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SOME COMBINATORIAL ASPECTS OF THE KSAm-LIKE

ALGORITHMS SUITABLE FOR RC4 STREAM CIPHER

BOGDAN CRAINICU, FLORIAN MIRCEA BOIAN

Abstract. RC4 remains one of the most widely used stream cipher. In
order to face the main critical weaknesses, a number of proposals for mod-
ifying RC4 algorithm have been advanced. In this paper we analyze some
combinatorial aspects regarding the randomness of a variant of the Key-
Scheduling Algorithm (KSA), called KSAm, proposed by Crainicu and
Boian in [2] as a better protection against Initialization Vectors (IVs) weak-
ness of Wired Equivalent Privacy (WEP) cryptosystems. Based on a model
presented by Mironov in [19], we calculate the sign of the entries’ permuta-
tion of the internal state table S after KSAm, which provides a negligible
advantage of guessing a particular bit. Then, we analyze the probability of
the event where a particular initial value follows a linear forward movement
through the vector S, with possible undesirable consequences in predicting
the value during that movement.

1. Introduction

RC4 is a stream cipher which was designed by Ron Rivest in 1987 for
RSA Security. RC4 was kept as a trade secret until an alleged copy of it was
anonymously posted to the Cypherpunks mailing list in 1994.

Because of its simplicity and speed, RC4 is one of the most widely used
stream cipher; for example, it is used in the SSL/TLS (Secure Socket Layer/
Transport Layer Security) standards, WEP (Wired Equivalent Privacy), WPA
(Wi-Fi Protected Access), and it can be also found in email encryption prod-
ucts.

There were discovered many significant weaknesses of RC4 and RC4-based
WEP implementations: weak IVs/keys [1, 4, 8, 9, 10, 13, 14, 21, 22, 26, 28],
invariance weakness [4], bias in the second output [16], related key attack [4,
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7], state recovery attack [11, 20, 23, 27], distinguishing attack [3, 5, 16-19, 24,
25], biased distribution of RC4 initial permutation [24, 28].

In order to address its critical weaknesses, a number of proposals for mod-
ifying RC4 algorithm have been advanced: Paul and Preneel present in [25]
a new pseudorandom bit generator called RC4A, Zoltak proposes in [29] the
VMPS stream cipher, and Gong, Gupta, Hell and Nawaz also propose in [6] a
new 32/64-bit RC4-like keystream generator.

Crainicu and Boian proposed in [2] a modified version of KSA, called
KSAm, whose primary goal was to face the weakness exhibited by Fluhrer,
Mantin and Shamir (FMS) in [4], where certain IVs leaks information about
the secret key in WEP mode of operation. The authors demonstrate that
the attacker has no possibilities to manipulate KSAm permutation in order
to reach the FMS resolved condition. Based on the Roos’ experimental obser-
vation [26], there is a weaker probabilistic correlation between the first three
words of the secret key and the first three entries of the state table after
KSAm, which causes a negligible bias of the first word of the RC4KSAm (RC4
with KSAm as Key-Scheduling Algorithm) output stream towards the sum of
the first three words of the secret key. The effect of this negligible bias can
be easily avoided by discarding only the first word from the RC4KSAm output
stream.

In this paper, we examine two combinatorial properties of the KSAm in
its normal mode of operation, and not from the perspective of a particular im-
plementation. Firstly, based on a model of a shuffling technique presented by
Mironov in [19], where an idealized RC4 stream cipher is involved, we comute
the sign of the permutation of S after KSAm, whose values help to predict
a bit b with a probability of 0.91% over a random guess. This advantage is
too small to be feasible in an attack. We also analyze the state table entries
during the KSAm steps, with special focus on calculating the probability of a
linear advance movement of an initial value from a particular state table entry
during KSAm. The results prove that it is very unlikely to find a location in S
during such movement where that value may be predicted with a probability
significantly greater than 1/N.

2. KSAm

Crainicu and Boian suggest in [2] a modified version of the original KSA,
called KSAm (Fig. 1), for addressing the FMS weakness of WEP-like cryp-
tosystems, mainly when IV precedes the secret key.

The KSAm takes the secret key and initializes a vector of indices u0, u1, . . . ,
uN−1; the values of indices ui are not necessarily unique within the vector of
indices, and they are kept secret. Then, it swaps the two values of S pointed to
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KSA (K, S)

Initialization:

for i = 0 to N – 1 

S[i] = i;

j = 0; 

Scrambling:

for i = 0 to N – 1 

j = (j + S[i] + K[i mod ]) mod N; 

swap(S[i],S[j]);  

KSAm (K, S)

Initialization:

for i = 0 to N – 1 

S[i] = i;

Scrambling 1:

for i = 0 to N – 1                                              

ui = (S[i] + K[i mod ]) mod N;         

for i = 0 to N – 1                                              

swap(S[i], S[ui]);                                

j = 0; 

Scrambling 2:

for i = 0 to N – 1 

j = (j + S[i] + K[i mod ]) mod N;             

swap(S[i],S[j]);                                   

Figure 1. KSA vs KSAm [2]

by i and ui, so that the Scrambling 1 stage of KSAm ends with a secret state,
which is different from the identity permutation with a very high probability.
The rest of operations (Scrambling 2 ) remain the same as in the original KSA:
it applies the scrambling rounds N = 2n times, stepping i across S, updating
j by adding the previous value of j, S[i] and the next word of the key.

In fact, KSAm comprises a family of key scheduling algorithms, where
Scrambling 1 sequence tries to follow the Knuth’s observation [12]: instead
of swapping S[i] with a random entry, it must be swapped with an entry
randomly chosen from S[i] to S[N − 1] (the implementation of this concept
remains still problematic due to the randomness of the secret key K).

At a glance, the first observation is that there are now two different scram-
bling processes, both of them based on the same secret key. Even if the
computation/running time of KSAm is almost twice as long as that of KSA,
the additional time is insignificant (the software implementation remains very
fast).

The security of KSAm comes also from its huge internal state. The internal
state of RC4KSA is approximately 1700 bits for 8-bits words. Instead, KSAm
provides a much larger size and, as result, it is much harder to reconstruct its
internal state. Crainicu and Boian present in [2] the formula for calculating
LRC4−KSAm, which represents the size of the RC4KSAm’ internal state (the
values of indices ui are not necessarily unique; therefore, the number of all
possibilities of distributing 2n elements into 2n cells where repetitions are
allowed is (2n)2

n
) [2]:
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LRC4−KSAm = log2(2
n!× (2n)2

n × (2n)2)] = [log2(2
n!) + (n× 2n) + 2n]

LRC4−KSAm,n=8 ≈ 3748 bits

Beside KSA, KSAm needs only additional 256 bytes of memory for the in-
dices ui (for N = 8), which represents a negligible amount of supplementary
memory.

3. On Randomness of KSAm

Two independent scrambling processes are involved with KSAm; therefore,
after running consecutively both of them, each element of the state table will
be swapped at least twice (possibly with itself).

Based on a series of significant studies on the original KSA [5, 16, 17, 19,
20, 23, 24], two of the most important approaches for analyzing KSAm are to
deduce the probability of a linear advance movement of a value b which each
step along the locations of vector S, and also to calculate the probability of
a value b to end up in any location a (including the probability of identity
permutation).

3.1. The sign of the permutation S after KSAm. Mironov calculates in
[19] the limiting distribution for the two possible values (+1 and −1) of the
sign of S after KSA:

P (sign(S) = (−1)N ) =
1

2

(
1 + e−2

)

P (sign(S) = (−1)N−1) =
1

2

(
1− e−2

)

Therefore, Mironov demonstrates that it is possible to predict the sign of the
permutation S after KSA with probability 1 − 1

2 ⋅ e−2, and he shows that
this value of about 6.7% over a random guess becomes also the advantage of
guessing the bit b correctly.

Next, we compute the sign of the permutation S after KSAm. Two scram-
bling sequences are involved in KSAm, and therefore we have 2N rounds. At
each round and regardless of what scrambling sequence is about, the swap
process changes the sign of the permutation only if i ∕= j. This happens with
probability

(
1− 1

N

)
. If i = j, with probability 1

N , the values of S pointed by
i and j remain unchanged. The probability that i ∕= j during all 2N rounds

of KSAm is
(
1− 1

N

)2N
, and the probability that i = j during all 2N rounds

of KSAm is
(
1
N

)2N
. The sign of the identity permutation is +1.

Based on these observations, the probability that the sign of S is changed
an even number of times and at the end of KSAm is negative, is:
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P (sign(S) = (−1)2N ) =

(
1− 1

N

)2N

+ C2
2N ⋅

(
1− 1

N

)2N−2

⋅ 1

N2
+

C4
2N ⋅

(
1− 1

N

)2N−4

⋅ 1

N4
+ . . .+ CN

2N ⋅
(
1− 1

N

)N

⋅ 1

NN
+

CN+2
2N ⋅

(
1− 1

N

)N−2

⋅ 1

NN+2
+ . . .+ C2N

2N ⋅
(
1− 1

N

)0

⋅ 1

N2N
=

(
1− 1

N

)2N

⋅
[
1 +

2N ⋅ (2N − 1)

2! ⋅N2
⋅
(
1− 1

N

)−2

+

2N ⋅ (2N − 1) ⋅ (2N − 2) ⋅ (2N − 3)

4! ⋅N4
⋅
(
1− 1

N

)−4

+ . . .+
1

N2N

]
→

e−2 ⋅
(
1 +

4

2!
+

16

4!
+

64

6!
+ . . .

)
=

e−2

2
⋅
(
2 +

8

2!
+

32

4!
+

128

6!
+ . . .

)
−−−−→
N→∞

e−2

2
(e2 + e−2) =

1

2
⋅ (1 + e−4

)

The probability that the sign of S is changed an odd number of times and at
the end of KSAm is negative, is:

P (sign(S) = (−1)2N−1) = 1− P (sign(S) = (−1)2N ) =
1

2
⋅ (1− e−4

)
.

After KSAm, the sign of S can be predicted with an very small advantage

of e−4

2 ≈ 0, 0091 over the random guess, which means approximately 0.91%.
Mironov obtains in [19] approximately the same result by running consecu-
tively two times the original KSA.

Even if we found a small bias towards the sign of the permutation after

KSAm, the value e−4

2 is totally useless for attacking RC4 based on KSAm. As
further precaution, discarding only the first three words of the output of RC4
ensures the security of the algorithm.

3.2. Probability of a linear advance movement of an initial value from
a particular state table entry during KSAm. We define the minimum
probability of a given initial entry S0[a] = a as the probability that this entry
remains unchanged during each step of one of the two scrambling processes of
KSAm. Thus, the minimum probability of the identity permutation is defined
as the multiplication of all minimum probabilities corresponding to each initial
entry S0[a] = a.

We refine the Theorem 1 from [2]:
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Theorem 1. The minimum probability of a given initial entry S0[a] = a after
N steps is:

(1) P (SN [a] = a) =
1

N
⋅
(
1− 1

N

)N−1

Proof. At a some point, the index i touches the value a. In this round,
with probability 1/N, i = j = a, and therefore S[a] will be swapped with itself.
For the rest of the (N − 1) rounds we have i ∕= a, and j ∕= a with probability(
1− 1

N

)
.

The minimum probability of the identity permutation, which means that
all N entries of table S remain unchanged after completion of one of the two
scrambling process is:

(2) P (SN = identity permutation) =

[
1

N
⋅
(
1− 1

N

)N−1
]N

Result 1. [19]: The probability of the value b to end up in location a in
S at the end of the KSA round (the distribution of KSA outputs) is:

P [SN [a] = b] =

⎧
⎨
⎩

1
N

[(
1− 1

N

)N−a−1
+

(
1− 1

N

)b]
if a < b

1
N

[(
1− 1

N

)b
+

(
1− (

1− 1
N

)b) (
1− 1

N

)N−a−1
]

if a ≥ b

For example, the minimum probability for event SN [0] = 0 is 1
N ⋅ (1− 1

N

)N−1
,

and according to Result 1, the probability for event SN [0] = 0 is 1
N .

Theorem 2. Assuming that both indices ui and j take values independently
and uniformly at random at each round of the two scrambling processes of
KSAm, the probability of the value b to end up in location a + 1 in S in the
round a of Scrambling 1 or Scrambling 2, where S0[0] = b, is:

(3) P (Sa[(a+ 1)modN ] = b) =
1

N
, a ∈ [1, N ] and b ∈ [0, N − 1]

Proof. At each round, taking into account that the value of i is known,
we can analyze the probability of the event Sa[(a + 1)modN ] = b, which
depends on the value taken by ui or j. The value b, during the a rounds,
must not remain behind a location pointed by i(i ∈ [0, (a + 1)modN ]) nor
to reach a position after the [(a+ 1)modN ]tℎ location in S, because, in these
situations, there are no possibilities to manipulate the value b so that it ends
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up in location [(a + 1)modN ]. Following the steps of either Scrambling 1 or
Scrambling 2, we have:

S1[2] = b if j1 = 2 (the initial condition is S0[0] = b) ⇒

P (S1[2] = b) = P (j1 = 2) =
1

N
;

S2[3] = b if < j1 = 1 and j2 = 3 > or < j1 = 3 and j2 ∕= 3 >⇒

P (S2[3] = b) = P (j1 = 1) ⋅ P (j2 = 3) + P (j1 = 3) ⋅ P (j2 ∕= 3) =

1

N2
+

1

N
⋅
(
1− 1

N

)
=

1

N
;

S3[4] = b if < j1 = 1 and j2 = 2 and j3 = 4 > or < j1 = 1 and j2 = 4
and j3 ∕= 4 > or

< j1 = 2 and j2 ∕= 2 and j3 = 4 > or < j1 = 4 and j2 ∕= 4 and j3 ∕= 4 >⇒

P (S3[4]) = P (j1 = 1)⋅P (j2) = 2)⋅P (j3 = 4)+P (j1 = 1)⋅P (j2 = 4)⋅P (j3 ∕= 4)+

P (j1 = 2) ⋅ P (j2 ∕= 2) ⋅ P (j3 = 4) + P (j1 = 4) ⋅ P (j2 ∕= 4) ⋅ P (j3) ∕= 4) =

1

N3
+

2

N2
⋅
(
1− 1

N

)
+

1

N
⋅
(
1− 1

N

)2

=
1

N
;

. . .

P (S4[5] = b) =
1

N4
+

3

N3
⋅
(
1− 1

N

)
+

3

N2
⋅
(
1− 1

N

)2

+

+
1

N
⋅
(
1− 1

N

)3

=
1

N

P (S5[6] = b) =
1

N5
+

4

N4
⋅
(
1− 1

N

)
+

6

N3
⋅
(
1− 1

N

)2

+

+
4

N2
⋅
(
1− 1

N

)3

+
1

N
⋅
(
1− 1

N

)4

=
1

N
;

. . .
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P (Sa[a+ 1] = b) =
1

N
⋅
(
1− 1

N

)a−1

+
(a− 1)

1! ⋅N2
⋅
(
1− 1

N

)a−2

+

(a− 1) ⋅ (a− 2)

2! ⋅N3
⋅
(
1− 1

N

)a−3

+
(a− 1) ⋅ (a− 2) ⋅ (a− 3)

3! ⋅N4
⋅
(
1− 1

N

)a−4

+

(a− 1) ⋅ (a− 2) ⋅ (a− 3) ⋅ (a− 4)

4! ⋅N5
⋅
(
1− 1

N

)a−5

+ . . .+
1

Na
=

1

N

For Scrambling 1, b = 0, and for Scrambling 2, b ∈ [0, 255]. Applying the
Result 1, where the initial state is the identity permutation, for b = 0 and
a = 1, we obtain P [SN [1] = 0] = 1

N , and applying the Theorem 2 for a = N,

we have the same result: P (SN [(N + 1)modN ] = 0) = 1
N .

Theorem 2 can be adapted for all entries of the initial permutation S0. The
significance of Theorem 2 lies in the fact that the event that a particular value
b follows a linear path through the vector S, and consequently ends up in an
expected location after Scrambling1, has a probability around 1

N . This result
has also to be considered in the context of starting Scrambling 2 with a state
table S which is different from the identity permutation with high probability.

4. Conclusions

We investigated KSAm [2] from the point of view of shuffling algorithm
presented by Mironov in [19]. We calculated as well the probability of the
sign of the permutation S, but after KSAm, finding a value which may help
in predicting that sign with an advantage of 0.91% over a random guess.
Mironov obtains in [19] about the same result by running consecutively two
times the original KSA, but KSAm benefits from a much larger size of the
internal state and the running of two different scrambling processes. The
mentioned advantage of 0.91% over a random guess, biased towards the sign
of the permutation after KSAm, is though too small, so that an attack against
RC4KSAm could not rely on it. As precaution, an additional measure for
thwarting against this weakness consists in discarding only the first three words
of the output of RC4KSAm.

The second part of our analysis is focused on calculating the probability
of a particular event, namely, a linear advance movement of the state table
entry S0[0] = b during KSAm rounds. The value obtained is about 1

N , which
demonstrates that such event happens randomly. The result can be extended
to the others entries of the initial state table S.
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