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SOME SUBCLASSES OF MEROMORPHICALLY UNIVALENT
FUNCTIONS

RABHA M. EL-ASHWAH

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Making use of certain linear operator, we introduce two novel

subclasses
∑

n(A, B, λ) and
∑∗

p,n(A, B, λ) of meromorphically univalent

functions in the punctured disc U∗. The main object of this paper is to

investigate the various important properties and characteristics of these

subclasses of meromorphically univalent functions. We extend the famil-

iar concept of neighborhoods of analytic functions to these subclasses of

meromorphically univalent functions. We also derive many result for the

Hadamard products of functions belonging to the class
∑∗

p,n(α, β, γ, λ).

1. Introduction

Let
∑

denote the class of functions of the form:

f(z) =
1
z

+
∞∑

k=0

akzk. (1.1)

which are analytic and univalent in the punctured disc

U∗ = {z : z ∈ C and 0 < |z| < 1} = U\{0}

and which have a simple pole at the origin with residue one there. Define a linear

operator as follows:

D0f(z) = f(z),
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D1f(z) =
1
z

+
∞∑

k=0

(k + 2)akzk =
(z2f(z))

′

z
,

D2f(z) = D(D1f(z)),

and (in general)

Dnf(z) =
1
z

+
∞∑

k=0

(k + 2)nakzk

=
(z2Dn−1f(z))

′

z
(f ∈

∑
; n ∈ N = {1, 2, ...}). (1.2)

The linear operator Dn was considered by Uralegaddi and Somanath [15].

Let

Fλ,n(z) = (1−λ)Dnf(z)+λz(Dnf(z))
′
(f ∈

∑
;n ∈ N0 = N∪{0}; 0 ≤ λ <

1
2
), (1.3)

so that, obviously,

Fλ,n(z) =
1− 2λ

z
+

∞∑
k=0

(k + 2)n[1 + λ(k − 1)]akzk(n ∈ N0; 0 ≤ λ <
1
2
), (1.4)

it is easily verified that

zF
′

λ,n(z) = Fλ,n+1(z)− 2Fλ,n(z). (1.5)

For a function f(z) ∈
∑

,we say that f(z) is a member of the class∑
n(A,B, λ) if the function Fλ,n(z) defined by (1.3) satisfies the inequality:∣∣∣∣∣ z2F

′

λ,n(z) + (1− 2λ)
Bz2F

′
λ,n(z) + (1− 2λ)A

∣∣∣∣∣ < 1 (z ∈ U∗), (1.6)

where (and throughout this paper) the parameters A,B, λ, p and n are constrained

as follows:

−1 ≤ A < B ≤ 1, 0 < B ≤ 1 , 0 ≤ λ <
1
2
; p ∈ N and n ∈ N0. (1.7)

Furthermore, we say that a function f(z) ∈
∑∗

p,n(A,B, λ) whenever f(z) is

of the form [cf. Equation (1.1)]:

f(z) =
1
z

+
∞∑

k=p

|ak| zk (k ≥ p ; p ∈ N). (1.8)

We note that:
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(i)
∑∗

p,0((2αγ − 1)β, (2γ − 1)β, 0) =
∑

p(α, β, γ) (0 ≤ α < 1 ; 0 < β ≤ 1; 1
2 ≤ γ ≤ 1)

(Cho et al. [6]);

(ii)
∑∗

1,0((2αγ − 1)β, (2γ − 1)β, 0) =
∑

1(α, β, γ) (0 ≤ α < 1 ; 0 < β ≤ 1; 1
2 ≤ γ ≤ 1)

(Cho et al. [5]);

(iii)
∑∗

1,0(−A,−B, 0) =
∑

d(A,B)(−1 ≤ B < A ≤ 1 ; −1 ≤ B < 0) (Cho [4]);

(iv)
∑∗

p,0(B,A, λ) = Ω+(p; 0; 1, 1, A, B, λ) = Ω+(p, A,B, λ) (Joshi et al. [9]).

Also we note that:

(v)
∑∗

p,n((2αγ − 1)β, (2γ − 1)β, λ) =
∑∗

p,n(α, β, γ, λ)

=

{
f ∈

∑∗

p
:

∣∣∣∣∣ z2F
′

λ,n(z) + (1− 2λ)
(2γ − 1)z2F

′
λ,n(z) + (1− 2λ)(2γα− 1)

∣∣∣∣∣ < β,

(z ∈ U∗ ; 0 ≤ α < 1; 0 < β ≤ 1;
1
2
≤ γ ≤ 1; 0 ≤ λ <

1
2

; n ∈ N0)
}

; (1.9)

(vi)
∑∗

p,n((2αγ − 1)β, (2γ − 1)β, 0) =
∑∗

p,n(α, β, γ)

=

{
f ∈

∑∗

p
:

∣∣∣∣∣ z2(Dnf(z))
′
+ 1

(2γ − 1)z2(Dnf(z))′ + (2γα− 1)

∣∣∣∣∣ < β,

(z ∈ U∗ ; 0 ≤ α < 1; 0 < β ≤ 1;
1
2
≤ γ ≤ 1; n ∈ N0)

}
. (1.10)

2. Inclusion properties of the class
∑

n(A,B, λ)

We begin by recalling the following result (Jack’s lemma), which we shall

apply in proving our first theorem.

Lemma 2.1. [8] Let the (nonconstant) function w(z) be analytic in U with w(0) =

0 . If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z0 ∈ U, then

z0w
′
(z0) = γw(z0), (2.1)

where γ is a real and γ ≥ 1.

Theorem 2.2. The following inclusion property holds true for the class
∑

n(A,B, λ)∑
n+1

(A,B, λ) ⊂
∑

n
(A,B, λ) (n ∈ N0). (2.2)
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Proof. Let f(z) ∈
∑

n+1(A,B, λ) and suppose that

z2F
′

λ,n(z) = − (1− 2λ)(1 + Aw(z))
1 + Bw(z)

, (2.3)

where the function w(z) is either analytic or meromorphic in U , with w(0) = 0. Then,

by using (1.5) and (2.3), we have

z2F
′

λ,n+1(z) = −(1− 2λ)

[
1 + Aw(z)
1 + Bw(z)

+
(A−B)zw

′
(z)

(1 + Bw(z))2

]
. (2.4)

We claim that |w(z)| < 1 for z ∈ U . Otherwith there exists a point z0 ∈ U such

that max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.Applying Jack’s lemma, we have

z0w
′
(z0) = γw(z0)(γ ≥ 1).Writing w(z0) = eiθ(0 ≤ θ ≤ 2π) and putting z = z0 in

(2.4), we get ∣∣∣∣∣ z2
0F

′

λ,n+1(z0) + (1− 2λ)
Bz2

0F
′
λ,n+1(z0) + (1− 2λ)A

∣∣∣∣∣
2

− 1

=

∣∣1 + γ + Beiθ
∣∣2 − ∣∣1 + B(1− γ)eiθ

∣∣2
|1 + B(1− γ)eiθ|2

=
γ2(1−B2) + 2γ(1 + B2 + 2B cos θ)

|1 + B(1− γ)eiθ|2
≥ 0, (2.5)

which obviously contradicts our hypothesis that f(z) ∈
∑

n+1(A,B, λ). Thus we must

have |w(z)| < 1 (z ∈ U), so from (2.3), we conclude that f(z) ∈
∑

n(A,B, λ),which

evidently completes the proof of Theorem 1.

Theorem 2.3. Let α be a complex number such that Re(α) > 0. If f(z) ∈∑
n(A,B, λ), then the function Gλ,n(z) given by

Gλ,n(z) =
α

zα+1

z∫
0

tαFλ,n(t)dt (2.6)

is also in the same class
∑

n(A,B, λ).

Proof. From (2.6), we have

zG
′

λ,n(z) = αFλ,n(z)− (α + 1)Gλ,n(z). (2.7)

Put

z2G
′

λ,n(z) = − (1− 2λ)(1 + Aw(z))
1 + Bw(z)

, (2.8)
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where w(z) is either analytic or meromorphic in U with w(0) = 0. Then , by using

(2.7) and (2.8), we have

z2F
′

λ,n(z) = −(1− 2λ)

[
1 + Aw(z)
1 + Bw(z)

+
(A−B)zw

′
(z)

α(1 + Bw(z))2

]
. (2.9)

The remaining part of the proof is similar to that of Theorem 1 and so is omitted.

3. Properties of the class
∑∗

p,n(A,B, λ)

Theorem 3.1. Let f(z) ∈
∑∗

p be given by (1.8). Then f(z) ∈
∑∗

p,n(A,B, λ) if and

only if
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + B) |ak| ≤ (B −A)(1− 2λ), (3.1)

where the parameters A,B, n and λ are constrained as in (1.7).

Proof. Let f(z) ∈
∑∗

p,n(A,B, λ) be given by (1.8). Then , from (1.8) and (1.6), we

have ∣∣∣∣∣ z2F
′

λ,n(z) + (1− 2λ)
Bz2F

′
λ,n(z) + (1− 2λ)A

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak| zk+1

(B −A)(1− 2λ)−B
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak| zk+1

∣∣∣∣∣∣∣∣ < 1 (z ∈ U∗). (3.2)

Since |Re(z)| ≤ |z| (z ∈ C), we have

Re


∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak| zk+1

(B −A)(1− 2λ)−B
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak| zk+1

 < 1. (3.3)

Choose values of z on the real axis so that z2F
′

λ,n(z) is real. Upon clearing the

denominator in (3.3) and letting z → 1− through real values we obtain (3.1).

In order to prove the converse, we assume that the inequality (3.1) holds true.

then, if we let z ∈ ∂U, we find from (1.8) and (3.1) that∣∣∣∣∣ z2F
′

λ,n(z) + (1− 2λ)
Bz2F

′
λ,n(z) + (1− 2λ)A

∣∣∣∣∣
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≤

∞∑
k=p

k(k + 2)n[1 + λ(k − 1)] |ak|

(B −A)(1− 2λ)−B
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak|

< 1(z ∈ ∂U = {z : z ∈ C and |z| = 1}). (3.4)

Hence, by the maximum modulus theorem, we have f(z) ∈
∑∗

p,n(A,B, λ).

Corollary 3.2. If the function f(z) defined by (1.8) is in the class
∑∗

p,n(A,B, λ), then

|ak| ≤
(B −A)(1− 2λ)

k(k + 2)n[1 + λ(k − 1)](1 + B)
(k ≥ p; p ∈ N;n ∈ N0), (3.5)

with equality for the function

f(z) =
1
z

+
(B −A)(1− 2λ)

k(k + 2)n[1 + λ(k − 1)](1 + B)
zk (k ≥ p; p ∈ N;n ∈ N0). (3.6)

Putting A = (2γα − 1)β and B = (2γ − 1)β (0 ≤ α < 1, 0 < β ≤ 1 and 1
2 ≤

γ ≤ 1) in Theorem 2.3, we obtain:

Corollary 3.3. A function f(z) defined by (1.8) is in the class
∑∗

p,n(α, β, γ, λ) if

and only if

∞∑
k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β) |ak| ≤ 2βγ(1− 2λ)(1− α). (3.7)

Next we prove the following growth and distortion properties for the class∑∗
p,n(A,B, λ) .

Theorem 3.4. If a function f(z) defined by (1.8) is in the class
∑∗

p,n(A,B, λ) , then{
m!− (p− 1)!(B −A)(1− 2λ)

(p−m!)(p + 2)n[1 + λ(p− 1)](1 + B)
rp+1

}
r−(m+1) ≤

∣∣∣f (m)(z)
∣∣∣

≤
{

m! +
(p− 1)!(B −A)

(p−m!)(p + 2)n[1 + λ(p− 1)](1 + B)
rp+1

}
r−(m+1) (3.8)

(0 < |z| = r < 1; p ∈ N;m,n ∈ N0;m < p).

The result is sharp for the function f(z) given by

f(z) =
1
z

+
(B −A)(1− 2λ)

p(p + 2)n[1 + λ(p− 1)](1 + B)
zp (p ∈ N; n ∈ N0). (3.9)
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Proof. In view of Theorem 2.3, we have

p(p + 2)n[1 + λ(p− 1)](1 + B)
p!

∞∑
k=p

k! |ak| ≤
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + B) |ak|

≤ (B −A)(1− 2λ),

which yields
∞∑

k=p

k! |ak| ≤
p!(B −A)(1− 2λ)

p(p + 2)n[1 + λ(p− 1)](1 + B)
(p ∈ N; n ∈ N0). (3.10)

Now, by differentiating both sides of (1.8 ) m times with respect to z, we have

f (m)(z) = (−1)mm!z−(m+1) +
∞∑

k=p

k!
(k −m)!

|ak| zk−m,

(p ∈ N;m,n ∈ N0;m < p), (3.11)

and Theorem 3.1 follows easily from (3.10) and (3.11).

Finally, it is easy to see that the bounds in (3.8) are attained for the function

f(z) given by (3.9).

By the same way as in the proof given by Cho et al. [5] , we have the radii of

meromorphically starlikeness of order φ(0 ≤ φ < 1) and meromorphically convexity

of order φ(0 ≤ φ < 1) for functions in the class
∑∗

p,n(A,B, λ) .

Theorem 3.5. Let the function f(z) defined by (1.8) be in the class
∑∗

p,n(A,B, λ) ,

then, we have

(i) f(z) is meromorphically starlike of order φ(0 ≤ φ < 1) in the disc |z| <

r1, that is,

Re

{
−zf

′
(z)

f(z)

}
> φ (|z| < r1; 0 ≤ φ < 1), (3.12)

where

r1 = inf
k≥p

{
k(k + 2)n[1 + λ(k − 1)](1 + B)(1− φ)

(B −A)(1− 2λ)(k + 2− φ)

} 1
k + 1

. (3.13)

(ii) f(z) is meromorphically convex of order φ(0 ≤ φ < 1) in the disc |z| <

r2, that is,

Re

{
−(1 +

zf
′′
(z)

f ′(z)
)

}
> φ (|z| < r2 ; 0 ≤ φ < 1), (3.14)
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where

r2 = inf
k≥p

{
(k + 2)n[1 + λ(k − 1)](1 + B)(1− φ)

(B −A)(1− 2λ)(k + 2− φ)

} 1
k + 1

. (3.15)

Each of these results is sharp for the function f(z) given by (3.6).

4. Neighborhoods and partial sums

Following the earlier works (based upon the familiar concept of neighborhoods

of analytic functions) by Goodman [7] and Ruscheweyh [13], and (more recently) by

Altintas et al. ([1], [2] and [3]) , Liu [10] and Liu and Srivastava ([11] and [12]), we

begin by introducing here the δ−neighborhood of a function f(z) ∈
∑

of the form

(1.1) by means of the definition given below:

Nδ(f) =

{
g ∈

∑
: g(z) =

1
z

+
∞∑

k=0

bkzk and

∞∑
k=0

k(k + 2)n[1 + λ(k − 1)](1 + |B|)
(B −A)(1− 2λ)

|ak − bk| ≤ δ,

(−1 ≤ A < B ≤ 1, 0 ≤ λ <
1
2
, δ > 0, p ∈ N, n ∈ N0)

}
. (4.1)

Making use of the definition (4.1), we now prove Theorem 6 below:

Theorem 4.1. Let the function f(z) defined by (1.1) be in the class
∑

n(A,B, λ). If

f(z) satisfies the following condition:

f(z) + εz−1

1 + ε
∈

∑
n
(A,B, λ) (ε ∈ C, |ε| < δ, δ > 0),

then

Nδ(f) ⊂
∑

n
(A,B, λ). (4.3)

Proof. It is easily seen from (1.6) that g(z) ∈
∑

n(A,B, λ) if and only if for any

complex number σ with |σ| = 1,

z2G
′

λ,n(z) + (1− 2λ)
Bz2G

′
λ,n(z) + (1− 2λ)A

6= σ (z ∈ U), (4.4)

which is equivalent to

(g ∗ h)(z)
z−1

6= 0 (z ∈ U), (4.5)
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which, for convenience,

h(z) =
1
z

+
∞∑

k=0

ckzk

=
1
z

+
∞∑

k=0

k(k + 2)n[1 + λ(k − 1)](1− σB)
σ(B −A)(1− 2λ)

zk. (4.6)

From (4.6), we have

|ck| ≤
k(k + 2)n[1 + λ(k − 1)](1 + |B|)

(B −A)(1− 2λ)
(0 ≤ λ <

1
2

;n ∈ N0). (4.7)

Now , if f(z) =
1
z

+
∞∑

k=0

akzk ∈
∑

satisfies the condition (4.2), then (4.5) yields∣∣∣∣ (f ∗ h)(z)
z−1

∣∣∣∣ ≥ δ (z ∈ U ; δ > 0). (4.8)

By letting

g(z) =
1
z

+
∞∑

k=0

bkzk ∈ Nδ(f), (4.9)

so that ∣∣∣∣ [g(z)− f(z)] ∗ h(z)
z−1

∣∣∣∣ =

∣∣∣∣∣
∞∑

k=0

(bk − ak)ckzk+1

∣∣∣∣∣
≤ |z|

∞∑
k=0

k(k + 2)n[1 + λ(k − 1)](1 + |B|)
(B −A)(1− 2λ)

|bk − ak|

< δ (z ∈ U ; δ > 0). (4.10)

Thus we have (4.5), and hence also (4.4) for any σ ∈ C such that |σ| = 1,which implies

that g(z) ∈
∑

n(A,B, λ). This evidently proves the assertion (4.3) of Theorem 6.

We now define the δ−neighborhood of a function f(z) ∈
∑∗

p of the form

(1.8) as follows:

N+
δ (f) =

{
g ∈

∑∗

p
: g(z) =

1
z

+
∞∑

k=p

|bk| zk and

∞∑
k=0

k(k + 2)n[1 + λ(k − 1)](1 + B)
(B −A)(1− 2λ)

||bk| − |ak|| ≤ δ,

(−1 ≤ A < B ≤ 1 ; 0 ≤ λ <
1
2
; δ > 0; p ∈ N;n ∈ N0)

}
. (4.11)

Making use of the definition (4.11), we now prove Theorem 3.4 below:
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Theorem 4.2. Let the function f(z) defined by (1.8) be in the class
∑∗

p,n(A,B, λ),

−1 ≤ A < B ≤ 1, 0 < B ≤ 1, 0 ≤ λ <
1
2
, p ∈ N and n ∈ N0, then

N+
δ (f) ⊂

∑∗

p,n
(A,B, λ) (δ =

p + 1
p + 2

). (4.12)

The result is sharp .

Proof. Making use the same method as in the proof of Theorem 6, we can show that

[cf. Eq. (4.6)]

h(z) =
1
z

+
∞∑

k=p

ckzk

=
1
z

+
∞∑

k=0

k(k + 2)n[1 + λ(k − 1)](1− σB)
σ(B −A)(1− 2λ)

zk. (4.13)

Thus under the hypothesis −1 ≤ A < B ≤ 1 , 0 < B ≤ 1, 0 ≤ λ <
1
2

, p ∈ N and n ∈

N0, if f(z) ∈
∑∗

p,n+1(A,B, λ) is given by (1.8), we obtain∣∣∣∣ (f ∗ h)(z)
z−1

∣∣∣∣ =

∣∣∣∣∣∣1 +
∞∑

k=p

ck |ak| zk+1

∣∣∣∣∣∣
≥ 1− 1

p + 2

∞∑
k=p

k(k + 2)n+1[1 + λ(k − 1)](1 + B)
(B −A)(1− 2λ)

|ak| ,

which in view of Theorem 2.3, yields∣∣∣∣ (f ∗ h)(z)
z−1

∣∣∣∣ ≥ 1− 1
p + 2

=
p + 1
p + 2

= δ.

The remaing part of the proof of Theorem 3.4 is similar to that of Theorem 6, and

we skip the details involved.

To show the sharpness, we consider the functions f(z) and g(z) given by

f(z) =
1
z

+
(B −A)(1− 2λ)

p(p + 2)n+1[1 + λ(p− 1)](1 + B)
zp ∈

∑∗

p,n+1
(A,B, λ) (4.14)

and

g(z) =
1
z

+
[

(B −A)(1− 2λ)
p(p + 2)n+1[1 + λ(p− 1)](1 + B)

+

(B −A)(1− 2λ)δ
′

p(p + 2)n[1 + λ(p− 1)](1 + B)

]
zp, (4.15)
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where δ
′

> δ =
p + 1
p + 2

. Clearly, the function g(z) belongs to N+

δ
′ (f). On the other

hand, we find from Theorem 2.3 that g(z) is not in the class
∑∗

p,n(A,B, λ) .

Thus the proof of Theorem 3.4 is completed.

Next we prove the following result.

Theorem 4.3. Let f(z) ∈
∑

be given by (1.1) and define the partial sums s1(z) and

sm(z) as follows:

s1(z) =
1
z

and sm(z) =
1
z

+
m−2∑
k=0

akzk (m ∈ N\{1}). (4.16)

Suppose also that

∞∑
k=0

dk |ak| ≤ 1
(

dk =
k(k + 2)n[1 + λ(k − 1)](1 + |B|)

(B −A)(1− 2λ)

)
. (4.17)

Then we have

(i)f(z) ∈
∑

n(A,B, λ),

(ii) Re

{
f(z)
sm(z)

}
> 1− 1

dm−1
(z ∈ U ; m ∈ N) (4.18)

and

(iii)Re

{
sm(z)
f(z)

}
>

dm−1

1 + dm−1
(z ∈ U ; m ∈ N). (4.19)

The estimates in (4.18) and (4.19) are sharp for eachm ∈ N.

Proof. (i) It is not difficult to see that

z−1 ∈
∑

n
(A,B, λ) (n ∈ N0).

Thus, from Theorem 6 and the hypothesis (4.17) of Theorem 3.5, we have

N1(z−1) ⊂
∑

n
(A,B, λ) (n ∈ N0), (4.20)

which shows that f(z) ∈
∑

n(A,B, λ) as asserted by Theorem 3.5.

(ii) For the coefficients dk given by(4.17), it is not difficult to verify that

dk+1 > dk > 1 (k ∈ N). (4.21)
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Therefore, we have
m−2∑
k=0

|ak|+ dm−1

∞∑
k=m−1

|ak| ≤
∞∑

k=0

dk |ak| ≤ 1, (4.22)

where we have used the hypothesis (4.17) again.

By setting

h1(z) = dm−1

{
f(z)
sm(z)

−
(

1− 1
dm−1

)}
= 1 +

dm−1

∞∑
k=m−1

akzk+1

1 +
m−2∑
k=0

akzk+1

, (4.23)

and applying (4.22), we find that

∣∣∣∣h1(z)− 1
h1(z) + 1

∣∣∣∣ ≤ dm−1

∞∑
k=m−1

|ak|

2− 2
m−2∑
k=0

|ak| − dm−1

∞∑
k=m−1

|ak|
≤ 1 (z ∈ U), (4.24)

which readily yields the assertion (4.18) of Theorem 3.5. If we take

f(z) =
1
z
− zm−1

dm−1
, (4.25)

then
f(z)
sm

= 1− zm

dm−1
→ 1− 1

dm−1
as z → 1−,

which shows that the bound in (4.18) is the best possible for each n ∈ N.

(iii) Just as in Part (ii) above, if we put

h2(z) = (1 + dm−1)
(

sm(z)
f(z)

− dm−1

1 + dm−1

)

= 1−
(1 + dm−1)

∞∑
k=m−1

akzk+1

1 +
∞∑

k=0

akzk+1

, (4.26)

and make use of (4.22), we can deduce that

∣∣∣∣h2(z)− 1
h2(z) + 1

∣∣∣∣ ≤ (1 + dm−1)
∞∑

k=m−1

|ak|

2− 2
m−2∑
k=0

|ak| − (1− dm−1)
∞∑

k=m−1

|ak|
≤ 1 (z ∈ U),

which leads us immediately to the assertion (4.19) of Theorem 3.5.
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The bound in (4.19) is sharp for each m ∈ N,with the extremal function

f(z) given by (4.25). The proof of Theorem 3.5 is thus completed.

5. Convolution properties

For the functions

fj(z) =
1
z

+
∞∑

k=p

|ak,j | zk (j = 1, 2; p ∈ N), (5.1)

we dnote by (f1 ∗ f2)(z) the Hadamard product (or convolution ) of the functions

f1(z and f2(z), that is,

(f1 ∗ f2)(z) =
1
z

+
∞∑

k=p

|ak,1| |ak,2| zk. (5.2)

Theorem 5.1. Let the functions fj(z) (j = 1, 2) defined by (5.1) be in the

class
∑∗

p,n(α, β, γ, λ).Then (f1 ∗ f2)(z) ∈
∑∗

p,n(δ, β, γ, λ),where

δ = 1− 2βγ(1− 2λ)(1− α)2

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
. (5.3)

The result is sharp for the functions

fj(z) =
1
z

+
2βγ(1− 2λ)(1− α)

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
zp (j = 1, 2; p ∈ N;n ∈ N0). (5.4)

Proof. Employing the technique used earlier by Schild and Silverman [14], we need

to find the largest δ such that
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
2βγ(1− 2λ)(1− δ)

|ak,1| |ak,2| ≤ 1 (5.5)

for fj(z) ∈
∑∗

p,n(α, β, γ, λ)(j = 1, 2).Since fj(z) ∈
∑∗

p,n(α, β, γ, λ)(j = 1, 2) ,we read-

ily see that
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
2βγ(1− 2λ)(1− α)

|ak,j | ≤ 1 (j = 1, 2). (5.6)

Therefore, by the Cauchy-Schwarz inequality , we obtain
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
2βγ(1− 2λ)(1− α)

√
|ak,1| |ak,2| ≤ 1 . (5.7)
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This implies that we need only to show that

|ak,1| |ak,2|
(1− δ)

≤
√
|ak,1| |ak,2|
(1− α)

(k ≥ p) (5.8)

or , equivalently , that √
|ak,1| |ak,2| ≤

(1− δ)
(1− α)

(k ≥ p). (5.9)

Hence, by the inequality (5.7), it is sufficient to prove that

2βγ(1− 2λ)(1− α)
k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)

≤ (1− δ)
(1− α)

(k ≥ p). (5.10)

It follows from (5.10) that

δ ≤ 1− 2βγ(1− 2λ)(1− α)2

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
(k ≥ p). (5.11)

Now, defining the function ϕ(k) by

ϕ(k) = 1− 2βγ(1− 2λ)(1− α)2

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
(k ≥ p). (5.12)

We see that ϕ(k) is an increasing function of k. Therefore , we conclude that

δ ≤ ϕ(p) = 1− 2βγ(1− 2λ)(1− α)2

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
, (5.13)

which evidently completes the proof of Theorem 4.1.

Using arguments similar to those in the proof of Theorem 4.1, we obtain the

following result.

Theorem 5.2. Let the function f1(z) defined by (5.1) be in the class
∑∗

p,n(α, β, γ, λ) .

Suppose also that the function f2(z) defined by (5.1) be in the class
∑∗

p,n(ζ, β, γ, λ).

Then (f1 ∗ f2)(z) ∈
∑∗

p,n(ξ, β, γ, λ),where

ξ = 1− 2βγ(1− 2λ)(1− α)(1− ζ)
p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)

. (5.14)

The result is sharp for the functions fj(z)(j = 1, 2) given by

f1(z) =
1
z

+
2βγ(1− 2λ)(1− α)

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
zp (p ∈ N;n ∈ N0), (5.15)

and

f2(z) =
1
z

+
2βγ(1− 2λ)(1− ζ)

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
zp (p ∈ N;n ∈ N0). (5.16)
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Theorem 5.3. Let the functions fj(z)(j = 1, 2) defined by (5.1) be in the class∑∗
p,n(α, β, γ, λ).Then the function h(z) defined by

h(z) =
1
z

+
∞∑

k=p

(|ak,1|2 + |ak,2|2)zk (5.17)

belongs to the class
∑∗

p,n(τ , β, γ, λ),where

τ = 1− 4βγ(1− 2λ)(1− α)2

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
. (5.18)

This result is sharp for the functions fj(z)(j = 1, 2) given already by (5.4).

Proof. Noting that
∞∑

k=p

{k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)}2

[2βγ(1− 2λ)(1− α)]2
|ak,j |2

≤ (
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
2βγ(1− 2λ)(1− α)

|ak,j |)2 ≤ 1 (j = 1, 2), (5.19)

for fj(z) ∈
∑∗

p,n(α, β, γ, λ)(j = 1, 2), we have

∞∑
k=p

{k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)}2

2 [2βγ(1− 2λ)(1− α)]2
(|ak,1|2 + |ak,2|2) ≤ 1 . (5.20)

Therefore, we have to find the largest τ such that

1
(1− τ)

≤ k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
4βγ(1− 2λ)(1− α)2

(k ≥ p), (5.21)

that is, that

τ ≤ 1− 4βγ(1− 2λ)(1− α)2

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
(k ≥ p). (5.22)

Now, defining a function Ψ(k) by

Ψ(k) = 1− 4βγ(1− 2λ)(1− α)2

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
(k ≥ p). (5.23)

We observe that Ψ(k) is an increasing function of k. We thus conclude that

τ ≤ Ψ(p) = 1− 4βγ(1− 2λ)(1− α)2

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
, (5.24)

which completes the proof of Theorem 4.3.

Putting n = λ = 0 in Theorem 4.3, we obtain:
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Corollary 5.4. Let the functions fj(z)(j = 1, 2) defined by (5.1) be in the

class
∑∗

p(α, β, γ ). Then the function h(z) defined by (5.17) belongs to the class∑∗
p(τ , β, γ), where

τ = 1− 4βγ(1− α)2

p(1 + 2βγ − β)
. (5.25)

The result is sharp.

Remark 5.5. The result obtained by Cho et al. ([5] and [6]) is not correct. The

correct result is given by Corollary 3.
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