Growth and distortion theorem for the Janowski alpha-spirallike functions in the unit disc

Yaşar Polatoğlu

Abstract

Let A be the class of all analytic functions in the open unit disc $\mathbb{D}=\{z| | z \mid<1\}$ of the form $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$. Let $g(z)$ be an element of A satisfying the condition $$
e^{i \alpha} z \frac{g^{\prime}(z)}{g(z)}=\frac{1+A \phi(z)}{1+B \phi(z)}
$$ where $|\alpha|<\frac{\pi}{2},-1 \leq B<A \leq 1$ and $\phi(z)$ is analytic in \mathbb{D} and satisfies the conditions $\phi(0)=0,|\phi(z)|<1$ for every $z \in \mathbb{D}$. Then $g(z)$ is called Janowski α-spirallike functions in the unit disc. The class of such functions is denoted by $S_{\alpha}^{*}(A, B)$. The aim of this paper is to give growth and distortion theorems for the class $S_{\alpha}^{*}(A, B)$.

Mathematics Subject Classification (2010): 30C45.
Keywords: Growth theorem, distortion theorem, radius of starlikeness.

1. Introduction

Let Ω be the family of functions $\phi(z)$ which are regular in the open unit disc \mathbb{D} and satisfying the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$.

Next, for arbitrary fixed numbers $A, B,-1 \leq B<A \leq 1$, denote by $\mathcal{P}(A, B)$, the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ regular in \mathbb{D}, such that $p(z)$ in $\mathcal{P}(A, B)$ if and only if

$$
\begin{equation*}
p(z)=\frac{1+A \phi(z)}{1-B \phi(z)} \tag{1.1}
\end{equation*}
$$

for some function $\phi(z) \in \Omega$, and for all $z \in \mathbb{D}$. At the same time, this class can be represented by $\operatorname{Rep}(z)>\frac{1-A}{1-B}>0$.

Let $F(z)=z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\cdots$ and $G(z)=z+\beta_{2} z^{2}+\beta_{3} z^{3}+\cdots$ be analytic functions in \mathbb{D}. If there exists a function $\phi(z) \in \Omega$ such that $F(z)=G(\phi(z))$ for every $z \in \mathbb{D}$, then we say that $F(z)$ is subordinate to $G(z)$, and we write $F(z) \prec G(z)$. We also note that if $F(z) \prec G(z)$, then $F(\mathbb{D}) \subset G(\mathbb{D})([1])$.

Moreover, let $S_{\alpha}^{*}(A, B)$ denote the family of functions $f(z)=z+a_{2} z^{2}+\cdots$ regular in \mathbb{D}, such that $f(z)$ is in $S_{\alpha}^{*}(A, B)$ if and only if there is a real number α for which,

$$
\begin{equation*}
e^{i \alpha} z \frac{f^{\prime}(z)}{f(z)}=\cos \alpha p(z)+i \sin \alpha,|\alpha|<\frac{\pi}{2}, p(z) \in \mathcal{P}(A, B) \tag{1.2}
\end{equation*}
$$

is true for every $z \in \mathbb{D}$. Then the class $S_{\alpha}^{*}(A, B)$ is called the Janowski α-spirallike functions.

The following lemma is due to I. S. Jack and plays very important role for our proof of Theorem 2.1 ([2]).

Lemma 1.1. Let $\phi(z)$ be regular in the unit disc \mathbb{D} with $\phi(0)=0$. Then if $|\phi(z)|$ obtains its maximum value on the circle $|z|=r$ at the point z_{1}, one has $z_{1} \phi^{\prime}\left(z_{1}\right)=k \phi\left(z_{1}\right)$, for some $k \geq 1$.

2. Main results

Theorem 2.1.

$$
f(z) \in S_{\alpha}^{*}(A, B) \Leftrightarrow\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec \begin{cases}\frac{e^{-i \alpha}(A-B) \cos \alpha \cdot z}{1+B z} ; & B \neq 0 \tag{2.1}\\ e^{-i \alpha}(A \cos \alpha) z ; & B=0\end{cases}
$$

Proof. Let $f(z)$ be an element of $S_{\alpha}^{*}(A, B)$. We define the functions $\phi(z)$ by;

$$
\frac{f(z)}{z}= \begin{cases}(1+B \phi(z))^{\frac{(A-B) \cos \alpha e^{-i \alpha}}{B}} ; & B \neq 0, \tag{2.2}\\ e^{A \cos \alpha e^{-i \alpha} \phi(z)} ; & B=0,\end{cases}
$$

where $(1+B \phi(z))^{\frac{(A-B) \cos \alpha e^{-i \alpha}}{B}}$ and $e^{A \cos \alpha e^{-i \alpha} \phi(z)}$ have the value 1 at $z=0$. Then $\phi(z)$ is analytic and $\phi(0)=0$. If we take the logarithmic derivative from (2.2) and after simple calculations, we get

$$
\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)= \begin{cases}\frac{(A-B) \cos \alpha e^{-i \alpha} z \phi^{\prime}(z)}{1+B \phi(z)} ; & B \neq 0 \tag{2.3}\\ A \cos \alpha \cdot e^{-i \alpha} z \phi^{\prime}(z) ; & B=0\end{cases}
$$

We can easily conclude that this subordination is equivalent to $|\phi(z)|<1$ for all $z \in \mathbb{D}$. On the contrary let's assume that there exists $z_{1} \in \mathbb{D}$, such that $|\phi(z)|$ attains its maximum value on the circle $|z|=r$, that is $\left|\phi\left(z_{1}\right)\right|=1$. Then when the conditions $z_{1} \phi^{\prime}\left(z_{1}\right)=k \phi\left(z_{1}\right), k \geq 1$ are satisfied for such $z_{1} \in \mathbb{D}$ (Using I.S.Jack's Lemma), we obtain;

$$
\left(z_{1} \frac{f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}-1\right)= \begin{cases}\frac{(A-B) \cos \alpha e^{-i \alpha} k \phi\left(z_{1}\right)}{1+B \phi\left(z_{1}\right)}=F_{1}\left(\phi\left(z_{1}\right)\right) \notin F_{1}(\mathbb{D}) ; & B \neq 0 \tag{2.4}\\ A \cos \alpha e^{-i \alpha} k \phi\left(z_{1}\right)=F_{2}\left(\phi\left(z_{1}\right)\right) \notin F_{2}(\mathbb{D}) ; & B=0\end{cases}
$$

which contradicts (2.1) implying that the assumption is wrong, i.e., $|\phi(z)|<1$ for all $z \in \mathbb{D}$. This shows that,

$$
f(z) \in S_{\alpha}^{*}(A, B) \Rightarrow\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec \begin{cases}\frac{(A-B) \cos \alpha e^{-i \alpha} z}{1+B z} ; & B \neq 0 \tag{2.5}\\ A \cos \alpha \cdot e^{-i \alpha} z ; & B=0\end{cases}
$$

Conversely,

$$
\begin{gathered}
\left(z \frac{f^{\prime}(z)}{f(z)}-1\right) \prec\left\{\begin{array}{ll}
\frac{(A-B) \cos \alpha e^{-i \alpha}}{1+B z} ; & B \neq 0, \\
A \cos \alpha \cdot e^{-i \alpha} z ; & B=0,
\end{array} \Rightarrow\right. \\
e^{i \alpha} z \frac{f^{\prime}(z)}{f(z)}= \begin{cases}\cos \alpha \frac{1+A \phi(z)}{1+B \phi(z)}+i \sin \alpha ; & B \neq 0, \\
\cos \alpha(1+A \phi(z))+i \sin \alpha ; & B=0,\end{cases}
\end{gathered}
$$

This shows that $f(z) \in S_{\alpha}^{*}(A, B)$.
Corollary 2.2. Marx-Strohacker inequality for the class $S_{\alpha}^{*}(A, B)$ is;

$$
\begin{cases}\left\lvert\,\left(\frac{f(z)}{z}\right)^{\frac{B \cdot e^{i \alpha}}{(A-B)} \cos \alpha}\right. \tag{2.6}\\ -1 \mid<1 ; & B \neq 0 \\ \left|\log \left(\frac{f(z)}{z}\right)^{\frac{e^{i \alpha}}{A \cos \alpha}}\right|<1 ; & B=0\end{cases}
$$

Proof. The proof of this corollary is a simple consequence of Theorem 2.1. Indeed,

$$
\begin{gathered}
\frac{f(z)}{z}=(1+B \phi(z))^{\frac{A-B}{B} \cos \alpha e^{-i \alpha}} \Rightarrow\left|\left(\frac{f(z)}{z}\right)^{\frac{B \cdot e^{i \alpha}}{(A-B) \cos \alpha}}-1\right|<1 \\
\frac{f(z)}{z}=e^{A \cos \alpha e^{-i \alpha} \phi(z)} \Rightarrow\left|\log \left(\frac{f(z)}{z}\right)^{\frac{e^{i \alpha}}{A \cos \alpha}}\right|<1
\end{gathered}
$$

Theorem 2.3. The radius of starlikeness of the class $S_{\alpha}^{*}(A, B)$ is,

$$
r= \begin{cases}\frac{2}{(A-B) \cos \alpha+\sqrt{\left((A-B)^{2} \cos ^{2} \alpha+4\left[A B \cos ^{2} \alpha+B^{2} \sin ^{2} \alpha\right]\right)} ;} & B \neq 0, \tag{2.7}\\ \frac{1}{A \cos \alpha} ; & B=0,\end{cases}
$$

This radius is sharp because the extremal function is;

$$
f(z)= \begin{cases}z(1+B z)^{\frac{A-B}{B}} \cos \alpha e^{-i \alpha} ; & B \neq 0 \tag{2.8}\\ z e^{A \cos \alpha e^{-i \alpha} z} ; & B=0\end{cases}
$$

with $\zeta=\frac{r\left(r-e^{i \alpha}\right)}{1-r e^{i \alpha}}$ and we obtain,

$$
\zeta \frac{f^{\prime}(\zeta)}{f(\zeta)}= \begin{cases}\frac{1-(A-B) \cos \alpha r-\left(A B \cos ^{2} \alpha+B^{2} \sin ^{2} \alpha\right) r^{2}}{1-B^{2} r^{2}} ; & B \neq 0 \tag{2.9}\\ 1-A r \cos \alpha ; & B=0\end{cases}
$$

Proof. Using (1.2) we get;

$$
\begin{equation*}
p(z)=\frac{1}{\cos \alpha}\left(e^{i \alpha} z \frac{f^{\prime}(z)}{f(z)}-i \sin \alpha\right) \tag{2.10}
\end{equation*}
$$

On the other hand, since $p(z) \in \mathcal{P}(A, B)$, then we have,

$$
\begin{equation*}
\left|p(z)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}} \tag{2.11}
\end{equation*}
$$

The inequality (2.11) was obtained by W. Janowski [5]. Using (2.10) in (2.11) and after straightforward calculations we get:

$$
\begin{cases}\frac{1-(A-B) \cos \alpha r-\left(A B \cos ^{2} \alpha+B^{2} \sin ^{2} \alpha\right) r^{2}}{1-B^{2} r^{2}} \leq \operatorname{Rez} z \frac{f^{\prime}(z)}{f(z)} & \tag{2.12}\\ \leq \frac{1+(A-B) \cos \alpha r-\left(A B \cos ^{2} \alpha+B^{2} \sin ^{2} \alpha\right) r^{2}}{11-B^{2} r^{2}} ; & B \neq 0, \\ 1-A \cos \alpha r \leq \operatorname{Re} z \frac{f^{\prime}(z)}{f(z)} \leq 1+A \cos \alpha r ; & B=0,\end{cases}
$$

The inequalities (2.12) shows that this theorem is true.
Corollary 2.4. If we take $A=1, B=-1$ we obtain,

$$
\begin{equation*}
r=\frac{1}{\cos \alpha+|\sin \alpha|} \tag{2.13}
\end{equation*}
$$

This is the radius of starlikeness of class of α-spirallike functions. This result was obtained independently and using different methods by both Robertson [4] and Libera [3]. We also note that if we give another special values to A and B, we obtain the radius of starlikeness of the subclass of α-spirallike functions.

Corollary 2.5. Let $f(z)$ be an element of $S_{\alpha}^{*}(A, B)$, then

$$
\begin{gathered}
r(1-B r)^{\frac{(A-B) \cos \alpha(\cos \alpha+1)}{2 B}}(1+B r)^{\frac{(A-B) \cos \alpha(\cos \alpha-1)}{2 B}} \leq|f(z)| \leq \\
r(1-B r)^{\frac{(A-B) \cos \alpha(\cos \alpha-1)}{2 B}}(1+B r)^{\frac{(A-B) \cos \alpha(\cos \alpha+1)}{2 B}} ; B \neq 0, \\
r e^{-(A \cos \alpha) r} \leq|f(z)| \leq r e^{(A \cos \alpha) r} ; B=0
\end{gathered}
$$

Proof. Using (2.12),

$$
\operatorname{Re}\left(z \frac{f^{\prime}(z)}{f(z)}\right)=r \frac{\partial}{\partial r} \log |f(z)|
$$

and after the straightforward calculations we get the result. Also we note that these inequalities are sharp. Because the extremal function was given in Theorem 2.3.

Corollary 2.6. If $f(z) \in S_{\alpha}^{*}(A, B)$, then

$$
\begin{gathered}
{[(1-A r) \cos \alpha-(1-B r) \sin \alpha] F(A, B, \cos \alpha,-r) \leq\left|f^{\prime}(z)\right| \leq} \\
{[(1+A r) \cos \alpha+(1+B r) \sin \alpha] F(A, B, \cos \alpha, r)}
\end{gathered}
$$

where

$$
F(A, B, \cos \alpha, r)=(1+B r)^{\frac{(A-B) \cos \alpha(\cos \alpha+1)}{2 B}-1}(1-B r)^{\frac{(A-B) \cos \alpha(\cos \alpha-1)}{2 B}}
$$

This inequality is sharp.
Proof. The proof of this corollary is based on the following observations
i. $p(z) \in P(A, B) \Rightarrow \frac{1-A r}{1-B r} \leq|p(z)| \leq \frac{1+A r}{1+B r}$
ii. $p(z)=\frac{1}{\cos \alpha}\left(e^{i \alpha} z \frac{f^{\prime}(z)}{f(z)}-i \sin \alpha\right), f(z) \in S_{\alpha}^{*}(A, B), p(z) \in P(A, B)$
iii. Corollary 2.5. using (i) and (ii) and after simple calculations we get:

$$
\begin{equation*}
\frac{(1-A r) \cos \alpha-(1-B r) \sin \alpha}{1-B r} \leq\left|z \frac{f^{\prime}(z)}{f(z)}\right| \leq \frac{(1+A r) \cos \alpha+(1+B r) \sin \alpha}{1+B r} \tag{2.14}
\end{equation*}
$$

Considering (2.14) and Corollary 2.5 we get the result.

References

[1] Goodman, A.W., Univalent functions, Volume I. Mariner Publishing, Tampa Florida, 1984.
[2] Jack, I.S., Functions starlike and convex of order α, J. London. Math. Soc., 3(1971), no. 2.
[3] Libera, R.J., Univalent α-spiral functions, Canad. J. Math., 19(1967), 449-456.
[4] Robertson, M.S., Radii of star-likeness and close-to-convexity, Proc. Amer. Math. Soc., 14(1965), 847-852.
[5] Janowski, W., Some extremal problems for certain families of analytic functions, J. Ann. Polon. Math., 28(1973), 297-326.

Yaşar Polatoğlu
Department of Mathematics and Computer Sciences
İstanbul Kültür University, İstanbul, Turkey
e-mail: y.polatoglu@iku.edu.tr

