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SOME ASPECTS ABOUT TOPOS THEORY AND TREE

AUTOMATA

WILLIAM STEINGARTNER

Abstract. Category theory provides possibilities to model many impor-
tant features of computer science. Toposes as specific categories enable
to model theories over types. Another means used in computer science
for term calculus are tree automata that enable evaluation of well-formed
terms in this calculus. Our paper presents how the theory of algebraic
structures, namely group theory, can be represented in a topos. We also
specify its correspondence with tree automata enclosed in the category of
sets as a mapping.

1. Introduction

Computer systems are playing crucial rôles in every aspect of human ac-
tivities. The main idea of computer program for solving scientific problems
is to formulate the instructions designed to carry on required computations
and to generate the expected behavior [15]. To solve large scientific problems
by mathematical machines we always start with with the formulation of their
theoretical foundations. We need to formalize these theoretical foundations
as logical reasoning of various mathematical theories because the programs
should really prove the correctness of their results [6, 20]. A program consists
of data structures and algorithm. Data structures always have some types.
These types can frequently be very complex structures as algebraic structures,
vector spaces, etc. [9, 11], and also in databases [3]. In such cases set the-
ory does not suffice our needs to describe and represent them. Mathematics
provides a useful discipline, category theory that enables us to work with the
structures of arbitrary complexity and describe their properties and relations
between them [21]. Using of category theory in computer science has extremely
grown in the last decade [8]. Categorical methods are already well-established
for the semantic foundation of type theory, data type specification frameworks
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and graph transformation [8]. Categories are structures which enable to work
with objects of arbitrary complexity. Fundamentals of category theory are the
relations between objects [5]. These relations are expressed by morphisms.
In many applications of category theory, morphisms usually correspond to
computations, proofs, operations, etc. It depends on what we are modeling
with categories. Very useful kind of categories are toposes [2] that enable to
model theories. Toposes are special kind of categories defined by axioms say-
ing roughly that certain constructions one can make with sets can be done in
a category. Toposes are important also in theoretical informatics for modeling
computations [5, 14, 17]. In our paper we deal with the algebraic structures,
namely groups and we show how can be group theory represented in topos.
Automata provide useful means for recognizing languages, but they are very
important in other branches [10]. In our approach we give to input symbols
of sequential and tree automata some additional information, the types of
input symbols and we extend automata to typed sequential and tree automata.
Typed sequential automata can be used for type-checking of terms in typed
term calculus over a type theory of a given solved problem [13]. On the other
hand, typed tree automata enable evaluation of well-formed terms in this
calculus. We have shown how typed automata can be depicted in the category
Set of sets and functions [12]. In this paper we define the relation between
typed tree automata and groups modeled by categories as a mapping from a
topos to the category Set.

Groups are very known algebraic structures that are often used in com-
puter science. They are defined as triples (G,�, u), where:

• G is the universum set, and
• � is multiplicative operation, which is associative.

Multiplicative operation has a neutral element u so that

∀x ∈ G. x� u = u� x = x.

To each element of the universum set G has to be defined an inverse element
over the multiplicative operation with the property:

∀x ∈ G. ∃x−1 ∈ G. x� x−1 = u.

Groups can be represented in categories by several ways. The most obvious
way is to construct the category of groups Grp, where category objects are
groups and category morphisms are group homomorphisms. It is category,
because homomorphisms are composable and each object has identity cate-
gory morphism (identity homomorphism). We prefer another possibility - a
representation of groups in a topos, because we would like to represent not
only structures, groups, and homomorphisms between them, but the whole
theory with the axioms.
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Firstly, we shortly describe the group theory and in the next section we express
it in a topos. We present the notion of logical theory which was introduced in
[2]. The logical theory is a triple T = (X, c, α), where

• X denotes the basic type;
• c is the list of basic constants;
• α is the list of sentences - the axioms.

The group theory is a triple (G, [u,m, i] , α), where

• G is the basic type;
• u, m, i are constants of intended types G, GG×G, GG respectively;
• α is the list of axioms significant for groups.

A type GG represents the function space G→ G and a type GG×G the function
space G×G→ G. To ensure the constants u, m, i to have the proper types, we
must start with the constant (u,m, i) of the type G×P(G×G×G)×P(G×G),
where P denotes powerset. We formulate the appropriate axioms.
For groups we have usual axioms for associativity, neutral element and inverse
element. The axiom for associativity (here denoted α1) is

(1) α1 ≡ ∀x, y, z ∈ G. m(x,m(y, z)) = m(m(x, y), z),

where m ∈ GG×G is binary operation on G, m : G×G→ G.

The axiom of neutral element (α2) says that there exists an element u ∈ G
(also expressed as a constant or nullary operation on G, u :→ G) such that

(2) α2 ≡ ∀x ∈ G. m(x, u) = x ∧m(u, x) = x.

The last one is the axiom of inverse element (α3). For each x in G there exists
an element i(x) (or x−1, also known as unary operation on G, i : G→ G;) in
G where i ∈ GG, such that

(3) α3 ≡ ∀x ∈ G. m(x, i(x)) = u ∧m(i(x), x) = u,

where u is a neutral element (also known as identity element).
Now we are able to form new axiom,

(4) α4 ≡ (u,m, i) ∈ G×GG×G ×GG,

expressing the properties of constants and include it into axiom α. Thus α
consists of the conjunction of previous axioms of associativity, neutral and
inverse element and of constants u, m and i; and it is the conjunction of those
four sentences,

α = α1 ∧ α2 ∧ α3 ∧ α4.
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2. Semantics

For the reader’s convenience and to fix the notation we begin by recalling
some facts about categories and about toposes as special categories that serve
for our purposes. A category C consists of two classes:

• the class of objects A,B, . . .;
• the class of arrows (or morphisms) denoted f, g, . . .

For an arrow f : A→ B the objects A and B are the domain and codomain,
respectively. A homset Hom(A,B) is the set of all arrows with domain A and
codomain B in C. The arrows f : A → B and g : B → C are composable,
their composition f ◦g = fg : A→ C is associative in C and each object A has
identity arrow idA : A → A. We say that a category C has a terminal object
1 (initial object 0) if for every category object A there exists unique arrow
A → 1 (0 → A). A monomorphism at Fig. 1 (also called a monic morphism
or a mono) is a morphism denoted f : A� B such that

g1 ◦ f = g2 ◦ f

for all morphisms g1, g2 : X → A.

X
g1 -

g2

- A-
f

- B

Figure 1. Monomorphism f

A monomorphism in a category generalizes the concept of injection in set
theory.

2.1. Toposes. A topos is a special category E satisfying the following condi-
tions [4, 14]:

(1) E has a terminal object 1, and for every corner of morphisms X →
Z ← Y in E there is a pullback P (fibred product) at Fig. 2.

(2) E has a subobject classifier : an object (traditionally denoted) Ω with
a monomorphism true : 1 � Ω such that for any monomorphism
m : M � X in E there is an unique morphism χm : X → Ω such that
the following diagram is a pullback (Fig. 3).

The morphism χm : X → Ω is called characteristic (or classifying)
morphism of the monomorphism m : M � X.

(3) E has power objects: for each object X in E, there exists an object ΩX

and a morphism evalX : X × ΩX → Ω with the universal property:
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P - Y

X
?

- Z
?

Figure 2. Fibred product

M - 1

X

m

?

?

χm

- Ω

true

?

?

Figure 3. Subobject classifier

for any morphism f : X × Y → Ω in E there is an unique morphism
λf : Y → ΩX such that the diagram at Fig. 4 commutes.

X × ΩX evalX- Ω

X × Y

idX × λf

6

f

-

Figure 4. Truth valuation of the object

2.2. Models. Every topos has its own ”internal language”, also called the
Mitchell-Bénabou language [2]. We make use of this language to define the
notion of a model of a theory in topos. Let T = (X, c, α) be a fixed theory
with just one basic type X, one basic constant C and one axiom α, and let
E be a topos. The language of theory T we denote L [X, c]. We begin by
interpreting the language L [X, c] in the topos E. Firstly, given any object E
in E, we associate to each type symbol X of L [X, c] an object XE of E, its
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interpretation with respect to E, by setting [2]:

XE 7−→ E

PE 7−→ Ω

(PY )E 7−→ ΩYE(
Y × Y ′

)
E
7−→ YE × Y ′E

where Ω is the subobject classifier of the topos E. Now let C be the type of
the constant c, and let

e : 1→ CE

be any morphism of topos E with the indicated domain and codomain. Let
τ be a term in language L [X, c], with type U and free variable type V . The
interpretation of τ with respect to the pair (E, e) is a morphism

τ(E,e) : VE → UE

of the topos E, defined by induction with rules which can be found in [2].
A model M of the theory T in E consists of an object XM and a suitable
morphism cM in E, satisfying the axiom α. In other words, a model of the
theory T = (X, c, α) in the topos E is a pair (E, e) such that

α(E,e) = true : 1→ Ω.

If M = (E, e) is such a T -model, let ZM =def ZE for each type symbol Z in
L [T ]; so in particular M = (XM, cM).

It is clear that if T ′ = (X, c, [α1, . . . , αk]) is a theory with more than one
axiom then we can construct a conjunction α = α1∧ . . .∧αk as a single axiom
of T ′ and consider the theory T = (X, c, α) instead of T ′. We can simply
define a model of T ′ to be a model of T in the sense of preceding definition,
because the difference between the two theories is very slight. Similarly, a
theory T ′ = (X, (c1, . . . , cm), α) with several basic constants can be brought
into the desired form T = (X, c, α) by putting c = (c1, . . . , cm) as m-tuple.
Again, the difference between the two theories may not seem to warrant a
separate definition of a model of a theory with several basic constants and the
resulting distinction between T ′-models and T -models.

2.3. Group theory. The theory of groups has the language (G, [u,m, i]),
where the constants u, m, i have types G, GG×G, GG respectively, and axiom α
is the conjunction of the usual group axioms. A model M = (GM, [uM,mM, iM])
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of this theory in topos E thus consists of an object E = GM of E with mor-
phisms

uM : 1→ E,

mM : 1→ EE×E

iM : 1→ EE

in E. The latter two correspond by transposition to unique morphisms:

µ : E × E → E,

ι : E → E.

Since M is a model, αM = true : 1→ Ω in E. This condition is easily seen to
be equivalent to the statement that Figure 5 imagines a group in a topos E.

E × E
µ

- E
ι

- E

1

uM

6

Figure 5. Group in a topos

More explicitly, the sentence α, recall, is a conjunction α1 ∧ α2 ∧ α3 ∧ α4. So
clearly αM = true just if each (αi)M = true (for i = 1, 2, 3, 4). Let us show by
way of example that for, say, α1 the associativity axiom

∀x, y, z ∈ G. m(x,m(y, z)) = m(m(x, y), z),

(α1)M = true just if µ : E × E → E is associative.

From the definition of the interpretation of terms, one easily sees that
(α1)M =

(∀x, y, z ∈ G. m(x,m(y, z)) = m(m(x, y), z))M

= ∀G×G×G. (m(x,m(y, z)) = m(m(x, y), z))M(5)

= ∀G×G×G.δG 〈µ(idG × µ), µ(µ× idG)〉

where ∀G×G×G is a quantification over types known from higher-order logic [2].

Now µ(idG × µ) and µ(µ× idG) are the two paths round the familiar associa-
tivity diagram at Fig. 6.
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G×G×G
µ× idG- G×G

G×G

idG × µ

?

µ
- G

µ

?

Figure 6. The associativity in topos

But this diagram commutes, i.e. µ is associative, just if

δG 〈µ(idG × µ), µ(µ× idG)〉 =

trueG×G×G : G×G×G→ Ω,

that implies

∀G×G×G 〈µ(idG × µ), µ(µ× idG)〉 = true : 1→ Ω,

hence, by (5)

(α1)M = true : 1→ Ω.

Analogously we can prove the remaining group axioms. Then we can say that
group theory (G, [u,m, i]) can be represented in a topos E, which objects are
types and morphisms are mappings between types.

3. Trees and Tree automata

In this section we briefly introduce basic notions about trees and tree
automata working with trees.

3.1. Trees. In computer science, a tree is a widely-used data structure that
emulates a tree structure with a set of linked nodes. It is a special case of
a acyclic directed graph. Each node has zero or more child nodes, which are
below it in the tree (by convention, trees grow down). A node that has a
child is called the child’s parent node (or ancestor node, or superior). Every
node has at most one parent. We denote by N the set of positive integers.
We denote the set of finite strings over N by N∗. The empty string is denoted
by ε. A ranked alphabet is a couple Σ = (F,Arity), where F is a finite set
of function symbols and Arity is a mapping from F into N. The arity of a
symbol σ ∈ F is Arity(σ). The set of symbols of arity p is denoted by Fp.
Elements of arity 0, 1, . . . , p are respectively called constants, unary, . . ., p-ary
symbols, respectively. We assume that F contains at least one constant.
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Let X be the set of variables. We assume that sets X and F0 are disjoint.
The set T (F,X) of terms over ranked alphabet Σ with variables from X is the
smallest set satisfying the following requirements:

• F0 ⊆ T (F,X) and
• X ⊆ T (F,X) and
• if p ≥ 1, σ ∈ Fp and t1, . . . , tp ∈ T (F,X), then σ (t1, . . . , tp) ∈ T (F,X).

3.2. Tree automata. Tree automata are devices which treat the labeled trees
analogously as sequential automata handle sequences (words) of input sym-
bols. The internal structure of a sequential automaton is an unary algebra;
for a tree automaton it is an algebra of an arbitrary type [1]. As finitary type
we usually take a ranked alphabet: the finitary set of operations and the arity
map. A Σ-tree automaton is a sixtuple A = (Q, {δσ}σ∈Σ ,Γ, γ, I, λ) where:

• Q is set of states;
• δσ : Qn → Q are operations Q;
• Γ is an output alphabet; γ : Q → Γ is an output map; I is set of

variables; λ : I → Q is an initialization function.

The external behavior of the automaton A is expressed by the map β assigning
to each tree t the value β(t) from Γ which returns after the computation of t.

Example 1. Assume a set Z4 = {0, 1, 2, 3} and two operations: constant
τ = 1 and operation � = multiplication modulo 4. Let Σ : F = F0 ∪ F2,
where F0 = {1} and F2 = {�} and let (Z4,�) be the multiplicative Σ-algebra
of integers. Put Γ = {0, 1}, and let γ be the parity map:

γ(z) =

{
0 if z is odd;
1 if z is even.

Then we can construct a Σ-tree automaton A = (Z4, {1,�} ,Γ, γ, {x, y} , λ)
with the initial assignment λ (x) = 3 and λ (y) = 2. The ”action” of this
automaton consists of taking any binary tree with leaves x and y, computing
the tree and giving an output [1, 7]. For example, the tree at Fig. 7 has the
computational sequence depicted at Fig. 8.
We used operation � for multiplication modulo 4. The result of computation
of the tree is 2, resulting output is γ(2) = 1. ut

3.3. Tree automata in category. The category Set of sets has sets as objects
and functions between sets as morphisms. Now we represent Σ-tree automata
in Set. Assume, for simplicity, that Σ has just one binary operation. Then a
Σ-tree automaton is a diagram in Fig. 9 [1].
The sets Q, I,Γ and Qn (where n is arity) are objects, and functions δ, λ, γ
are morphisms in category Set. So category of sets is able to represent any
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Figure 7. Example of tree

Figure 8. Computational sequence of the tree

I

Qn
{δ}

- Q

λ

? γ
- Γ

Figure 9. The diagram of Σ-tree automaton in a category of sets

tree automata. Our goal is to assign to any tree automaton the group over
which is automaton able to make computations with trees. We will construct
this assignment as a mapping.
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4. Relation between tree automata and groups

Our goal is to express the relation between tree automata and mathemat-
ical structures - groups. Model M of logical theory from chapter 3.3 maps an
universum set G into object GM of topos E. This object we can denote also
E, i.e. GM = E. Objects of our topos E are images of universum sets. As
objects we have products of objects (E ×E, because topos is cartesian closed
category [4]), and special objects 1 and Ω (traditionally). Let morphisms of
our topos E represent the operations over universum sets, i.e. they are images
of operations. So we have morphisms that are images of nullary, unary and
binary operations (in model M).
All that we said we can list in Tab. 1.

Operation Operation in group Representation in topos
multiplicative operation m(x, y) mM

inverse operation i(x) iM
neutral element u uM

Table 1. Correspondence between group operations and their
representations in topos

Mappings m and i correspond by transposition to unique morphisms µ and ι
from chapter 3.3 [2]. Now we can formulate assumptions for the automaton
A:

• we need to represent values from universum set by states in which
automaton operates;
• the set of automaton operations contains just one binary and one unary

operation;
• a nullary operation is a constant.

We are able to find elements with similar properties and behavior over groups.
Let for each object E of topos (of groups) we have such a set of states Q
that automaton working with values of universum set (depicted in object E)
can reach states from Q. For morphisms of topos we assign corresponding
automaton mappings - according to Table 1 - in category of sets. Let δ(i) be
the operation from automaton with arity i. Let A0 be the simplified automaton
of A such that A0 = (Q, {δ}). We identify it as a computing part of automaton
A. Now we construct the correspondence (Tab. 2).

as a mapping

U : E→ Set.
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In topos E In category Set
Objects GM = E sets of states

Morphisms uM : 1→ E δ(0) : 1→ Q

ι : E → E δ(1) : Q→ Q

µ : E × E → E δ(2) : Q×Q→ Q
Identity idE : E → E idQ : Q→ Q

Table 2. Correspondence between groups in toposes and au-
tomata in category of sets

whereby

U : (E, {µ, ι, uM}) 7→
(
Q,
{
δ(i)
}
|i∈{0,1,2}

)
where

(
Q,
{
δ(i)
}
|i∈{0,1,2}

)
is a substructure of the automaton A. By extending

of this structure with initial variables, initialization and output alphabet we
obtain complete automaton.

5. Conclusion

In our paper we have presented how can be a theory of algebraic structures,
namely group theory, represented in a topos. We showed how tree automata
can be depicted in the category of sets and we defined correspondence be-
tween groups iand tree automata as a morphism. Our approach integrates
algebraic structures and tree automata into categorical environment. We can
treat in similar manner also more complex structures that are important in
our research, e.g. for type theory and logical system constructed over it as
categorical fibration.
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978-80-8143-049-9.

Faculty of Electrical Engineering and Informatics, Technical University
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