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EVOLUTIONARY CLUSTERING USING ADAPTIVE
PROTOTYPES

D. DUMITRESCU AND R. GORUNESCU

Abstract. Genetic chromodynamics has proven to be a very efficient meta-
heuristics for detecting multiple optima points.

It is our goal to show that it is extremely suitable in the field of clustering
as well.
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1. Introduction

A genetic chromodynamics-based clustering method is proposed.
Genetic chromodynamics (GC) is not a particular evolutionary technique but

merely a metaheuristics for maintaining population diversity and for detecting
multiple optima. Its strategy is to form and maintain stable subpopulations that
co-evolve and lead, at convergence, each to an optimum. It uses a variable sized
solution population, a stepping stone search mechanism in connection with a local
interaction principle, and a special operator for merging very similar individuals.
Therefore the clustering mechanism we get by using these principles is very simple:
each convergence point represents a cluster, no number of clusters are given in
advance and we will obtain in the end both the optimal number of groups and the
optimal classification.

2. Genetic Chromodynamics. Basic Ideas

Here we summarize briefly the main underlying principles of genetic chromody-
namics metaheuristics[2]:

• the population size is variable;
• the sub-population structure is not predefined;
• there is a stepping stone mechanism;
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• the local interaction principle holds;
• recombination and mutation are exclusive operators when applied to the

same individual;
• a new operator called merging is introduced;
• the algorithm stops when, after an a priori fixed number of iterations,

no significant change occurs in the population.
The algorithm starts with a large initial population whose size may be reduced

at every generation. The sub-populations have an arbitrary structure and they
become better separated with each iteration. The stepping stone search mechanism
provides the possibility that each individual takes part in the process of forming
the new generation. Thus, by making use of it, each individual is considered for
mating. Its mate will be determined by applying a local selection scheme. This
local interaction principle is a natural thing to do, since from a biological point of
view it is more likely that individuals from the same sub-population mate rather
than from different ones. If a second chromosome is found within that range, then
they will recombine. Else mutation will be applied to the current individual. It
is also possible to use a global search mechanism for the mate instead, in some
situations, but this is of no interest with respect to the problem at hand. As
an observation, selection is carried out both globally - it is the case of the first
chromosome — and locally — as seen for the second parent, if there is one. If
two chromosomes are very similar, they are merged into a single one, by usually
taking their mean.

3. Genetic Chromodynamics Clustering

The clustering method we propose uses GC principles. A standard genetic
chromodynamics model is used, together with some data-related features. The
data points allow both numerical and nominal attributes. We have tried to develop
an algorithm that would work perfectly with any kind of data. And it almost
does. The problem is that for a special type of data, e.g. geometrical instances,
the evaluation function will not work in most of the cases, because it should be
more or less problem dependent.

3.1. Representation. Initial population. Each instance from our database
represents a chromosome, every attribute of our record being thus a gene. For
example if we are dealing with a database for describing the features of different
candidates present for some secretary positions, with the structure

(typing skills, number of foreign languages known, years of experience),
then all the chromosomes will have the exact same structure. Let us denote by

c the current chromosome. Therefore its value could be for example:

c = ((computer - 0.25, typewriter - 0.14), 2, 4).
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An important feature of our approach is that each chromosome allows numer-
ical as well as nominal attributes. The problem we were faced with was that no
nominal variables can be used in our mathematical computations. Thus we have
represented our nominal data as fuzzy.

The initial population is made of the data points.

3.2. Fitness function. First of all, we have to define the similarity measure be-
tween two chromosomes, since our function is built upon its expression. We have
used a weighted similarity measure, since each attribute of our data has a different
degree of importance in the field they are extracted from.

distance(a, b) =
n∑

k=1

compare(ak, bk),

where a and b are the two chromosomes and n represents the number of at-
tributes.

At this point there are two cases. First of all, if we are dealing with numerical
attributes, the difference between the two attributes was considered the square
weighted Euclidian similarity measure, that is:

compare(ak, bk) = (ak − bk)2weightk,

where weightk is a positive number specifying the importance of attribute k.
In the other case, of the nominal attributes, the formula was considered the

max-min distance specific to fuzzy data:

compare(ak, bk) = max(
nk

min
i=1

)(ai
k, 1− bi

k)weightk,

where nk is the number of values for the k-th attribute of the chromosome.
Now the expression of the fitness value is as follows:

eval(popi) =
popNo∑

i=1

1/edistance(popi,popj),

where pop denotes the vector representing the population of chromosomes, popNo
meaning the current population size and popi meaning the current chromosome.

3.3. Selection operator. The mate for the current chromosome, c, will be se-
lected within its pre-determined mating region. This region is defined, math-
ematically speaking, as the closed ball V (c, r), where we specify the radius, r.
Proportional selection will be used from this point on.

3.4. Variation operators. Standard recombination and mutation operators are
used for guiding the search process. Merging is an additional variation operator.
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mating region mutation step merging radius
0.5 0.07 0.4
Table 2. Algorithm parameter values

3.4.1. Merging. Each chromosome from the current population will be taken into
consideration, observing whether there are other chromosomes similar to it behind
a certain threshold called merging radius. If that should be the case, the best one
from the group will be kept, and the others will be deleted from the population.

3.5. Stop condition. The algorithm stops when, after a number of iterations,
considered equal in value to the number of the objects in the data set, no new
offsprings are accepted in the population.

The last population provides the optimal clustering. Its members correspond to
the centers of the resulting clusters and they also hold the information regarding
the distribution of the initial data points to these centers.

3.6. Other parameter settings and experimental results. Consider a fic-
tional data set that describes the weather conditions for playing some unspecified
game [7] given in Table 1.

We consider the values for the other parameters involved given in Table 2.

The corresponding classes are:

A1 = {x2, x14, x12, x4, x3, x1, x8},

A2 = {x9, x5},

A3 = {x10, x7, x6},

A4 = {x11}
and

A5 = {x13}.
The run of the corresponding program provides in 9 out of 10 cases, the following

grouping:
(i) instances x6, x7 in a cluster,
(ii) instances x5, x9 in a cluster,
(iii) instances x2, x14 in a cluster, and
(iv) instances x3, x4, x8, x1 in a cluster.
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3.7. Conclusions and future work. The initial population size is probably
rather small considering only the instances in the data set. A population con-
sisting of the data which is tried to be clustered, maybe with a slight modification
in their values, on the one hand, and a double number of randomly generated data
points, on the other hand, would probably lead to better results.
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