
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LX, Number 1, 2015

EXTENDING OBJECT-RELATIONAL MAPPING WITH

CHANGE DATA CAPTURE

RADOSLAV RADEV

Abstract. The most critical disadvantage of the Change Data Capture
functionality provided by the relational database management systems is
the impossibility to add custom, application-specific data to the log. In
this paper an approach is proposed how to implement custom, application-
specific Change Data Capture functionality with the help of database trig-
gers and O/RM framework. There are listed clear problem requirements
and concrete steps are proposed how to resolve it. The two layers of the
solution are identified and described database level and application level.
All details of the solution are provided with example source code. It is
also suggested an approach for quality assurance of the solution.

1. Introduction

One of the open issues of object-oriented programming in the last two
decades is the object-relational impedance mismatch [13], [7]. It concerns
the usage of relational database management systems (RDBMS) with object-
oriented programming languages. In 2002 Fowler summarized the concept of
object-relational mapping (O/RM) [3] and in the last years several O/RM
frameworks were developed, thus bringing object-relational technology to the
mainstream of application programming [10]. Among them most known and
used are Hibernate (for Java) [18] and Microsoft Entity Framework (for .NET)
[11]. They are based on the entity data model conception and definition of
mappings between object-oriented classes and relational database tables [6,
18].

Beside the latest development of object-oriented and other non-relational
database systems, the relational databases are still widely used for enterprise
and data-driven applications. This is due mostly to their simplicity, proven

Received by the editors: October 23, 2014.
2010 Mathematics Subject Classification. 68P05, 68P20.
1998 CR Categories and Descriptors. D.2.12 [Software Engineering]: Interoperability

- Data mapping ; H.2.4 [Database Management]: Systems - Relational databases.
Key words and phrases. relational database, change data capture, log-trigger, object-

relational mapping.

47



48 RADOSLAV RADEV

reliability for almost 40 years of development and support by big software
vendors like Oracle, Microsoft and IBM [3].

In 2002 Oracle introduced a new relational database functionality called
Change Data Capture [20]. It identifies and captures data that has been
added to, updated or removed from, relational tables, and makes the change
data available for use by applications. This allows all changes made to the
database records to be tracked, persisted and retrieved later. This is very
useful for building statistics, reviewing logs or revert the changes made. In
the last case the records affected could be restored to their previous state,
because the Change Data Capture feature keeps the changes made to the
records along with their previous versions.

In 2007 Popfinger gives a more precise definition of Change Data Capture
architecture [22]. This architecture uses rules and triggers to identify data
that has been changed since the last extraction. Triggers copy updated data
to a specially created change table (log-table) where they can be accessed by
subscribers using individual views to access the information it is interested in
and allowed to read.

In 2008 Microsoft also implemented Change Data Capture in Microsoft
SQL Server 2008 [15]. Change Data Capture functionality is very useful for
tracking and keeping the changes made to database records. The whole process
is actually very easy to use, because all the tracking and persistence of the
changes is made by the database server itself (of course we assume it supports
this functionality like in the examples above). But the following problem
arises: we cannot associate additional, custom data with the changes made.
Let us give one very common example. Imagine an enterprise or data-driven
application [3], [12] that uses a relational database as a persistent storage. It
allows different users to log in to the system and manipulate the data via user
interface. The users can work simultaneously and perform different operations
that result in changes of the database records. But with the default Change
Data Capture functionality provided by RDBMSs we cannot distinguish which
change is made by which user.

Why this is important? Because if we find a way to attach a user identifier
to the Change Data Capture logs, we not only will be able to distinguish which
change is made by which user, but also to revert the changes of a particular
user without affecting the other users changes.

In this paper we propose an approach how to implement a custom Change
Data Capture functionality that supports logging not only of the database
record changes, but also of additional, custom, application-specific data for
every record. To solve the upper problem we will use O/RM framework. We
will centralize all the access to the relational database through the O/RM
framework and will ensure that the additional data is saved correctly to the



EXTENDING OBJECT-RELATIONAL MAPPING WITH CHANGE DATA CAPTURE 49

Change Data Capture logs. In advance, our approach is not tied to a particular
O/RM framework or a RDBMS, but suggests a general solution that could
be implemented for different O/RM frameworks and RDBMSs according to
their specific features. Finally, we will illustrate one practical application of
our approach as a proof of concept - how to use this extended Change Data
Capture functionality to revert a set of changes made to the database by a
particular user in an enterprise application. In this way, we are trying to solve
some current problems in database usage.

It has to note, that Change Data Capture technique is extensively used
in other areas of computer science and is of particular importance for data
warehouse maintenance (see [20], [8]), which is beyond of the scope of this
study.

2. Requirements

Here we will specify in more details the problem and the requirement for
its solution. We seek to define a general approach how to:

• Implement our own Change Data Capture functionality because the
default one provided by RDBMSs (Oracle, Microsoft, etc.) cannot be
easily extended to support custom data added to the log. That means
we have to define a mechanism how to record all changes made to the
database records and how to persist these changes.

• Along with the database records changes we want to persist also ad-
ditional, application-specific data to the log for every changed record.

• The approach should not be tied to any particular O/RM framework
or a RDBMS. It must suggest a general solution that could be imple-
mented for different O/M frameworks and RDBMSs.

• Ensure a possibility for quality assurance of our solution. That means
a way to ensure all preconditions in the database (tables, triggers, etc.)
are satisfied and so our solution is guaranteed to work correctly.

• As prove of concept, revert a set of changes by a given criteria without
affecting all other changes. For example, reverting only changes made
in an enterprise application by a particular user, but keep all other
changes made meanwhile by other users.

Our approach consists of concepts applied to two levels database level
(RDBMS) and application level (O/RM). We will discuss the database level
in Section 3 and the application level in Section 4.

3. Change Data Capture - Database Level

Let us call every table we want to track changes of data-table. We will
create a common log-table to store the logs needed for Change Data Capture



50 RADOSLAV RADEV

functionality. This means we will store all the logs in a single log-table, not in
a separate log-table for every data-table. For every change made to a record
in any data-table in the database we will insert a log-record in the log-table
with information about the change. This information consists of:

• Unique identifier of the operation.
• Table identifier (in which data-table the changes is made).
• Date and time of the operation (when the change is made).
• Old record data (record values before the change). In case of insert
operation, it will be empty (NULL).

• New record data (record values after the change). In case of delete
operation, it will be empty (NULL).

• Type of the operation (insert/update/delete) optional, because it
could be figured out from the previous two columns. If old record
data is NULL, it is insert operation. If new record data is NULL, it is
delete operation. If both are NOT NULL, it is update operation.

• Transaction identifier (needed by the O/RM framework to add custom
additional data later).

• Additional data it could be a single column, but if more complex
additional data is to be persisted, it could be a single column in XML
format or multiple different columns.

The old and new record data will be serialized in a common format. It
is most convenient to use XML because some RDBMSs support serializing a
record to XML, for example Oracle [21] and Microsoft [16]. If that is not the
case with a particular RDBMS, another specific solution should be applied
according to the functionalities provided by this specific RDBMS for record
serialization.

Here is the DDL code for creating the log-table in Transact-SQL [4] for
Microsoft SQL Server:

—————————————————

CREATE TABLE [dbo].[Log Records]

(

[ID] [uniqueidentifier] NOT NULL PRIMARY KEY DEFAULT
NEWSEQUENTIALID(), – Unique identifier of the operation automatically generated by RDMBS.

[Old Data] [xml] NULL, – Old recor values serialized in XML format.
[New Data] [xml] NULL, – New record values serialized in XML format.
[Table Name] [nvarchar](50) NOT NULL, – Data-table name of the changed record.
[Operation] [varchar](10) NOT NULL, – Code of the operation. For clearance we will use

‘INSERT’, ‘UPDATE’ or ‘DELETE’ string values. It could equally well be an integer value, for
example 1 (insert), 2 (update), 3 (delete).

[Transaction ID] [bigint] NOT NULL, – Needed by O/RM framework to add additional data to
the log-record later.

[User ID] [uniqueidentifier] NULL, – Custom, additional, application-specific data added to the
Change Data Capture logs.



EXTENDING OBJECT-RELATIONAL MAPPING WITH CHANGE DATA CAPTURE 51

[Date Time] [datetime] NOT NULL DEFAULT GETDATE() – Date and time of the operation,
by default the current datetime.

)

—————————————————

To capture the changes made to the records we propose to use database
triggers. They are routines executed before, instead, or after an event in a
database [14]. In our case this event is an insert, update, or delete operation in
a data-table. Triggers could be used for different purposes logging, validation,
ensuring data integrity, or others. Another aim could be introduction of some
business logic to the database [9]. In our case we use database triggers for
the logging process of changes [1] and also for including some business-specific
data to the log.

We will add log-trigger to every table for which we want to track the
changes. It will be executed after every insert, update or delete operation. If
the particular RDBMS allows it, the code of the trigger could be the same
for all data tables, which makes it highly maintainable and testable. This is
possible for Oracle and Microsoft SQL Server, because they support serializing
a record to XML. Then we will have multiple triggers, one per data-table, but
with the same DDL code, which makes them easy to maintain.

Here is our suggestion for a DDL code that creates a log-trigger for a
data-table in Microsoft SQL Server. T-SQL, also known as Transact-SQL, is
a proprietary extension to SQL, central to using Microsoft SQL Server [4]. All
SQL and DDL examples in this paper will be given in T-SQL.

—————————————————

CREATE TRIGGER [dbo].[TR Persons Log]

ON [dbo].[Persons] – in this case the data-table is dbo.Persons
AFTER INSERT, UPDATE, DELETE
AS

BEGIN

– Serialize the old record values to a XML variable.
DECLARE @old data XML;
SELECT @old data = (SELECT * FROM deleted FOR XML PATH(”));
/* Make notice that we do not use the column names of the data-table, which proves that

the log-trigger DDL code could be the same for all tables, because it does not depend on the table
metadata. */

– Serialize the new record values to a XML variable.
DECLARE @new data XML;
SELECT @new data = (SELECT * FROM inserted FOR XML PATH(”));
– Fill the operation column value as user-friendly text for clearance.
DECLARE @operation VARCHAR(10);
SELECT @operation = CASE
WHEN (@old data IS NULL) and (@new data IS NOT NULL) THEN ’INSERT’
WHEN (@old data IS NOT NULL) and (@new data IS NOT NULL) THEN ’UPDATE’
WHEN (@old data IS NOT NULL) and (@new data IS NULL) THEN ’DELETE’
END;
– If both old and new data is null nothing to do.



52 RADOSLAV RADEV

RDBMS

Log Table
- Data Table Identifier
- Operation Timestamp
- Operation Type
- Old Record Data (XML)
- New Record Data (XML)
- Transaction Identifier
- Custom Additional Data

Database

Data Table

Log 
Trigger

Data Table

Log 
Trigger

Figure 1. Scheme of Change Data Capture - Database level

IF (@old data IS NULL and @new data IS NULL) RETURN;
– Retrieve the current transaction identifier this is needed by O/RM to add additional data

later.
DECLARE @transaction id INT;
SELECT @transaction id = transaction id
FROM sys.dm tran current transaction;
– Get the current table name in format [schema].[table].
DECLARE @table name NVARCHAR(50);
SELECT @table name = s.name + ’.’ + t.name
FROM sysobjects tr
INNER JOIN sys.tables t ON tr.parent obj = t.object id
INNER JOIN sys.schemas s ON s.schema id = t.schema id
WHERE tr.id = @@procid;
– Insert the new log-record in the log-table.
INSERT INTO dbo.Log Records (Old Data, New Data, Operation, Table Name, Transaction ID)
VALUES (@old data, @new data, @operation, @table name, @transaction id);

END

—————————————————

All these operations proposed by us are implemented on the database
server level, as shown on Figure 1. Make notice that so far we have imple-
mented only the basic Change Data Capture functionality that tracks the
changes made to the records. No additional data has been added to the log
yet, only the storage for it has been prepared in the common log-table.

4. Change Data Capture with OR/M Framework - Application
Level

On application level we will use O/RM framework to add custom addi-
tional data to the log. O/RM framework centralizes all database access from
within the software application. It both separates and bridges the object-
oriented classes or entities and the relational database.

O/RM frameworks frequently use Unit of Work design pattern, defined
by Fowler [3]. This is the case for example with Hibernate [5] and Entity
Framework [2]. Unit of Work design pattern ensures that all operations made
to different entities are submitted to the database within a single transaction.



EXTENDING OBJECT-RELATIONAL MAPPING WITH CHANGE DATA CAPTURE 53

We will use this specific feature to encapsulate both logging the changes and
adding the additional data to the log in this single transaction, as shown in
Figure 2.

We propose the following sequence of operations made by O/RM frame-
work to support Change Data Capture functionality and to add additional
data to the log:

(1) Client/User manipulates the entities via O/RM framework.
(2) Client/User calls O/RM frameworks SaveChanges method and passes

to it as parameters the additional data that is to be saved to the log.
(3) O/RM framework opens a connection to the database, starts a trans-

action and retrieves the transaction identifier from the database.
(4) O/RM framework generates SQL statements corresponding to the chan-

ges made to its entities and sends them to the database server.
(5) Database server executes these SQL statements consequently. Be-

cause every table has a log-trigger that is executed after every in-
sert, update or delete operation, the log-trigger is fired for every in-
serted/updated/deleted record in any table we want to track changes
of.

(6) On every execution, the log-trigger inserts a single record in the log-
table (log-record) with the following data: timestamp, table identifier,
type of the operation, old record data, new record data, transaction
identifier.

(7) O/RM framework add the additional data to the log by generating
and executing a SQL statement to update all log-records with the
transaction identifier retrieved in step 3. This ensures that only the
newly inserted log-records (in previous step 6) will be updated, so any
other changes made simultaneously by other users/clients will not be
affected.

(8) O/RM framework commits the transaction started in step 4 and closes
the connection to the database.

Here is our suggestion for a commit method of the O/RM framework. It
is given in C# for Entity Framework 4.0 [11].

—————————————————

/* The Object Context class instance of the main O/RM framework class. In case of Entity
Framework, this is the ObjectContext class, so we inherit it. */

public partial class DbRollbackContext : ObjectContext
{

/* Pass the additional data that is to be saved to the log as parameters of the SaveChanges
method in our case, only the current users identifier, but there could be also other parameters. */

public void SaveChanges(Guid userId)
{
this.Connection.Open(); // Open a connection to the database.
try



54 RADOSLAV RADEV

Enterprise
Application

O/RM framework

User / Client User / Client User / Client

RDBMS

Log Table

Database

Data Table

Log 
Trigger

Data Table

Log 
Trigger

Figure 2. Scheme of Change Data Capture - Application level.

{
// Start a transaction to the database within the opened connection.
using (DbTransaction transaction = this.Connection.BeginTransaction())
{
/* Retrieve the just started transaction identifier. This is the same value that will be saved by

the log-trigger in the Transaction ID column of the log-table for all log-records that will be inserted
for the changes that are to be made in the next line of code. */

long transationId = this.ExecuteStoreQuery<long>(”SELECT
transaction id FROM sys.dm tran current transaction”).First();
/* Call the base SaveChanges method of the ObjectContext class. It will generate and execute

SQL statements corresponding to the changes made to the entities tracked by the object context.
These SQL statements are insert/update/delete operations that will fire the log-trigger of the cor-
responding tables. The log trigger will insert log-records in the log-table with the current Transac-
tion ID, which was retrieved in the previous line of code. */

base.SaveChanges();
/* Update all log-records with the same Transaction ID, i.e. the just inserted ones and set

their additional data. */
this.ExecuteStoreCommand(string.Format(”UPDATE dbo.Log Records SET User ID = ’0’
WHERE User ID IS NULL AND Transaction ID = 1”, userId, transationId));
transaction.Commit(); // Commit the transaction.
}
}
finally
{
this.Connection.Close(); // Close the connection to the database.
}
}

}

—————————————————

With this the implementation of our custom Change Data Capture func-
tionality is complete. In the next Section we will discuss how to retrieve the
inserted logs and how to use them to revert a set of operations.



EXTENDING OBJECT-RELATIONAL MAPPING WITH CHANGE DATA CAPTURE 55

5. An Example of Practical Application - Retrieve the Logs and
Revert a Set of Changes

Once the log-records are in the log-table, it is easy to retrieve them with
a simple SELECT SQL command. And because we have also the additional
data stored in the log, we can filter the log-records accordingly. For example,
we can retrieve the set of changes made by a user for a time period. Moreover,
we can easily revert these changes. We have the order of the changes in the
Date Time column. For every log-record we can construct a corresponding
revert SQL statement. Then we must execute these revert statements in the
opposite order.

5.1. Revert INSERT Operation. To revert an INSERT operation, we will
generate a corresponding DELETE statement. In the WHERE clause of the
DELETE statement we will include all old record values (before the change
logged by the log-record we want to revert). This ensures that the newly gen-
erated DELETE statement will actually delete the record only if the current
record values are the same as the original ones in the moment of its insertion.
That is to say, if the record has been updated later by another user, its current
record values will be different from the original ones. The WHERE clause of
the DELETE statement will match no record, and accordingly no records will
be deleted. So if another user has changed the record after that, our newly
generated DELETE statement will not affect them actually it will not affect
any records. What to do in this case is a decision that depends of the business
logic of the enterprise application. It could regard such situation as an error
or not; it could stop the whole process of reverting or to try to continue it.
Different approaches are possible according to the concrete situations.

Here is an example code how to generate a DELETE statement that will
revert an INSERT statement from a log-record.

—————————————————

private static string GenerateRevertInsertSqlStatement(LogRecord logRecord)
{

/*Convert the old data XML to Dictionary with key the column name and value - the old
record value for this column (before the changed logged in this logged record). */

IDictionary<string, string> newRecordValues =
ConvertXmlToDictionary(logRecord.NewData);
/*Delete the inserted record, but check if it has not been updated later. For the purpose include

the record values in the moment of insertion in the WHERE clause. This guarantees the record will
not be deleted if it has been updated later by another user.*/

return string.Format(”DELETE FROM {0} WHERE {1}”, logRecord.TableName,
string.Join(” AND ”, newRecordValues.Select(v =>
string.Format(”{0} = ’{1}’”, v.Key, v.Value))));

}

—————————————————



56 RADOSLAV RADEV

5.2. Revert UPDATE Operation. To revert an UPDATE operation, we
will generate another UPDATE SQL statement, taking the following guidelines
into consideration:

• In the SET clause of the UPDATE statement, we will update only the
changed columns values.

• If the records table contains computed column [5], they should not
be included in the SET clause, because they will be computed by the
RDBMS. Information about the computed columns is usually available
in the O/RM framework meta-data.

• In the WHERE clause of the UPDATE statement we will include all
old record values (before the change logged by the log-record we want
to revert). This ensures that the newly generated UPDATE statement
will actually update the record only if the current record values are
the same as in the moment of inserting the log-record. That is to say,
if the record has been updated again later by another user, its current
record values will be different from the ones in the log-record. The
WHERE clause of the UPDATE statement will match no record, and
accordingly no records will be updated. So if another user has changed
the record after that, our newly generated UPDATE statement will not
affect them actually it will not affect any records. Again, what to do
in this case is a decision that depends of the business logic of the
enterprise application, as stated in Section 5.1.

Here is an example code how to generate an UPDATE statement that will
revert an UPDATE statement from a log-record.

—————————————————

private static string GenerateRevertUpdateSqlStatement(LogRecord logRecord)
{

/* Convert the old data XML to Dictionary with key the column name and value - the old
record value for this column (before the changed logged in this logged record). */

IDictionary<string, string> oldRecordValues = ConvertXmlToDictionary(logRecord.OldData);
/* Convert the new data XML to Dictionary with key the column name and value - the new

record value for this column (after the changed logged in this logged record). */
IDictionary<string, string> newRecordValues = ConvertXmlToDictionary(logRecord.NewData);
StringBuilder setStatement = new StringBuilder();
StringBuilder whereStatement = new StringBuilder();
/* If the table contains computed columns, they should be excluded from the SQL statement.

These special columns can be retrieved from O/RM mappings meta-data. */
// Iterate through the new record values to build the UPDATE SQL statement.
foreach (KeyValuePair<string, string> newRecordValue in newRecordValues)
{
string oldRecordValue = oldRecordValues[newRecordValue.Key];
// If the new value is the same as the old one, do not include it in the SET clause.
if (oldRecordValue ! = newRecordValue.Value)
{
if (setStatement.Length > 0) setStatement.Append(”, ”);



EXTENDING OBJECT-RELATIONAL MAPPING WITH CHANGE DATA CAPTURE 57

setStatement.AppendFormat(”0= ’1’”, newRecordValue.Key, oldRecordValue);
}
/* Include all old values in the WHERE clause to guarantee that the record will be updated

only if the current record values match the ”new” ones (after the change). */
if (whereStatement.Length > 0) whereStatement.Append(” AND ”);
whereStatement.AppendFormat(”0 = ’1’”, newRecordValue.Key, newRecordValue.Value);
}
// No fields have been changed - nothing to revert.
if (setStatement.Length == 0) return string.Empty;
// Concatenate and return the whole SQL statement.
return string.Format(”UPDATE 0 SET 1 WHERE 2”, logRecord.TableName, setStatement,

whereStatement);

}
—————————————————

5.3. Revert DELETE Operation. To revert a DELETE operation, we will
generate INSERT SQL statement to re-insert the deleted record. In order to
achieve this we have to take the following into consideration:

• If the records table contains computed column [24], they should not
be included in the SET clause, because they will be computed by the
RDBMS. Information about the computed columns is usually available
in the O/RM framework meta-data.

• If the records table contains auto-generated columns [17], some RDBMSs
do now allow inserting concrete values (in our case, the old ones in the
moment of records deletion). An example of such a restriction is Mi-
crosoft SQL Server [17]. In this case the RDBMS must be explicitly
instructed to allow insertion of auto-generated values with DDL state-
ment (if it supports it). Because many inserts may be needed in the
whole process of reverting records, it is best to execute these enable
auto-generated values DDLs against the tables needed in the beginning
of the whole revert process and undo them (i.e. restore the restriction
of inserting auto-generated values) in the end of the whole revert pro-
cess, after all SQL statements generated by the log-records have been
executed. Example code will be shown in the next Section 5.4.

Here is an example code how to generate an INSERT statement that will
revert a DELETE statement from a log-record.

—————————————————

private static string GenerateRevertDeleteSqlStatement(LogRecord logRecord)
{

IDictionary<string, string> oldRecordValues = ConvertXmlToDictionary(logRecord.OldData);
/* Re-insert the deleted record with its last values. If the table contains computed columns, they

should be excluded from the SQL statement. These special columns can be retrieved from O/RM
mappings meta-data. */

return string.Format(”INSERT INTO 0 (1) VALUES (2)”, logRecord.TableName,



58 RADOSLAV RADEV

string.Join(”, ”, oldDataValues.Select(v => v.Key)),
string.Join(”, ”, oldDataValues.Select(v => string.Format(”’0’”, v.Value))));

}
—————————————————

5.4. O/RM framework Revert Changes Method. The O/RM frame-
work Revert Changes method should execute the following operations:

(1) Retrieve a set of log-records filtered by a given criteria, for example
for specific user and/or time interval.

(2) Identify the data-tables that need structural changes because of auto-
generated columns, as explained in Section 5.3.

(3) Open a connection to the database.
(4) Generate and execute DDL statements for the tables identified in Step

2. to enable insertion of concrete values in auto-generated columns.
(5) Starts a transaction to the database all revert operations should be

in a transaction.
(6) For every log-record generate and execute a revert SQL statement.

If the revert SQL statement has not affected any records, handle the
situation that the record we try to revert the changes of has been
changed later, for example by another user. It is up to the enterprise
application how to handle this situation. At least a few approaches
are possible to abort the whole revert process; to ignore the situation
and to continue with the next changes and to try to revert them; or
to require a user interaction how to proceed

(7) Commit the transaction to the database.
(8) Generate and execute DDL statements for the tables identified in Step

2. to disable insertion of concrete values in auto-generated columns,
i.e. to return the tables to their initial state.

(9) Close the connection to the database.

Here is an example revert changes method in C# for Entity Framework
4.0 [5].

—————————————————

public void RevertChanges(Guid userId, DateTime startDateTime, DateTime endDateTime)
{

// Get the logs filtered by the given criteria.
IEnumerable<LogRecord> logsToRevert = this.LogRecords
.Where(r => (r.User ID == userId) &&
(r.Date Time >= startDateTime) &&
(r.Date Time <= endDateTime))
.OrderByDescending(r => r.Date Time)
.ToArray();
/* Retrieve the tables with deleted records because the revert operation is an INSERT operation,

we need to enable insert of identity/auto-generated values in this tables. */
IEnumerable<string> tablesWithDeletedRecordsThatWillBeReinserted = logsToRevert



EXTENDING OBJECT-RELATIONAL MAPPING WITH CHANGE DATA CAPTURE 59

.OfType<DeleteLogRecord> ()

.Select(r => r.Table Name)

.Distinct()

.ToArray();
this.Connection.Open(); // Open a connection to the database.
try
{
/* Enable insert of identity/auto-generated values for each table with deleted records that will

be re-inserted. */
foreach (string tableName in tablesWithDeletedRecordsThatWillBeReinserted)
{ string cmdEnableIdentityInsertSql = string.Format(”SET IDENTITY INSERT 0 ON”, table-

Name);
this.ExecuteStoreCommand(cmdEnableIdentityInsertSql); }
// Start a transaction to the database within the opened connection.
using (DbTransaction transaction = this.Connection.BeginTransaction())
{
foreach (LogRecord logRecord in logsToRevert)
{ string revertSql = null;
// Generate the revert SQL statement according to the operation.
switch (logRecord.Operation)
{
case ”INSERT”: revertSql = GenerateRevertInsertSqlStatement(logRecord); break;
case ”UPDATE”: revertSql = GenerateRevertUpdateSqlStatement(logRecord); break;
case ”DELETE”: revertSql = GenerateRevertDeleteSqlStatement(logRecord); break;
}
// UPDATE statement that has made no changes - ignore it.
if (string.IsNullOrEmpty(revertSql)) continue;
try
{ // Execute the command against the database.
int recordsAffected = this.ExecuteStoreCommand(revertSql);
// Check the result
if (recordsAffected == 0)
{
/* The revert statement has not affected any records, i.e. its WHERE clause is not matched

by any record in the database. This means that the record that is to be reverted has been changed
by another user after the change. Usually an exception should be thrown here, but a more complex
logic is possible according to the enterprise application specific needs. */

}
}
catch (Exception ex)
{
/* Executing revert SQL statement has failed, due to constraints violation or some other

reason. More detailed information about the error can be retrieved from ex variable. */
}
}
transaction.Commit(); // Commit the transaction.
}
}
finally
{
/* Disable insert of identity/auto-generated values for each table with deleted records that have

been be re-inserted, i.e. return the table to its initial state. */
foreach (string tableName in tablesWithDeletedRecordsThatWillBeReinserted)



60 RADOSLAV RADEV

{
string cmdDisableIdentityInsertSql = string.Format(”SET IDENTITY INSERT 0 OFF”, table-

Name);
this.ExecuteStoreCommand(cmdDisableIdentityInsertSql);
}
this.Connection.Close(); // Close the connection to the database.
}

}
—————————————————

6. Quality Assurance

One of the fundamental concerns in software engineering is Quality As-
surance (QA) [23]. Very common methodology for its realization is the unit
tests [19]. Here we will describe how to implement unit tests to ensure the
correct behavior of our solution. We propose to test a few things:

(1) All data-tables in the database must have log-triggers.
(2) The code for every log-trigger should be correct. If we need to change

the log-trigger code in time, and because the log-trigger code is basi-
cally the same for all data-tables, we must be sure that all data-tables
have the latest version of the log-trigger. So as correct we will regard
the latest version of the log-trigger code.

There exists various options for implementation of these unit tests. We
will give an example with implementation in the following way: We will store
the correct (i.e. the latest) log-trigger code as an embedded file in the assembly
that contains the O/RM object context. The O/RM framework will read this
file. The code of the log trigger is the same for all tables, except the data-
table name. So the O/RM framework will store a template log-trigger code
and replace it with the given table name.

The unit test must execute the following actions to ensure all data-tables
in the database have a correct log-trigger:

(1) Retrieve all data-tables from the RDBMSs metadata with the code of
their log-trigger.

(2) Check if they have a log-trigger at all.
(3) Check if the code of the log-trigger is correct.

If there are other triggers in the database, it will be good to have a naming
convention for them in order to distinguish the log-triggers from other triggers.
An example for a naming convention is TR TABLE NAME Log, but it could
equally well be any other. Also, if we do not want to track changes for all data-
tables, but only for specific ones, we should modify our unit test to retrieve
from the database only the data-tables we want to track the changes of.



EXTENDING OBJECT-RELATIONAL MAPPING WITH CHANGE DATA CAPTURE 61

7. Conclusion and Further Work

In this paper an approach is proposed how to implement custom Change
Data Capture functionality with the help of O/RM framework. The clear
problem requirements are listed along with the proposed steps for our solution
divided in two layers database level (RDBMS) and application level (O/RM
framework). Fully-working and well-documented example source code is given
for every part of the solution along with an approach for quality assurance. We
proved empirically the correctness of our approach implementing it success-
fully in a real-world business application for interAxio project in Healthcare
Research & Development department of the Belgium company Televic. The
following technologies were used: Microsoft .NET Framework 4.0, C# 4.0,
Entity Framework 4.0 [5], SQL Server 2008 R2.

As future perspectives for our approach we consider: (1) Examine and
prove empirically its application for other RDBMSs and O/RM frameworks;
(2) Measure and evaluate the performance impact of the whole system where
it is integrated; (3) Explore how this logging could interfere with systems that
are using triggers for other things (pre-insert/post-insert triggers as example),
and where would the log trigger be inserted in the chain of called triggers; (4)
Does this procedure of logging could infere with other transactions and how?

References

[1] A.A. Chuvakin, K.J. Schmidt, Logging and Log Management: The Authoritative Guide
to Understanding the Concepts Surrounding Logging and Log Management, Syngress,
Waltham, 2012.

[2] Developer Network, DbContext class documentation, Microsoft,
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext

[3] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Longman
Publishing Co. Inc., Boston, 2002.

[4] K. Henderson, The Guru’s Guide to Transact-SQL. Addison-Wesley Longman, Reading,
MA, USA, 2000.

[5] Hibernate Community Documentation, Chapter 11. Transactions and Concur-
rency, http://docs.jboss.org/hibernate/core/3.3/reference/en/html/transactions.html,
(2014).

[6] A.T.F. Hutt, Data mappings again, Software: Practice and Experience, 8(1978), pp.
483493.

[7] C. Ireland, D. Bowers, M. Newton, K. Waugh, A classification of object-relational
impedance mismatch, in Proc. of First International Conference on Advances in
Databases, Knowledge, and Data Applications, IEEE, 2009, pp. 36-43.

[8] R. Kimball, J. Caserta, The Data Warehouse ETL Toolkit: Practical Techniques for
Extracting, Cleaning, Conforming, and Delivering Data, John Wiley & Sons, Inc., 2004.

[9] G. Knolmayer, H. Herbst, M. Schlesinger, Enforcing Business Rules by the Application
of Trigger Concepts, in Proc. of Priority Programme Informatics Research, Information
Conference, Module 1, Swiss National Science Foundation, Berne, Switzerland, 1994,
pp. 24-30.



62 RADOSLAV RADEV

[10] V. Krishnamurthy, S. Banerjee, A. Nori, Bringing object-relational technology to the
mainstream, in Proc. of SIGMOD ’99 ACM International Conference on Management
of Data, ACM, New York, 1999, pp. 513-514.

[11] J. Lerman, Programming Entity Framework, Building Data Centric Apps with the
ADO.NET Entity Framework, OReilly Media, Sebastopol, 2009.

[12] D.S. Linthicum, Enterprise Application Integration. Addison-Wesley Longman, Read-
ing, MA, USA, 2000.

[13] O.L. Madsen, Open issues in object-oriented programming - A Scandinavian perspec-
tive, Software: Practice and Experience, 25(S4), (1995), pp. 343.

[14] J. Melton, A.R. Simon, SQL: 1999, Understanding Relational Language Components,
Chapter 11 Active Databases and Triggers. Morgan Kaufmann, San Francisco, 2002.

[15] Microsoft MSDN documentation, Tracking Data Changes, Change Data Capture,
http://msdn.microsoft.com/en-us/library/bb522489(v=sql.105).aspx, (2014).

[16] Microsoft SQL Server documentation, For XML (SQL Server),
http://technet.microsoft.com/en-us/library/ms178107(v=sql.100).aspx, (2014).

[17] Microsoft SQL Server documentation, SET IDENTITY INSERT (Transact-SQL),
http://technet.microsoft.com/en-us/library/ms188059.aspx, (2014).

[18] E.J. O’Neil, Object/relational mapping 2008: hibernate and the entity data model,
in Proc. of SIGMOD ’08 ACM SIGMOD International Conference on Management of
data, ACM, New York, 2008, pp. 1351-1356.

[19] M. Olan, Unit testing: test early, test often, J. Comput. Sci. in Colleges archive,
19(2003), pp. 319-328.

[20] Oracle9i Data Warehousing Guide, Release 2 (9.2), Part Number A96520-01. Oracle
Corporation, 2002.

[21] Oracle9i Supplied PL/SQL Packages and Types Reference, Release 2 (9.2), Part Num-
ber A96612-01, Chapter 85: Functions and Procedures of DBMS XMLGEN, Oracle
Corporation, 2002.

[22] C. Popfinger, Enhanced active database for federated information systems, Doctoral
Thesis/Dissertation, Heinrich-Heine-Universität Düsseldorf, GRIN Verlag, Düsseldorf,
2007.

[23] G. Schulmeyer, J.I. McManus, Handbook of Software Quality Assurance, Van Nostrand
Reinhold Co., New York, 1987.

[24] N. Sharma, L. Perniu, R.F. Chong, A. Iyer, A.C. Mitea, C. Nandan, M. Nonvinkere,
M. Danubianu, Database Fundamentals. IBM Corporation, 2010.

Department of Computer Systems, Faculty of Mathematics and Informat-
ics, Plovdiv University ‘Paisii Hilendarski’, Tzar Asen str. 24, 4000 Plovdiv,
Bulgaria

E-mail address: radoslav radev@gbg.bg


