac{\gamma}{\beta}-1} z q^{\prime}(z)
$$

Let us define the functions θ and ϕ as follows:

$$
\theta(w)=a w^{\frac{\gamma}{\beta}+1} \text { and } \phi(w)=b w^{\frac{\gamma}{\beta}-1}
$$

Obviously, the functions θ and ϕ are analytic in domain $\mathbb{D}=\mathbb{C} \backslash\{0\}$ and $\phi(w) \neq 0$ in \mathbb{D}.
Therefore,

$$
Q(z)=\phi(q(z)) z q^{\prime}(z)=b(q(z))^{\frac{\gamma}{\beta}-1} z q^{\prime}(z)
$$

and

$$
h(z)=\theta(q(z))+Q(z)=a(q(z))^{\frac{\gamma}{\beta}+1}+b(q(z))^{\frac{\gamma}{\beta}-1} z q^{\prime}(z)
$$

On differentiating, we obtain

$$
\frac{z Q^{\prime}(z)}{Q(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\left(\frac{\gamma}{\beta}-1\right) \frac{z q^{\prime}(z)}{q(z)}
$$

and

$$
\frac{z h^{\prime}(z)}{Q(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\left(\frac{\gamma}{\beta}-1\right) \frac{z q^{\prime}(z)}{q(z)}+\frac{a}{b}\left(1+\frac{\gamma}{\beta}\right) q(z)
$$

In view of the given condition (2.1), we see that Q is starlike and $\Re\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>0$. Therefore, the proof, now follows from the Lemma [1.1].
On taking $g(z)=f(z)$ in Theorem 2.1, we have the following result:
Theorem 2.2. Let β and γ be complex numbers such that $\beta \neq 0$ and $q(z) \neq 0$, be a univalent function in \mathbb{E}, satisfying the condition (2.1) of Theorem 2.1 for real numbers $a, b(\neq 0)$. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0)=$ $0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
\begin{aligned}
\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)^{\gamma}\left[a \frac{z f^{\prime}(z)}{\phi(f(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right.\right. & \left.\left.-\frac{z(\phi(f(z)))^{\prime}}{\phi(f(z))}\right)\right]^{\beta} \\
& \prec(q(z))^{\gamma}\left[a q(z)+b \frac{z q^{\prime}(z)}{q(z)}\right]^{\beta}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E}
$$

and $q(z)$ is the best dominant.
On taking $\phi(z)=z, g(z)=f(z)$ in Theorem 2.1, we have the following result:
Theorem 2.3. Let β and γ be complex numbers such that $\beta \neq 0$ and $q(z) \neq 0$, be a univalent function in \mathbb{E}, and satisfies the condition (2.1) of Theorem 2.1 for real numbers $a, b(\neq 0)$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta} \prec(q(z))^{\gamma}\left[a q(z)+b \frac{z q^{\prime}(z)}{q(z)}\right]^{\beta}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), z \in \mathbb{E}
$$

and $q(z)$ is the best dominant.
On selecting $a=1$ and $b=\alpha$ in Theorem 2.3, we get the following result for the class of α-convex functions.

Theorem 2.4. Let β and γ be complex numbers such that $\beta \neq 0$. Let α be a non-zero real number and $q(z) \neq 0$, be a univalent function in \mathbb{E}, and satisfies the condition (2.1) of Theorem 2.1. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0 z \in \mathbb{E}$, satisfies

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta} \prec(q(z))^{\gamma}\left[q(z)+\alpha \frac{z q^{\prime}(z)}{q(z)}\right]^{\beta}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), z \in \mathbb{E},
$$

and $q(z)$ is the best dominant.
By defining $\phi(z)=g(z)=z$ in Theorem 2.1, we obtain the following result:
Theorem 2.5. Let β and γ be complex numbers such that $\beta \neq 0$ and $q(z) \neq 0$, be a univalent function in \mathbb{E}, and satisfies the condition (2.1) of Theorem 2.1 for real numbers $a, b(\neq 0)$. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies

$$
\left(f^{\prime}(z)\right)^{\gamma}\left[a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\beta} \prec(q(z))^{\gamma}\left(a q(z)+b \frac{z q^{\prime}(z)}{q(z)}\right)^{\beta}
$$

then

$$
f^{\prime}(z) \prec q(z), \quad z \in \mathbb{E},
$$

and $q(z)$ is the best dominant.

3. Applications

Remark 3.1. When we select the dominant

$$
q(z)=1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}
$$

we observed that the condition (2.1) of Theorem 2.1 holds, for real numbers $a, b(\neq 0)$ such that $\frac{a}{b}>0$ and real numbers $\beta(\neq 0), \gamma$ such that $\frac{-3}{4}<\frac{\gamma}{\beta}<\frac{3}{2}$. Consequently, we get:

Theorem 3.2. Let $\beta(\neq 0)$ and γ be real numbers such that $\frac{-3}{4}<\frac{\gamma}{\beta}<\frac{3}{2}$ and a, b $(\neq 0)$ be real numbers having same sign. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$
\begin{aligned}
\left(\frac{z f^{\prime}(z)}{\phi(g(z))}\right)^{\gamma}\left[a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right.\right. & \left.\left.-\frac{z(\phi(g(z)))^{\prime}}{\phi(g(z))}\right)\right]^{\beta} \\
& \prec\left\{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right\}^{\gamma} \\
& \left\{a+\frac{2 a}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}+\frac{\frac{4 b \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}\right\}^{\beta}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, z \in \mathbb{E}
$$

On taking $g(z)=f(z)$ in above theorem, we obtain:
Corollary 3.3. Let $\beta(\neq 0)$ and γ be real numbers such that $\frac{-3}{4}<\frac{\gamma}{\beta}<\frac{3}{2}$ and a, b $(\neq 0)$ be real numbers having same sign. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$
\begin{aligned}
\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)^{\gamma}\left[a \frac{z f^{\prime}(z)}{\phi(f(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right.\right. & \left.\left.-\frac{z(\phi(f(z)))^{\prime}}{\phi(f(z))}\right)\right]^{\beta} \\
& \prec\left\{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right\}^{\gamma}
\end{aligned}
$$

$$
\left\{a+\frac{2 a}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}+\frac{\frac{4 b \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}\right\}^{\beta}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, z \in \mathbb{E}
$$

and hence $f(z)$ is parabolic ϕ-like.
For $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 3.2, we obtain the following result:
Corollary 3.4. Let $\beta(\neq 0)$ and γ be real numbers such that $\frac{-3}{4}<\frac{\gamma}{\beta}<\frac{3}{2}$ and a, b $(\neq 0)$ be real numbers having same sign. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfy

$$
\begin{gathered}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta} \prec\left\{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right\}^{\gamma} \\
\left\{a+\frac{2 a}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}+\frac{\frac{4 b \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}\right\}^{\beta}
\end{gathered}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, z \in \mathbb{E}
$$

and hence $f(z)$ is parabolic starlike.
Selecting $a=1$ and $b=\alpha$ in above corollary, we get the following result for the class of α-convex functions:
Corollary 3.5. Let $\beta(\neq 0)$ and γ be real numbers such that $\frac{-3}{4}<\frac{\gamma}{\beta}<\frac{3}{2}$ and α be a non-zero real number. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
\begin{array}{r}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta} \prec\left\{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right\}^{\gamma} \\
\left\{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}+\frac{\frac{4 \alpha \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}\right\}
\end{array}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, z \in \mathbb{E}
$$

and hence $f(z)$ is parabolic starlike.
On taking $\phi(z)=g(z)=z$ in Theorem 3.2, we have:

Corollary 3.6. Let $\beta(\neq 0)$ and γ be real numbers such that $\frac{-3}{4}<\frac{\gamma}{\beta}<\frac{3}{2}$ and a, b $(\neq 0)$ be real numbers having same sign. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies

$$
\begin{gathered}
\left(f^{\prime}(z)\right)^{\gamma}\left[a f^{\prime}(z)+b\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta} \prec\left\{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}\right\}^{\gamma} \\
\left\{a+\frac{2 a}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}+\frac{\frac{4 b \sqrt{z}}{\pi^{2}(1-z)} \log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}{1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}}\right\}^{\beta}
\end{gathered}
$$

then

$$
f^{\prime}(z) \prec 1+\frac{2}{\pi^{2}}\left(\log \left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)\right)^{2}, z \in \mathbb{E}
$$

and hence $f(z)$ is uniformly close-to-convex.
Remark 3.7. It is easy to verify that the dominant $q(z)=\frac{1+z}{1-z}$, satisfies the condition (2.1) of Theorem 2.1, for real numbers $a, b(\neq 0)$ having same sign and real numbers γ and $\beta(\neq 0)$ such that $\gamma=\beta$ or $\gamma=0$.
For $\gamma=\beta$, Theorem 2.1 yields:
Theorem 3.8. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, and for real numbers $a, b(\neq 0)$ having same sign, satisfies

$$
\begin{aligned}
a\left(\frac{z f^{\prime}(z)}{\phi(g(z))}\right)^{2}+b\left(\frac{z f^{\prime}(z)}{\phi(g(z))}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(g(z)))^{\prime}}{\phi(g(z))}\right) & \prec a\left(\frac{1+z}{1-z}\right)^{2} \\
& +\frac{2 b z}{(1-z)^{2}}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec \frac{1+z}{1-z}, z \in \mathbb{E}
$$

On taking $g(z)=f(z)$ in above theorem, we obtain:
Corollary 3.9. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}$, and for real numbers $a, b(\neq 0)$ having same sign, satisfies

$$
\begin{aligned}
a\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)^{2}+b\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(f(z)))^{\prime}}{\phi(f(z))}\right) & \prec a\left(\frac{1+z}{1-z}\right)^{2} \\
& +\frac{2 b z}{(1-z)^{2}}
\end{aligned}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{1+z}{1-z}, \quad z \in \mathbb{E}
$$

i.e. $f(z)$ is ϕ-like function.

For $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 3.8, we obtain the following result:
Corollary 3.10. Let $a, b(\neq 0)$ be real numbers having same sign. If $f \in \mathcal{A}$,

$$
\frac{z f^{\prime}(z)}{f(z)} \neq 0, \quad z \in \mathbb{E}
$$

satisfy

$$
(a-b)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}+b\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec a\left(\frac{1+z}{1-z}\right)^{2}+\frac{2 b z}{(1-z)^{2}}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z}, \quad z \in \mathbb{E},
$$

and hence $f(z)$ is starlike.
Selecting $a=1$ and $b=\alpha$ in above corollary, we get the following result for the class of α-convex functions:
Corollary 3.11. Let α be a non-zero real number. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(1-\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}+\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec\left(\frac{1+z}{1-z}\right)^{2}+\frac{2 \alpha z}{(1-z)^{2}}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z}, \quad z \in \mathbb{E}
$$

Hence $f(z)$ is starlike.
On taking $\phi(z)=g(z)=z$ in Theorem 3.8, we have:
Corollary 3.12. Let $a, b(\neq 0)$ are real numbers with same sign. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0$, $z \in \mathbb{E}$, satisfies

$$
a\left(f^{\prime}(z)\right)^{2}+b z f^{\prime \prime}(z) \prec a\left(\frac{1+z}{1-z}\right)^{2}+\frac{2 b z}{(1-z)^{2}}
$$

then

$$
f^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right), z \in \mathbb{E},
$$

and hence $f(z)$ is close-to-convex.
For $\gamma=0$, Theorem 2.1 yields:

Theorem 3.13. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, and for real numbers $a, b(\neq 0)$ with same sign, satisfies

$$
a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(g(z)))^{\prime}}{\phi(g(z))}\right) \prec a\left(\frac{1+z}{1-z}\right)+\frac{2 b z}{(1-z)^{2}}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec \frac{1+z}{1-z}, z \in \mathbb{E}
$$

On taking $g(z)=f(z)$ in above theorem, we obtain:
Corollary 3.14. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}$, and for real numbers $a, b(\neq 0)$ with same sign, satisfies

$$
a \frac{z f^{\prime}(z)}{\phi(f(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(f(z)))^{\prime}}{\phi(f(z))}\right) \prec a\left(\frac{1+z}{1-z}\right)+\frac{2 b z}{(1-z)^{2}}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{1+z}{1-z}, z \in \mathbb{E}
$$

i.e. $f(z)$ is ϕ-like function.

For $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 3.13, we obtain the following result:
Corollary 3.15. Let $a, b(\neq 0)$ are real numbers with same sign. If $f \in \mathcal{A}$,

$$
\frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}
$$

satisfy

$$
(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec a\left(\frac{1+z}{1-z}\right)+\frac{2 b z}{(1-z)^{2}}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z}, z \in \mathbb{E}
$$

and hence $f(z)$ is starlike.
Selecting $a=1$ and $b=\alpha$ in above corollary, we get the following result for the class of α-convex functions:
Corollary 3.16. Let α be a non-zero real number. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \frac{1+z}{1-z}+\frac{2 \alpha z}{(1-z)^{2}}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z}, \quad z \in \mathbb{E}
$$

Hence $f(z)$ is starlike.
On taking $\phi(z)=g(z)=z$ in Theorem 3.13, we have:
Corollary 3.17. Let $a, b(\neq 0)$ are real numbers with same sign. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0$, $z \in \mathbb{E}$, satisfies

$$
a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec a\left(\frac{1+z}{1-z}\right)+\frac{2 b z}{(1-z)^{2}}
$$

then

$$
f^{\prime}(z) \prec \frac{1+z}{1-z}, z \in \mathbb{E}
$$

and hence $f(z)$ is close-to-convex.
Remark 3.18. When we select the dominant $q(z)=e^{z}$, then this dominant satisfies the condition (2.1) of Theorem 2.1 for real numbers $a, b(\neq 0)$ with same sign and real numbers $\gamma, \beta(\neq 0)$ such that $0<\frac{\gamma}{\beta} \leq 1$. Consequently, we obtain the following result:

Theorem 3.19. Let $a, b(\neq 0)$ be real numbers with same sign and $\gamma, \beta(\neq 0)$ such that $0<\frac{\gamma}{\beta} \leq 1$. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$
\left(\frac{z f^{\prime}(z)}{\phi(g(z))}\right)^{\gamma}\left[a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(g(z)))^{\prime}}{\phi(g(z))}\right)\right]^{\beta} \prec e^{\gamma z}\left[a e^{z}+b z\right]^{\beta}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec e^{z}, z \in \mathbb{E}
$$

On choosing $g(z)=f(z)$ in above theorem, we obtain:
Corollary 3.20. Let $a, b(\neq 0)$ be real numbers with same sign and $\gamma, \beta(\neq 0)$ be real numbers such that $0<\frac{\gamma}{\beta} \leq 1$. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. If $f \in \mathcal{A}$,

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}
$$

satisfy

$$
\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)^{\gamma}\left[a \frac{z f^{\prime}(z)}{\phi(f(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(f(z)))^{\prime}}{\phi(f(z))}\right)\right]^{\beta} \prec e^{\gamma z}\left[a e^{z}+b z\right]^{\beta}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec e^{z}, z \in \mathbb{E}
$$

i.e. $f(z)$ is ϕ-like.

On selecting $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 3.19, we get:
Corollary 3.21. Let $a, b(\neq 0)$ be real numbers with same sign and $\gamma, \beta(\neq 0)$ be real numbers such that $0<\frac{\gamma}{\beta} \leq 1$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta} \prec e^{\gamma z}\left[a e^{z}+b z\right]^{\beta}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec e^{z}, z \in \mathbb{E}
$$

and hence $f(z)$ is starlike.
On choosing $a=1$ and $b=\alpha$ in above corollary, we obtain:
Corollary 3.22. Let α be a non-zero real number and real numbers $\gamma, \beta(\neq 0)$ such that $0<\frac{\gamma}{\beta} \leq 1$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta} \prec e^{\gamma z}\left[e^{z}+\alpha z\right]^{\beta}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec e^{z}, z \in \mathbb{E}
$$

Therefore, $f \in S^{*}$.
For $\phi(z)=g(z)=z$ in Theorem 3.19, we obtain the following result:
Corollary 3.23. Let $a, b(\neq 0)$ be real numbers with same sign and $\gamma, \beta(\neq 0)$ be real numbers such that $0<\frac{\gamma}{\beta} \leq 1$. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies

$$
\left(f^{\prime}(z)\right)^{\gamma}\left[a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]^{\beta} \prec e^{\gamma z}\left[a e^{z}+b z\right]^{\beta}
$$

then

$$
f^{\prime}(z) \prec e^{z}, z \in \mathbb{E}
$$

and hence $f(z)$ is close-to-convex.
Remark 3.24. By selecting the dominant $q(z)=1+m z, 0<m \leq 1$, we observed that the Condition (2.1) of Theorem 2.1 holds for all real numbers $a, b(\neq 0)$ such that $\frac{a}{b}>0$, and $\gamma=0$. Thus from Theorem 2.1, we have the following result:

Theorem 3.25. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0)=$ $0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. Let real numbers $a, b(\neq 0)$ be such that $\frac{a}{b}>0$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$
\left[a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(g(z)))^{\prime}}{\phi(g(z))}\right)\right] \prec\left[a(1+m z)+\frac{b m z}{1+m z}\right]
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec 1+m z, \text { where } 0<m \leq 1, z \in \mathbb{E} .
$$

Taking $g(z)=f(z)$ in above theorem, we get the following result:
Corollary 3.26. Let ϕ be analytic function in the domain containing $f(\mathbb{E})$, where $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. Let real numbers $a, b(\neq 0)$ be such that $\frac{a}{b}>0$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$
\left[a \frac{z f^{\prime}(z)}{\phi(f(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z(\phi(f(z)))^{\prime}}{\phi(f(z))}\right)\right] \prec\left[a(1+m z)+\frac{b m z}{1+m z}\right]
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec 1+m z, \text { where } 0<m \leq 1, z \in \mathbb{E}
$$

i.e. $f(z)$ is ϕ-like.

From Theorem 3.25, for $\phi(z)=z$ and $g(z)=f(z)$, we obtain:
Corollary 3.27. Let $a, b(\neq 0)$ are real numbers having same sign. If $f \in \mathcal{A}$,

$$
\frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}
$$

satisfies

$$
\left[(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right] \prec\left[a(1+m z)+\frac{b m z}{1+m z}\right]
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+m z, \text { where } 0<m \leq 1, z \in \mathbb{E}
$$

and hence $f(z)$ is starlike.
On selecting $a=1$ and $b=\alpha$ in above corollary, we get the following result:
Corollary 3.28. Let $\alpha>0$ be a real number. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right] \prec\left[(1+m z)+\frac{\alpha m z}{1+m z}\right]
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+m z, 0<m \leq 1, z \in \mathbb{E}
$$

and hence $f(z)$ is starlike.
Selecting $\phi(z)=g(z)=z$, in Theorem 3.25, we have:
Corollary 3.29. Let $a, b(\neq 0)$ be real numbers having same sign. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0$, $z \in \mathbb{E}$, satisfies

$$
\left[a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \prec\left[a(1+m z)+\frac{b m z}{1+m z}\right]
$$

then

$$
f^{\prime}(z) \prec 1+m z, \quad 0<m \leq 1, \quad z \in \mathbb{E},
$$

and hence $f(z)$ is close-to-convex.

References

[1] Brickman, L., ϕ-like analytic functions, Bull. Amer. Math. Soc., 79(1973), 555-558.
[2] Ma, W.C., Minda, D., Uniformly convex functions, Ann. Polon. Math., 57(1992), no. 2, 165-175.
[3] Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York and Basel, 2000.
[4] Rabha, W.I., On certain univalent class associated with first order differential subordinations, Tamkang J. Math., 42(2011), no. 4, 445-451.
[5] Ravichandran, V., Magesh, N., Rajalakshmi, R., On certain applications of differential subordinations for ϕ-like functions, Tamkang J. Math., 36(2005), no. 2, 137-142.
[6] Ronning, F., Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), no. 1, 189-196.
[7] Ruscheweyh, St., A subordination theorem for ϕ-like functions, J. Lond. Math. Soc., 2(1976), no. 13, 275-280.
[8] Shanmugam, T.N., Sivasubramanian, S., Darus, M., Subordination and superordination results for ϕ-like functions, J. Ineq. Pure and App. Math., 8(2007), no. 1, Art. 20, 1-6.

Hardeep Kaur
"Sri Guru Granth Sahib World" University, Department of Mathematics, Fatehgarh Sahib, 140407, Punjab, India
e-mail: kaurhardeep959@gmail.com
Richa Brar
"Sri Guru Granth Sahib World" University, Department of Mathematics, Fatehgarh Sahib, 140407, Punjab, India
e-mail: richabrar4@gmail.com
Sukhwinder Singh Billing
"Sri Guru Granth Sahib World" University, Department of Mathematics, Fatehgarh Sahib, 140407, Punjab, India
e-mail: ssbilling@gmail.com

[^0]: Received 21 May 2020; Accepted 21 July 2020.
 (C) Studia UBB MATHEMATICA. Published by Babeş-Bolyai University

