KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2007

Cluj-Napoca (Romania), June 6-8, 2007, pp. 324-331

METRICS-BASED SELECTION OF A COMPONENT ASSEMBLY

CAMELIA SERBAN() AND ANDREEA VESCAN()

ABSTRACT. The work of integrating the components with each other and with
the rest of the system is the most important part of the component-based de-
velopment process. The interaction among components in an assembly is
essential to the overall quality of the system. When integrating components
into a system assembly, it would be useful to predict how the quality at-
tributes for the whole system will be. In order to predict and to asses quality
attributes, the usage of software metrics is a necessity.

Software metrics that follow the assembly-centric evaluation approach
are used to select (from all obtained assemblies) the solution that best rep-
resents the system requirements.

1. INTRODUCTION

The goal of software composition is to find a good combination of components
that leads to a software system that responds to client-specific requirements. Soft-
ware composition promises components reuse and therefore productivity gains,
because of shorter time-to-market and improved quality. Two steps need to be
done when a system is to be constructed from a set of components: building all
possible configurations and then analyzing each of these assemblies in order to
obtain the final solution.

The long-term success of Component-Based Development (CBD) depends on
the ability to predict the quality of the obtained systems. For this reason re-
searchers and practitioners are keen on developing techniques for efficient com-
ponent selection and composition [3]. Issues related to developing a composition
theory include determining how to predict the properties of assemblies, how to
measure properties of components, how to verify the measurements, and how to
communicate the property values to component users.

The realm of software metrics includes proposals for both product and process
assessment. In this paper, we are concerned with product metrics, with a focus
on metrics for component selection and composition.

2000 Mathematics Subject Classification. 68N30, 68N19.
Key words and phrases. software metrics, component assembly, assemblies quality at-
tributes prediction.

(©2007 Babes-Bolyai University, Cluj-Napoca

324

METRICS-BASED SELECTION OF A COMPONENT ASSEMBLY 325

Problem statement. A set of specified components and the system require-
ments that we want to develop are given. In our previous work we had developed
an algorithm [10] that obtains all the possible and correct system configurations
from the given components. In order to decide which solution to choose (that best
represents the system requirements) we use metrics to assess quality attributes
that are of interest for assembly evaluation.

The remainder of this paper is organized as follow. After this introduction,
section 2 presents our previous and current view on component and component
composition. Next, section 3 presents a collection of assembly metrics that are
relevant for measuring the quality attributes which we are interested in. An ex-
ample and result analysis are given in Section 4. The paper finishes by drawing
some conclusions and outlining further research activities.

2. COMPONENT SPECIFICATION ELEMENTS AND COMPOSITION

There are many similar but not identical definitions of components, although the
basic idea seems to be the same. All definitions highlight the basic characteristics
of a component: it is an independent software module; provides a functionality,
but is not a complete system; can be accessed only through its interface and can
be incorporated in a software system without regard to how it is implemented.

2.1. Component Specification Elements. In this section our previous ap-
proach on component specification elements are presented. There are two kind
of components: simple and compound [4]. A simple component can have many in-
put data and many output data that represent the parameters of the functionality
(only one) being implemented. A compound component is a group of connected
components, in which the output of a component is used as input by another com-
ponent from this group. Two particular simple components are the source ' and
the destination ? component.

Another previous approach of component specification involved the following
characteristics: component id and interface. The interface of the component
should describe all the exported features of the component. The services pro-
vided by the component are seen as functions, so the interface specifies a list of
function signatures. In this paper we separate the interface of a component in
provided interface and required interface.

2.2. Components Composition Reasoning. The goal of software composition
is to find a good combination of components that leads to a software system that
responds to client-specific requirements [1]. The components assembly process
consists of building a set of all possible configurations with the given candidate

LA source component, i.e. a component without inports, is a component that generates
data provided as outports in order to be processed by other components.

2A destination component, i.e. a component without outports, is a component that receives
data from the system as its inports and usually displays it, but it does not produce any output.

326 CAMELIA SERBAN() AND ANDREEA VESCAN()

components. A configuration is constructed by adding based on the data depen-
dencies (provided and required services) a candidate component [10].

3. SOME RELEVANT SUITE OF METRICS

In order to assess, in an quantitative manner, some quality attributes that
are considered important for our system, we need to define a set of metrics that
measure these attributes. Before we define metrics, we need to know the type
of information that is available about the entities we plan to asses (the software
components and the assembly). The fact that components are black box and
binary units of composition, whose internals cannot be viewed or accessed, only
leaves us with externally observable elements of the component that allow to assess
its quality. The quality attributes that we decided to measure are: reusability,
functionality, understandability, maintainability and testability.

In this section we present a collection of software component metrics that are
relevant in measuring the quality attributes stated above. All these metrics are
context-dependent: a given component will have different metrics values depending
on the particular architectural configuration in which it is placed.

3.1. Metrics Overview in CBD. In this section we present metrics already
introduced by other researchers. In [6] the metrics described above were formalized
in OCL and a comparison was made.

In [7] Hoek et al. proposed metrics to asses service utilization in component
assemblies. The metrics follow the assembly-centric evaluation approach.

Definition 1. Component service utilization metrics. [7] The Provided Ser-
vices Utilization (PSU) represents the ratio of services provided by the component
which are actually used (Equation 1 - left side). The Required Services Utilization
(RSU) is similar, but for required services (Equation 1 - right side).

Pactual Ractual
1 PSUx = RSUx =
() X Ptotul X Rtotal

where: P,.t,q; = number of services provided by component X that are actually
used by other components and P;,, = number of services provided by compo-
nent X; Ryctuqr = number of services required by component X that are actually

provided by the assembly and Ry, = number of services required by component
X.

Definition 2. Compound Service Utilization metrics. [7| The Compound
Provided Service Utilization (CPSU) represents the ratio of services provided by
the components in the assembly which are actually used (Equation 2 -left side).
The Compound Required Service Utilization (CRSU) is similar, but for services
required by the components (Equation 2 - right side).

METRICS-BASED SELECTION OF A COMPONENT ASSEMBLY 327

_Z P(ictual Z szctual
(2) CPSUx ==L —— CRSUy = 5
; Pgotal ; Réotal

where P!, = number of services provided by component i that are actually
used by other components and Ptioml = number of services provided by component
i; R! ... = number of services required by component i that are actually provided
by the assembly and R!,, = number of services required by component i.

In [8] Narasimhan and Hendradjaya proposed metrics to asses component in-
teraction density (a measure of the complexity of relationships with other compo-

nents).

Definition 3. Interaction density of a component. [8] The Interaction Den-
sity of a Component (IDC) is defined as a ratio of actual interactions and potential
ones (Equation 3). The Incoming and Outgoing Interaction Density of a Com-
ponent (IIDC and OIDC, respectively) are similar, but considering only incoming
interactions (Equation 4 - left side) or outgoing ones (Equation 4 - right side).

#1
I1DC =
®) ©= e
where #I = Actual Interactions and #1,,,, = Maximum available interactions.
#In #louT
4 IIDC = ———— OIDC = =272
() #Ima:cIN #ImaIOUT

where #I;ny = Actual incoming interactions and #1478y = Maximum available
incoming interactions and #Ioyr = Actual outgoing interactions and #1,qz0UT
= Maximum available outgoing interactions.

Definition 4. Awverage Interaction Density of Software Components. [8]
The Average Interaction Density of Software Components (AIDC) represents the
sum of IDC for each component divided by the number of components.

IDCy+1DCy + IDC,
H#components

(5) AIDC =

where IDC; = IDC of component ¢ and #components = number of components
in the system.

In our previous work [9] a component assembly was view as a graph (trans-
formed in a dependences tree). This approach enabled us to define new metrics
for depth and breadth components hierarchy (measuring dependences calls be-
tween components).

328 CAMELIA SERBAN() AND ANDREEA VESCAN()

3.2. Proposed Metrics. We propose the following two metrics for measuring
coupling between components.

Definition 5. Component Coupling Grade. The Component Coupling Grade
(CCG) of a component X witch is dependent by a component Y, represents the
number of services provided by Y that X uses. In what follows we will denote this
value with CCG(X,Y).

Definition 6. Component Coupling Total Grade. The Component Coupling
Total Grade (CCTG) of a component X which is dependent by a set of components
C1,Cs,...,C,, represents the number of services provided by all these components
that X uses.

(6) CCTG = CCG(X,Cy) + CCG(X,Cs) + ... + CCG(X, Cy).

3.3. The influence of metrics values on quality attributes. We stated be-
fore that our aim is to define metrics that are relevant in measuring the quality
attributes which we are interested in. We need these informations for choosing
the solution that best represents the system requirements. Table 1 presents the
influence of metrics values on the quality attributes witch we consider important
for the assembly evaluation. We use the following notations: m for metric low
value, M for hight value of the metric, + for positive influence and — for negative
influence. For example a low value of IDC influences positively the reusability of
the component.

TABLE 1. The influence of metrics values on quality attributes

’ H Reusability‘ Functionality‘ Understandability‘ Maintainability‘ Testability‘

PSU || m/+ m/- m/+ m/+ m/+
RSU || m/+ - m/+ m/+ m/+
CPSU || m/+ m/- m/+ m/+ m/+
CRSU || m/+ - m/+ m/+ m/+
IDC || m/+ m/- m/+ m/+ m/+
IDC || m/+ - m/+ m/+ m/+
OIDC || m/+ m/- m/+ m/+ m/+
AIDC || m/+ - m/+ m/+ m/+
CCG || M/- M/+ M/- M/- M/-
CCTG|| M/- M/+ M/- M/- M /-

A threshold is a limit (high or low) placed on a specific metric. All the above
metric values scale between 1 and 0, except the CCTG and CCG. We set the
value of the threshold at 0.5. In our future work we will apply precise methods in
choosing the threshold value.

METRICS-BASED SELECTION OF A COMPONENT ASSEMBLY 329

4. EXAMPLE AND RESULT ANALYSIS

In this section we present an example to illustrate the above metrics and our
approach for the best solution selection based on metrics.

The system designer, during the requirements analysis phase, grouped the input
and output data of the system into three required interfaces and two provided
interfaces. The first step of how configurations can be built consists of selecting
from a repository the set of components that may potentially participate in the
final system. In this example, nine components have been found as candidates.
We add two more components to complete the final system: a Read (R) and a
Write (W) component. The algorithm [5, 10] provided several solutions. For the
purpose of this paper we only present two of them and discuss the different metrics
values for each system-solution and their influences on the quality attributes.

The first solution is represented in figure 1 - right side. From the set of selected
candidate-components this solution contains only six of them (without taking into

consideration the R and W components).
S

Wnte
First solution

:%/fw

Second solution

FIGURE 1. System first and second solutions

The values of the metrics for each component in the final system are presented in
table 2 and the assembly value metrics in table 3. The tables show that the solution
described above has the values for the metrics around the medium value, for all
quality attributes. For example, the majority of the components have a very high
functionality in the system (PSU, CPSU, OIDC and IDC values are very close to 1)
and at the same time they can offer new functionalities for the future improvement
by adding new provided services (influences the maintainability attribute).

330 CAMELIA SERBAN() AND ANDREEA VESCAN()

PSU [RSU [IDC | TIDC | OIDC | CCTG

C, 1033 1 |05 1 | 025 2
= =

gz 0.166 o.fo o.fG OI) 0.175 ; ¢ I
3
Co 1 0751083080 1 3 0.68 T;Séii 0.77
C- 1050 | 0.66 |0.50 | 0.50 | 0.50 2 Y
Cs 1033 1 |071| 1 | 033 3 i Y
Cr 1 _ 1 _ 1 _ values
Cw | — 1 1 1 - 2

TABLE 2. System first solution
metrics values

Regarding the coupling metrics we can remark that there is a maximum limit
that is not very high and we can say that the maintainability and reusability are
not strongly influenced. The assembly values metrics suggest that the solution is
not considered to be the “best” for every quality attribute, but a medium “best”
solution for the overall system. The value of the AT DC metric is close to 1 but we
must take also into consideration the CCT'G metric to decide which solution best
represents our future needs (if we would like to improve and add new functionality
or if we just want to have a good functionality for the system).

The second solution chosen to be represented is depicted in figure 1 - left side.
The solution contains only three internal components form the set of candidate-
components. The values of the metrics for each component in the final system are
presented in table 4 and the assembly value metrics in table 5

PSU | RSU | IDC | IIDC | OIDC | CCTG
Cy 1 1 1 1 1 1 CPSU | CRSU | AIDC
Cs | 0.50 1 0.80 1 0.66 2 0.80 0.88 0.90
Cy | 0.66 | 0.75 | 0.70 | 0.83 | 0.50 3 TABLE
Cr 1 — 1 — 1 — 5. Assembly
Cw — 1 1 1 — 2 metrics

TABLE 4. System second solu- values

tion metrics values

The metrics values that influence the functionality attribute are close to 1 re-
vealing a good functionality of each component inside the system, but the other
metrics values influence negatively the other quality attributes. The 0.50 chosen
threshold is exceeded for all the computed metrics. In table 1 we can see that a
high value influences negatively almost all the quality attributes discussed. The

METRICS-BASED SELECTION OF A COMPONENT ASSEMBLY 331

values of CCTG metric are relatively high considering that there are few compo-
nents in the solution. The CCTG value for the ninth component is considered to
be high yielding a very hard understandability, testability and maintainability.

5. CONCLUSIONS AND FUTURE WORK

Software metrics provide a quantitative means to control the quality of software.
After building all possible configurations (component assemblies) from a given set
of specified components, the designer has to decide which solution to use further.
We discussed and proposed in this paper some quality attributes to consider when
analyze the quality of an assembly. Software metrics are used to select the solution,
among all obtained configurations, that best represents the system requirements.

We set the value of the metrics threshold at 0.5. In our future work we will apply
precise methods in choosing the threshold value. There are different methods like
statistic-based and even genetic-based algorithms.

REFERENCES

[1] Crnkovic, I., Component-based software engineering - new challenges in software develop-
ment, Software Focus, John Wiley & Sons, 2001

[2] Crnkovic, I., Larsson, M., Building Reliable Component-Based Software Systems, Artech
House publisher, 2002

[3] Crnkovic, I., Schmidt, H., Stafford, J. A., Wallnau, K., The 6t® ICSE Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction, ACM SIG-
SOFT Software Engineering Notes, vol 29, nr 3, pp.1-7, 2004

[4] Fanea, A., Motogna, S., A Formal Model For Component Composition, Proceedings of the
Symposium Cluj-Napoca Academic Days, pp. 160 - 167, 2004

[5] Fanea, A., Motogna, S., Diogan, L., Automata-Based Component Composition Analysis,
Studia Universitas “Babes-Bolyai”, Seria Informatica, vol. L (1), pp. 13 - 20, 2006

[6] Goulo,M. A., Abreu, F. B., Composition Assessment Metrics for CBSE, 31st Euromicro
Conference, Component-Based Software Engineering Track, Porto, Portugal, IEEE Computer
Society, pp. 96 - 103, 2005

[7] Hoek, A. v. d., Dincel, E., and Medvidovic, N., Using Service Utilization Metrics to Assess
and Improve Product Line Architectures, 9th IEEE International Software Metrics Sympo-
sium (Metrics’2003), Sydney, Australia, 2003

[8] Narasimhan, V. L. and Hendradjaya, B., A New Suite of Metrics for the Integration of
Software Components, The First International Workshop on Object Systems and Software
Architectures (WOSSA’2004), Australia, 2004

[9] Serban, C., Vescan, A., Metrics for Component-Based System Development, Creative Math-
ematics and Informatics, Vol. 16,pp. 143-150, 2007

[10] Vescan, A., Motogna, S., Syntactic automata-based component composition, The 32nd EU-
ROMICRO Software Engineering and Advanced Applications (SEAA), Work in Progress,
2006

(1) COMPUTER SCIENCE DEPARTMENT, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,
BABES-BoOLYAT UNIVERSITY, CLUJ-NAPOCA, ROMANIA
E-mail address: {camelia, avescan}@cs.ubbcluj.ro

