Anul XLIX 2004
UNIVERSITATIS BABEŞ-BOLYAI
MATHEMATICA
4
Redacţia: 400084 Cluj-Napoca, Str. M. Kogălniceanu nr. 1 Tel: 405300
E. Akalın
and M. U. Akhmet, On
the basic properties of discontinuous flows . . . . . . . . 3
Mira-Cristiana
Anisiu, Two- and
three-dimensional inverse problem
of dynamics . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 13
Claudia
Bacoţiu, Smooth
dependence of solution on parameters for the
Volterra-Fredholm integral equation . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .27
Petre
Băzăvan, Periodic
and quasiperiodic motion in the periodically forced
Rayleigh system . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 33
F. Calio, E.
Miglio, G. Moroni and M. Rasella, Integral λ−τ bivariate
spline operators in computer graphics
problems . . . . . . .
. . . . . . . . . . . . . . . . . . . .. . . 43
Zhao Changjian,
Wing-Sum Cheung and Mihaly Bencze, On reverse
Hilbert type inequalities . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Cristian
Chifu-Oros, Uniqueness
algebraic conditions in the study of second
order differential systems . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 61
Cristina-Ioana Fătu,
On the invariance
property of the Fisher information (I) . .. . . . . 67
Cătălin
Mitran, On some
interpolation problem on triangle . . . . . . . . . . . . . . . . . . .
. . 79
Gheorghe Oros,
Georgia Irina Oros and Adriana Cătaş, A new differential
inequality II . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 85
N. Ratiner, Holder estimates of
higher order derivatives for evolutionary
Monge-Amp´ere equation on a Riemannian
manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A. Soos, Fractional Brownian
motion using contraction method in
probabilistic metric spaces . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . .. . . . . . . . . . . . . 107
Sorin Mirel
Stoian, Spectral
radius of quotient bounded operator . . . . . . . . . . .. . . . .115
Book Reviews . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 127