
STUDIA UNIV. “BABEŞ–BOLYAI”, INFORMATICA, Volume XLIII, Number 1, 1998

INDEXED GRAMMARS AND UNIFICATION GRAMMARS

DOINA TĂTAR AND MIHAELA LUPEA

Abstract. Feature structures (typed or untyped) are used extensively for
the specification of linguistic information in the unification based phrase
structure grammars (UBPSG’s). On the other hand, another quite differ-
ent grammars, indexed grammars are introduced as an extension of context
-free grammars and since now they are used in many different contexts. The
two sort of grammars have in common the possibility to share information be-
tween different parts of a sentential form. In this paper we show how we can
generate the same language {an bn cn} with an indexed and an unification
grammar.

1. Introduction

The Chomsky hierarchy contains: grammars of type 0, context- sensitive gram-
mars, context-free grammars and regular grammars. Aho introduced in a paper
from 1969 a new type of grammars which is situated in the Chomsky hierarchy
between context-sensitive grammars and context-free grammars and are called in-
dexed grammars. An indexed grammar generates an indexed language. This
class of languages is a generalization of the class of context-free languages and
preserves the closure properties and decidability results from the last one.
Definition 1. An indexed grammaris a 5-tuple G = (N, T, I, P, S), where:

• - N is a finite nonempty set of symbols called the nonterminal alpha-
bet

• - T is a finite set of symbols called the terminal alphabet
• - I is a finite set of indices
• - S ∈ N is the start symbol
• - P is a finite set of productions of three forms: (1) A → α,

(2) A → Bf ,
(3) Af → α
where A,B ∈ N , f ∈ I and α ∈ (N ∪ T )∗.

1991 Mathematics Subject Classification. 68Q50, 03D05.
1991 CR Categories and Descriptors. F.4.2 [Mathematical Logic and Formal Lan-

guages]: Grammars and Other Rewriting Systems – Grammar types F.4.3 [Mathematical
Logic and Formal Languages]: Formal Languages – Classes defined by grammars or au-
tomata, Operations on languages .

39



40 DOINA TĂTAR AND MIHAELA LUPEA

The indices may follow a nonterminal and were introduced to model a con-
text for derivation, context more particular than in the case of context-sensitive
grammars. Many parts of a sentential form are related to which other by sharing
a common index string. Terminals may not be followed by indices.

Definition 2. A string of symbols of the form Aζ, where A ∈ N and ζ ∈ I∗ is
called an indexed nonterminal. A sentential form is a string in (NI∗ ∪ T )∗.

Definition 3. A derivation relation (=⇒), defined on sentential forms depends
on the type of the production which is applied as follows:

• (1) If A → X1X2...Xn is a production of type (1) then:

βAδγ =⇒ βX1δ1X2δ2 . . . Xkδkγ]

This type of derivation assures that the index string δ ∈ I∗ dis-
tributes over all the nonterminal symbols on the right side of the produc-
tion, but not over the terminals. If Xi ∈ N, δi = δ and if Xi ∈ T, δi = ε.

• (2) If A → Bf is the applied production, then the derivation is:

βAδγ =⇒ βBfδγ

The index string which follows B is composed of f concatenated with the
index string of A.

• (3) If the production Af → X1X2...Xn is applied, then:

βAfδγ =⇒ βX1δ1X2δ2 . . . Xkδkγ

.
The first index f is consumed by the nonterminal A, and the remaining
indices γ of A distribute over nonterminals as in (1).

The reflexive and transitive closure of the relation =⇒ on (NI∗ ∪ T )∗, denoted
∗=⇒, is defined as follows:

1. γ
k=⇒ δ, where k > 0 if and only if there is a sequence of sentential forms

α1, . . . , αk−1 such that

γ =⇒ α1 =⇒ · · · =⇒ αk−1 =⇒ δ

2. γ
+=⇒ δ if and only if there is k¿0 such that γ

k=⇒ δ

3. γ
∗=⇒ δ if and only if γ = δ or γ

+=⇒ δ.

The indexed language generated by the indexed grammar
G = (N, T, F, P, S) is defined as L(G) = {w ∈ T ∗|S ∗=⇒ w}.

The grammars G1 and G2 are said to be equivalent if L(G1) = L(G2).



INDEXED GRAMMARS AND UNIFICATION GRAMMARS 41

A context-free grammar can be transformed into an equivalent grammar in
Chomsky normal form. Similary, for an indexed grammar we can construct an
equivalent reduced form grammar.
Definition 4. An indexed grammar G = (N, T, I, P, S) is said to be in reduced
form if each production in P is of one of the forms:

• (1) A → BC
• (2) A → Bf
• (3) A → a
• (4) Af → B where A,B, C ∈ N , f ∈ I and a ∈ T ∪ {ε}.

Theorem 1. Given an indexed grammar G = (N,T, F, P, S), an equivalent re-
duced form indexed grammar G′ = (N ′, T, F, P ′, S) can be constructed.

Construction:
1. A production of type (1) of definition is replaced by a set of productions

specific to the Chomsky normal form, by adding new nonterminals.
2. A production of type (2): Af → X1 . . . Xk is replaced by the produc-

tions: Af → A′, where A’ is a new nonterminal not in N, and the set of
productions in Chomsky normal form coresponding to the production:
A′ → X1 . . . Xk.

We can observe that in this process of construction are not introduced new
indices. This reduced form for an indexed grammar is very useful for processing
this type of grammars. The closure properties make indexed languages seem to
more closely resemble context-free languages than context-sensitive languages. An
indexed language has also a new type of specification by a new automaton model,
called a nested stack automaton, which is a generalization of push-down au-
tomaton. A set is recognized by a nested stack automaton if and only if the set is
an indexed language.

2. Unification Based Phrase Structure Grammars

Over the years, computational linguistics adopted many different grammar for-
malisms which are in use in various NLP projects. Many of current ones are
declarative formalisms on the unification paradigm. The unification grammars
are phrase structure grammars in which non-terminal and terminals symbols are
replaced by feature structures.

Intuitively a feature structure (FS) is a description of some linguistic object,
specifying some or all of the information that is asserted to be true of it [2, 5].
We will present shortly the two definitions of (untyped) feature structures and the
connection between them following [1].
Definition 5. A feature structure over a signature Types and Feats is a labeled
rooted directed graph represented by the tuple:

F =< Q, q̄, θ, δ >



42 DOINA TĂTAR AND MIHAELA LUPEA

where: • Q is the finite set of nodes of the graph.
• q̄ ∈ Q is the root node
• θ : Q −→ Type is a partial node typing function.
• δ : Feat ×Q −→ Q is a partial value function, which associates with a node

i the nodes i1, · · · , in if δ(FEAT1, i) = i1, · · · , δ(FEATn, i) = in

See figure bellow where the edges are labeled with the feature names and the
nodes are labeled with the type names:

i
½¼

¾»

XXXXXXXXXXXXXXXXXX

in
½¼

¾»

»»»»»»»»»»»»»»»»»» i1
½¼

¾»

· · ·
FEAT1

FEATn

· · ·

As we will use in this paper another formal description for FS’s, attribute value
matrices (AVM’s) let us observe that the correspondence with the graph formalism
can be displayed in the following figure:

i




FEAT1 :
i1

[
· · ·

]

· · ·
FEATn :

in

[
· · ·

]




In the rewriting relations two notions about FS’s are important: subsumption
relation and unification operation.

Definition 6. A feature structure F subsumes another feature structure G or
F v G iff:



INDEXED GRAMMARS AND UNIFICATION GRAMMARS 43

• if a feature f ∈ Feat is defined in F then f is also defined in G and its value
in F subsumes the value in G.
• if the values of two paths are shared in F , then they are also shared in G.
Thus F v G if G contains more information than F or F is more general than

G.
The notion of subsumes can be used to define the notion of unification, the main

information combining operation in unification based grammars. Unification joins
the information in two feature structures into a single result if they are consistent
and detects an inconsistency otherwise.
Definition 7. The result of the unification of two FS’s F and F ′ is an other FS
(if it exists), denoted F tF ′ which is the most general FS (in the sense of relation
v) subsumed by both input FS’s.

Thus, F t F ′ is the l. u. b of F and F ′, if it exists, on the ordering relation v.
Definition 8. (UBPSG) For a set Type of types, a set Feat of features, a set
Lex of terminals (lexical entries), a UBPSG is:

• A set Rule of rewriting rules:

E0 → E1 . . . En,

where each Ei is either a feature structure or a terminal (and in this
case n = 1 and the rule is named ”terminal” or ”lexical”).

The interpretation of such a rule is: the category E0 can consist of
an expression of category E1, followed by the category E2, etc.

• An initial FS, As

There are many rewriting relation for a UBPSG. We will present now unification
in context rewriting [2].

Let σ be a sequence of FS’s, which can share information by the tags. This
kind of sequence we will call ”multi-feature structure ” or ” multi -FS”. So, σ is
a sequence (σ, 1), · · · , (σ, n), where (σ, i) is the FS of index i from the multi-FS
σ. Let ρ be a rewriting rule of UBPSG considered also as a multi-FS where (ρ, 1)
is the left side and (ρ, 2), · · · , (ρ, k) represent the right side of the rule. If (σ, i)
and the (ρ, 1) can be unified, let the unificator be a FS (σ′, i) = (σ, i) t (ρ, 1). As
the FS’s from σ (and also from ρ ) can share information, after unification these
FS’s are modified. Let denote σ′ = (σ′, 1), ..., (σ′, n), where (σ′, i) is the defined
as above, the multi-FS σ after unification of the i-th component with the first
component of ρ. Analogously, let denote ρ′ = (ρ′, 1), ..., (ρ′, k), the multi-FS ρ
after the same unification.
Definition 9. If (σ, ρ) and (σ′, ρ′) have the above significance, then we denote
(σ, ρ) i→ (σ′, ρ′) and call this relation the ” unification in context”.
Definition 10. If σ1 and σ2 are two multi-FS, then the relation of rewriting ⇒
between them is defined as following:



44 DOINA TĂTAR AND MIHAELA LUPEA

σ1 ⇒ σ2

if:

• 1. There exists a rewriting rule ρ such that (σ1, ρ) i→ (σ′, ρ′)
• 2. σ2 is the multi-FS (σ′, 1), · · · , (σ′, i−1), (ρ′, 2), (ρ′, 3), · · · , (ρ′, k), (σ′, i+

1), · · · , (σ′, n).
In the following we denote by Lex the set of lexical entries of a UBPSG. The

accepted sentences are from Kleene closure of Lex, denoted Lex*. If a sentence
w = w1 · · ·wj is from Lex* then by PTw (1 , · · · , j ) we denote the sequence of FS’s
which are in the LHS’s of the terminal rules which have in the RHS’s the words
w1, · · · , wj (in this order).

We denote, like usually, by ∗⇒ the transitive reflexive closure of this rewriting.
We can now define the language generated by a UBPSG G:

Definition 11. If G is a UBPSG, then the language generated by G, L(G) is
defined as:

L(G) = {w|w ∈ Les∗, w = w1 · · ·wj , there exists σ s.t.As
∗⇒

σ, σ is unifiable with PTw(1, · · · , j)}

3. An indexed language generated by an unification grammar

In this section we will describe how the indexed language {an bn cn} can be
obtained by an unifcation grammar.

As indexed language, it can be obtained from the following indexed grammar:

G = ({S, T, A,B,C}, {a, b, c}, {f, g}, P, S)

where the production are adnotated by the type (1,2 or 3), as in above definition:
1.
T −→ A B C
2.
S −→ T g
T −→ T f
3.
A f −→ a A
A g −→ a
B f −→ b B
B g −→ b
C f −→ c C
C g −→ c
The generation of the word a2 bs c2 is the following:

S
2=⇒ T g

2=⇒ T f g
1=⇒ A f g B f g C f g



INDEXED GRAMMARS AND UNIFICATION GRAMMARS 45

3=⇒ a A g B f g C f g
3,3
=⇒ a A g b B g c C g

3,3,3
=⇒ a2 b2 c2

The unification grammar for the same language {an bn cn} is the following:
The set Feats is {CAT,LG}, the set Types is {s, a, b, c, at, bt, ct}, the As =

[CAT : s] and the set Lex is {a, b, c}.
The production rules are:

r1 : [CAT : s] →
[
CAT:a
LG:X

][
CAT:b
LG:X

][
CAT:c
LG:X

]

r2 :

CAT:a

LG:
[
LG: Y

]


→ [CAT : at]

[
CAT:a
LG:Y

]
r3 :

[
CAT:a
LG:1

]
→ [CAT : at]

r4 :

CAT:b

LG:
[
LG: Y

]

→ [CAT : bt]

[
CAT:b
LG:Y

]
r5 :

[
CAT:b
LG:1

]
→ [CAT : bt]

r6 :

CAT:c

LG:
[
LG: Y

]

→ [CAT : bt]

[
CAT:c
LG:Y

]
r7 :

[
CAT:c
LG:1

]
→ [CAT : ct]

r8 : [cat; at] → a r9 : [cat; bt] → b r10 : [cat; ct] → c

The derivation of the word w = a2 b2 c2 is the following:

[CAT : s] r1⇒
[
CAT:a
LG:X

][
CAT:b
LG:X

] r2,r4,r6⇒ [CAT : at]
[
CAT:a
LG:Y

]
[CAT : bt]

[
CAT:b
LG:Y

]
[CAT : ct]

[
CAT:c
LG:Y

]

r3,r5,r7⇒ [CAT : at] [CAT : at] [CAT : bt] [CAT : bt] [CAT : ct] [CAT : ct]
In the first rewriting, by the rule r1, the unification was as bellow:

[
CAT:a
LG:X

]
t


CAT:a

LG:
[
LG: Y

]



=

CAT:a

LG:
[
LG: Y

]



As the first AVM shares information (by Y ) with the second and the third, X
is replaced in these AVM’s too. The obtained AVM’s are exactely the LHS of the
rules r2, r4, r6 and thus the rewriting is by these rules. The next unification is:[

CAT:a
LG:Y

]
t

[
CAT:a
LG:1

]
=

[
CAT:a
LG:1

]



46 DOINA TĂTAR AND MIHAELA LUPEA

. As Y is made 1 an all the AVM’s, the rules r3, r5, r7 can be applied.
For the word w = a2 b2 c2, PTw(1, · · · , 6) is [CAT : at] [CAT : at] [CAT :

bt] [CAT : bt] [CAT : ct] [CAT : ct] which is exactely the form obtained from As.
So, w = a2 b2 c2 is in L(G).

References

[1] B. Carpenter, The logic of typed feature structures, Cambridge University Press, 1992.
[2] N. Francez, S. Wintner, Feature structure based linguistic formalisms, draft 1998, http.
[3] G. Gazdar, C. Mellish: NLP in Prolog. An introduction to CL, Addison Wesley, New

York, 1989.
[4] M. Johnson, Attribute-value logic and the theory of grammar, CSLI, 1988.
[5] M. Shieber, Introduction to unification-based approaches to grammars, CSLI, 1986.
[6] D. Tatar, Compiling definite clause grammars, Studia Univ. “Babes-Bolyai”, Informatica,

vol I, nr.1, 1996, pp 45-56.

Babeş-Bolyai University, Faculty of Mathematics and Informatics,
RO 3400 Cluj-Napoca, str. Kogălniceanu 1, Romania

E-mail address: {dtatar,lupea}@cs.ubbcluj.ro


