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INFEASIBLE PRIMAL-DUAL ALGORITHM FOR MINIMIZING
CONVEX QUADRATIC PROBLEMS

H. ROUMILI, A. KERAGHEL, AND A. YASSINE

Abstract. Problems with a convex quadratic objective function and lin-
ear constraints are important in their own right, and they also arise as sub
problems in Methods for general constrained optimization, such as sequential
quadratic Programming and augmented Lagrangian methods.

In this paper, we propose and implement an infeasible primal-dual algo-
rithm in order to minimize a convex quadratic function subject to bounded
and linear equality constraints.

Preliminary experimentations are particularly encouraging.
Key words : feasible interior points methods, convex quadratic Pro-

gramming, infeasible interior points methods.

1. Introduction

Interior point's methods are recognized to be e�cient for solving many opti-
mization problems. However, �nding a strictly feasible initial point (phase1) is
di�cult.

In theory, we can overcome this di�culty by introducing some arti�cial variables
and by transforming the problem in a new one into a space of superior dimension.
This transformation requires using parameters in general (unknown) to big values
as in the approach of �Big M� in linear programming. Inconveniences of this
approach are known:

(1) One does not know if the size of these large parameters values risk to
destabilize the algorithm.

(2) The reformulation can impair the structure of the original problem be-
cause we add lines and columns. Because of these failings, this approach
is not very welcomed, or is carefully used. Considerable research e�orts
are dedicated to initializing interior point's methods.
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Several approaches are proposed in which the variant phase1 and phase2 and
where no large parameter is used. The arti�cial variables are introduced through
lines and supplementary columns. The relative process to this approach spread
between 1986 and 1991. All these works main objective consisted in elaborating
algorithms that do not necessarily start inside the feasible domain (of the original
problem) along with theoretical properties, as the polynomial complexity. Re-
searchers did not globally aim at the numeric aspect. So, in these methods, the
initial point is not necessary but transforming the problem is unavoidable.

E�orts of research are oriented towards numeric performances. About this, a
set of practical variants is proposed with the comparative numeric tests from 1989
to 1992. All these algorithms do not require feasible initial point transformation
but start from any positive point and tempt to achieve feasibility and optimality
in a simultaneous manner.

These algorithms are called infeasible interior point's methods; the most part
of these algorithms is that of Newton type. This last class is the object of our
study. We concentrated our e�orts on methods favoured by a rich theory and also
by a lot of numeric subtleties. Indeed, the latter starts phase 2 directly.

Regarding this, several researchers like Zhang, and all authors of principals�
relative development of these methods regarding the linear programming, think
that these algorithms are more e�ective. These subjects seem to be very logical.
On one hand, phase 1 is eliminated and on the other hand, phase 2 iteration
does not defer too much from the feasible case. The preliminary study that we
did stimulates of the numeric behaviour of the convex quadratic programming
development.

2. General presentation of the convex quadratic program

A convex quadratic program with constraints means optimization problem, in
which the objective is a convex quadratic form. The constraints are linear.

Without loss of generalities, we can write it as follwos:

(QP )





min ctx + 1
2xtQx

Ax = b

x º 0
where Q is a n × n matrix assumed to be positive semide�nite, b ∈ Rm, c ∈ Rn

and A is a m× n matrix of full rank.
The dual of (QP ) is:

(QD)





max bty − 1
2xtQx

Aty + z −Qx = c

z ≥ 0, y ∈ Rm
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where y ∈ Rm and z ∈ Rn.
We impose the following assumptions:

• (H1) : Sint = {x ∈ Rn / Ax = b, x 〉 0} 6= Φ interior feasible solutions of
(P) is non-empty;

• (H2) :Tint = {(y, z) ∈ Rm × Rn / Aty + z −Qx = c, z 〉 0} 6= Φ interior
feasible solutions of (D) is non-empty.

These assumptions are often used to develop the interior point�s algorithms.

2.1. Principle. Most of the new interior point�s methods are motivated by the
the logarithmic barrier function technique of Frisch (1955) to problem (QP ) ap-
plication.

Indeed, to the problem (QP ), one associates the problem gate non linear next
one:

(QPµ)





min ctx + 1
2xtQx− µ

n∑
i=1

ln xi = fµ(x)

Ax = b

x 〉 0

  The principle of these methods is to solve the system of Karuch-Kuhn-Tucker
(KKT) partner to the problem (QPµ) by the method of damped Newton, while
leaving from any positive point which is not necessarily feasible. The resolution
of (QPµ) is equivalent at that of (QP ) with that if x∗(µ) is an optimal solution of
(QPµ) then x∗ = lim

µ→0
x∗(µ) is an optimal solution of (QP ). To achieve feasibility

and optimality we introduce a merit function de�ned by:
φ(x,y, z) = xtz + r(x,y, z)

where r(x, y, z) = ‖Ax− b‖+ ‖−Qx + Aty + z − c‖.
It is clear that r measure feasibility and xtz (duality gap ) control the optimality.

The idea is to make the value of this function towards zero during iterations.

2.2. Resolution of (Pµ). x is an optimal solution of (Pµ) if an only if there is
y ∈ Rm such that:

(1)





c− µX−1e−Aty + Qx = 0
Ax = b

x > 0

where: X−1 = diag(1/xi). We apply the method of damped Newton to solve the
system of nonlinear equations (1) from an infeasible starting point (which is not
necessarly feasible) (x, y, z) ∈ Rn×Rm×Rn, (x, z) 〉 0 and µ = xtz/n 〉 0, we gets
the following system:
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


X∆z + Z∆x = −XZe + σµe 0 < σ < 1, Z = diag(zi)
A∆x = b−Ax

−Q∆x + At∆y + ∆z = c−Aty + Qx− z

where the solution is: (∆x, ∆y, ∆z), the new iterate is then: (x̂, ŷ, ẑ) = (x, y, z) +
α(∆x, ∆y, ∆z)

With α 〉 0 is the displacement step chosen such a way that (x̂, ẑ) 〉 0 and φk

decreases. If the test of stop is not satis�ed one replaces µ by µ1(µ1 ≺ µ) and
reiterate.

Our infeasible interior point algorithm is described as follows:
BASIC ALGORITHM
Beginning :
Initialisation:

Start with (x, z) 〉 0, y ∈ Rm (arbitrary) and calculate φ. Either ε 〉 0 a
parameter of precision.

K = 0
when φ 〉 ε do:
step 0:
Calculate µ = (1/n) (x)t

z and choose σ ∈ (0, 1)
step 1:
Solve the following linear system:


Z 0 X

A 0 0
−Q At I







∆x

∆y

∆z


 =




µσe−XZe

b−Ax

c−Aty + Qx− z




step 2:
�nds a step of displacement α 〉 0 such as:
x = x + α∆x 〉 0, z = z + α∆z 〉 0 and φ decreasing.
step 3:
y = y + α∆y

K = k + 1
End.

2.3. Convergence of the Algorithm. The convergence of the algorithm is stud-
ied in [19, 20, 21] for linear and complementarity programming, we extend these
results for quadratic convex programming. Under hypotheses (H1) and (H2), the
convergence of the algorithm is based on the following lemma:

Lemma 1. Let
{(

xk, yk, zk
)}

be the sequence of iterates generated by the algorithm
then we have:

1) A(xk + αk∆xk)− b = (1− αk)(Axk − b) = vk+1(Ax0 − b)
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2) At( yk+αk∆yk)−Q(xk+αk∆xk)+(zk+αk∆z)−c = vk+1(Aty0+z0−Qx0−c)
3) (xk + αk∆xk)t(zk + αk∆zk) = (xk)tzk(1− αk + αkσk) + (αk)2(∆xk)t∆zk,

where vk+1 = (1− αk)vk = (1− αj) º 0, v0 = 1.

Proposition 2. The sequence
{

φk
}

generated by the algorithm satis�es:

φk+1 =
(
1− δk

)
φk

Where δk = δ
(
αk

)
=

[
αk(1−σk)(xk)t

zk+αkvkr0−(αk)2(∆xk)t
∆zk

]

[(xk)tzk+vkr0] .

Corollary 3. It is easy to prove that the sequence
{

φk
}

converge linearly if
0 〈 αk ≤ 1 to which case we have 0 〈 δk 〈 1 and if δk o�ers toward 1 the convergence
becomes super linear.

Proposition 4. Let us suppose the initial point is given by
(
x0, y0, z0

)
= ζ (e, 0, e)

( ζ 〉 0) then: the algorithm converges on at most O
(
n2 |log (ε)|) iterations ( ε a

parameter of precision ).

2.4. Determination of the displacement step. The displacement step choice
is based on the decreased monotonous of the merit function and on the strict
positivity of (x, z). To get the global convergence, two supplementary hypotheses
are necessary to know:

C1) h (α) =
[
min(X (α) z (α))− γ (x (α))t

z (α) /n
]
º 0 α ∈ (0, 1]

  C2) g (α) =
[
(x (α))t

z (α)− v (α)
(
x0

)t
z0

]
º 0 α ∈ (0, 1]

  where 0 〈 γ 〈 1 satis�ed γ ≤ min
(
X0z0

)
/(

(
x0

)t
z0/n) et X (α) = diag

(
xk+1

)
,

x (α) = xk+1, z (α) = zk+1, v (α) = vk+1   The C1 condition is essential for
interior point�s methods. Its role is to prevent iterates to approach prematurely
the border (before the optimality), while the C2 condition gives the priority to
the feasibility on complementarity (the feasibility is achieved at the latest at the
same time than complementarity:

(xk)tzk/
(
x0

)t
z0 º ((rk/r0) = vk).

Let us determine then αk while taking account the two previous conditions and
the maximization of δ (α) in (0, 1] that is to say:

αk = arg max {δ (α) : h (β) º 0, g (β) º 0 for any β ≤ α} (1)

The solution of (1) is given below by the lemma:

Lemma 5. If the C1 condition is veri�ed to every iteration,then the problem (1.3)
admits a unique solution:
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αk =

{
min

(
1, αk

1 , αk
2

)
si

(
∆xk

)t ∆zk ≤ 0
min

(
1, αk

1 , αk
3

)
si

(
∆xk

)t ∆zk 〉 0

where:
αk

1 = min {α 〉 0 : h (α) = 0}

  αk
2 =

{
1 si

(
∆xk

)t ∆zk = 0
min {α 〉 0 : g (α) = 0} si

(
∆xk

)t ∆zk 〈 0
  and

αk
3 =

[
(1− σ)

(
xk

)t
zk + vkr0

]
/2

(
∆xk

)t ∆zk. [18]

Remark 1. Let us note that the previous choice of step constitutes a condition
su�cient only for the convergence, which gives us a certain liberty in practice.
Indeed, a less expensive choice is possible, it is about choosing α so that (x, z) 〉 0
(strictly positive) while taking account of the decrease of the merit function.

  In the implementation our suitable choice of the largest step size is given by
:   αx = βα´

x and αz = βα´
z (0〈β〈1)   where  

α´
x =

{
min (−xi/∆xi) si ∆xi 〈 0

1 si ∆xi º 0
  α´

z =
{

min (−zi/∆zi) si ∆zi 〈 0
1 si ∆zi º 0

  Whose new iterate is: x = x + αx∆x, z = z + αz∆z and y = y + αz∆x.

All time, it is important to signal that performances of interior points methods
feasible or no, depend greatly on the choice of the displacement step.

2.5. Calculation of the displacement direction. In the algorithms, the cost
of an iteration is dominated by the calculation of the displacement direction ∆w =
(∆x, ∆y, ∆z) that is by solving the following of the linear system:




Z 0 X

A 0 0
−Q At I







∆x

∆y

∆z


 =




µσe−XZe

b−Ax

c−Aty + Qx− z


 (2)

Several procedures can be used to solve (2) like Gauss elimination. The obtained
results are valid but limited with small dimensions. Moreover, the strategy is not
optimal. The manipulated matrix is of dimension (2× n + m, 2× n + m) . To
calculate the displacement direction, we introduce a more economic alternative
which consists in reducing the implemented matrix size. For that, with simple
calculations, one obtains the system of equations according to:
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


A(QX + Z)−1XAt∆y = b−Ax + A(QX + Z)−1

[Xze− µσe−X(c−Aty + Qx− z)]
∆x = (QX + Z)−1[XAt ∆y + µσe−Xze−X(c−Aty + Qx− z)]

∆z = (X)−1(µσe−Xze− Z∆x)
Only matrix A(QX + Z)−1XAtof size (m×m) will be necessary for to resolve

the system in question.
The matrix: A(QX + Z)−1XAt is positive semi de�nite and:
i) A(QX + Z)−1XAt =

(
A(QX + Z)−1XAt

)t

ii) x 6= 0, 〈 (
AA(QX + Z)−1XAt

) (
A(QX + Z)−1XAt

)t
x, x 〉 =

〈 (
A(QX + Z)−1XAt

)
x,A(QX + Z)−1XAtx 〉 =∥∥(

A(QX + Z)−1XAt
)
x
∥∥2〉 0

Therefore, the Cholesky factorization (which is a particular case of the Gauss
method) is frequently used in solving the system.

2.6. Numerical experiments. This paragraph is dedicated to preliminarily nu-
merical results presentation in order to test our algorithm, implemented on a
Pentium II and in TURBO-PASCAL programming.

Examples are stated under the following canonical form:

(QP )





min ctx + 1
2xtQx

Ax = b

x º 0

The dual of (QP ) is:

(QD)





max bty − 1
2xtQx

Aty + z −Qx = c

z ≥ 0, y ∈ Rm

  Example 1:  




min
(x,t)

f(x, t) = 6.5x + 0.5x2 − t1 − 2t2 − 3t3 − 2t4 − t5

Az ≤ b

z = (x, t)t

x º 0, t1 º 0, t2 º 0
0 ≤ ti ≤ 1 i = 3, 4

0 ≤ t5 ≤ 2

b = (26,−11, 24, 12, 3)
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A =




1 2 8 1 3 5
−8 −4 −2 2 4 −1
2 0.5 0.2 −3 −1 −4
0.2 2 0.1 −4 2 2
−0.1 −0.5 2 5 −5 3




  The optimal solution of (QP ) is:
z∗ = (x∗, t∗)t = (0, 7.987342, 0.253165, 2, 2, 0)t

The optimal solution of (QD) is:
y∗ = (−0.246835, 0, 0,−0.253165, 0)t

objective function: −18.493671   Example 2:



min
x

f(x) = 0.5
6∑

i=1

βi(xi − αi)2

Ax ¹ b

x º 0

b = (−5, 2,−1,−3, 5)t  

A =




−3 7 0 −5 1 1
7 0 −5 1 1 0
0 −5 1 1 0 2
−5 1 1 0 1 −1
1 1 0 2 −1 −1




  case 1: βi = 1, αi = 2 for i : 1, ..., 6   The optimal solution of primal problem
is:   x∗ = (1.010453, 0.749129, 1.303136, 1.442509, 0, 0)t   The optimal solution
of dual problem is:   y∗ = (−0.661232,−0.646117,−1.217533,−0.709915, 0)t  
Objective function: 2.680600   case 2: βi = 1, αi = 2 for i : 1, ..., 6   The optimal
solution of primal problem is:

x∗ = (1.715685, 0.965687, 2.397060, 1.431373, 0.544120, 0)t

The optimal solution of dual problem is:
y∗ = (−7.862744,−3.183211,−13.518993,−2,−11.590071)t

Objective function: −11.467500
case 3: βi = 1, αi = 2 for i : 1, ..., 6
The optimal solution for primal problem is:
x∗ = (1.715685, 0.965687, 2.397060, 1.431373, 0.544120, 0)t

The optimal solution for dual problem is:
y∗ = (−15.725487,−6.366421,−27.037984,−4,−23.180141)t

Objective function: −22.935000
case 4: βi = 2, αi = 0 for i : 1, ..., 6
The optimal solution of primal problem is:
x∗ = (2.05, 1.30, 3.40, 2.10, 2.55, 0)t
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The optimal solution for dual problem is:
y∗ = (−13,−4.80,−22.40,−2.60,−19.40)t

Objective function: −11.400000
Example 3:



min
x

f(x) =
9∑

i=1

xixi+1 +
8∑

i=1

xixi+2 + x1x9 + x1x10 + x2x10 + x1x5 + x4x7

10∑
i=1

xi = 1

x º 0
  The optimal solution of primal problem is:

x∗ = (0, 0.249335, 0.25, 0, 0.000665, 0.017431, 0, 0.25, 0.232568, 0)t

The optimal solution of dual problem is:
y∗ = 0.25
Objective function: 0.125010

3. Conclusion

In this paper, we presented an implementing method for convex quadratic pro-
gramming which stimulates greatly the development of the numeric behaviour
of infeasible methods for problems of optimization. One can conclude that these
methods constitute a valid solution as to the algorithm initialization problem. This
one deserves some supplementary e�orts essentially when choosing the step dis-
placement. This, until now, is the object of numerous researches aiming to reduce
the iteration cost and, by the same time, improve the numeric behaviour distinctly.
This one deals not only with the linear and convex quadratic programming but is
extended to non linear programming.
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