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On Some Polynomial GCD Algorithms 

DRAGO^ POP 

Abstract. This paper presents an algorithm for computing the greatest com- 
mon divisor of two polynomials, which does not use the traditional method 
of polynomial remainders sequence. Instead, it uses addition/subtraction of 
pairs of polynomials and divisions of a polynomial with powers of X. 

This algorithm is then generalized for the computation of the greatest 
common divisor for an arbitrary number of polynomials. With succesive 

changes, we obtain an algorithm that computes solutions for Hermite Pade 

problems and a base for the null space of m polynomials. 

1. Introduction 

The computation of polynounial greatest common divisor is required in nearly 
all computations with polynomial or rational functions and the performance of a 

symbolic computation system largely depends on the quality of the gcd algorithm 
used 

The classical algorithm are based on a generalization of the Euclidean algo- 
rithm to polynomials. It uses the successive reduction of the problem to a similar 
one for polynomials whose degrees are less than the degrees of the previous poly- 
nomials. The decreasing degrees of the polynomials guarantee that after a finite 
number of steps, one of the polynomials becomes 0 and the other represents the 
GCD of the initial polynomials. 

Let F and G be polynomials with rational coefficients. The Euclidean GCD 

algorithm is based on the following property: ged(F, G) = gcd(G, F mod G). We 
Can suppose that deg(F) > deg(G). At each step, the degrees of the polynomials 

involved are reduced, since deg(G) < deg(F) and deg(F mod G)< deg(G) and 
he first inequality becomes strict after the lirst step. 
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2. The polynomial binary GCD algorithm 

We can obtain alternative GCD algorithms if we use other reduction rules 
For example, we can consider the following properties: 

ged(F, C) =ged(F + kG, G), for ka nonzero rational number 

and 

ged(X* P, G) = ged(F, G), if G(0) #0. 

The first relation can be used to vanish F(0) and thus, to guarantee that 
i max{j E N|X divides F}>0. The degree of F remains unchanged or may 
decrease, since deg{G) < deg(F). In these conditions, using the second relation, 
we will decrease the degree of F. If after this operation deg(F) < deg(G), the 
polynomials F and G will be interchanged. We obtained the following algorithm: 

1. Compute i = max{l E N|X' divides F} and divide F by X. 
2. Compute j = mnar{l ¬ N|X' divides G} and divide G by X3. 

3. kmin(i, j) and interchange F and G, if deg(F) < deg(C). 
4. while G#1 do begin 

F+ prim(F- G) (prim(F) represents the primitive part of F) 
Compute i = max{l ¬ N\X divides F} and divide F by X*. 

if deg(F) < deg(G) then interchange F and G. 
end; 

5. Returns X*F. 
We observe that this algorithm uses only additions/subtráctions of polyno mials, multiplications with a constant value and coefficient shifting (the divisions 

with powers of X). The polynomial divisions, which are at the base of the clas-
sical GOCD algorithms but are rather costly operations, are completely avoided. 
Moreover, it is easy to see that it at step 4 we replace F-prinn(F - G) G F G(0)F - F(0)G, we can use this algorithm for polynomials with coeficients 
in a ring. 

As in the case of the classical algorithms, this algorithm stops when one of the polynomials becomes 0. The decreasing degrees of the polynomials, guarantee that the algorithms stops after a finite number of steps. Another advantage of this algorithm is that it could be casily generalized for 
an arbitrary number of polynomials. Let n be an integer, n > 1 and F1, Fa» ...F E K[X] where R is a ring. We will use the following propertics: 

gcd(F1, F2,. , Pa) = gcd(F1 +k1Pi,... , Fi,..., Fn t+ kn F.), for any k; ¬ K 
gcd (XFi, X**Fa,... , Fi ,X** Fa) = ged(Fi, F2, ,Fa), if Fi(0) # 0. As in the case of two polynomials, we will alternatively apply these relations.First, we use Fi to vanish the free terms of the other polynomials. F; is chosen such that it has the nininum degree among the given polynomials. Using the second relation, the degrees of the other polynomials are decreased. After each stage, the 62 
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polynomials that become 0 are eliminated and n is adjusted. The algorithrn stops 
when n = 1. 

1. Compute ji = max{l ¬ NX' divides F}and divide F by X, i = 

1,., Tn. 
2. k-min{ji, j2,. Jn 
3. while n>0 do begin 

Compute j such that deg(F;) = min{deg(i)|i = 1,... , n} 
Compute m; = max{! E N|X' divides Fi} for each i = 1,... ,n,ifj. 

Ehminate polynonials F; = 0, renumber polynomials F; and adjust 

end; 
4. Returns X*F1, where F1 is the last polynomial that remains nonzero. 

3. Applications 

Our goal is to prove that a modified version of this algorithm can be used to 
determine other values which are useful in the polynomial computation. Let FI = 
F= (F1, F2,.. . 

, Fm) the initial vector of polynomials and let n = (n1, n2,. . . , Tm) 
be the vector of their degree. If P is the m order unity matrix, then P.FI = F. 

In the previous section, all the polynomials, excepting a pivot polynomial, are 
divided by X1 after vanishing the coefficient of X",... , Xmi-l, with m; 1. 
We will change this step as follows: after the elimination of the terms in Xo, the 
ivot polynomial is multiplied by X. At the next steps, the terms in X, X2,. 

will be eliminate using diferent pivot polynomials. 
Meantime, we will try to modify the polynomial matrix P such that the 

relation P.FI = F remains true. If at step 1, F; is the pivot polynomial, the line 
P will be considered as pivot line and the operations: 

cOej[i)p. for i =1,... , n, i# j, and F F: A coef(Fi,) 
Fi-F-

will be followed by: 

+P cOC P, for i= 1,.. ,n, ifj, and Pj - P: X PPi coef{Fi,) 
After step l, the polynomials Fi will have nonzero terms only for powers of 

greater than . We remark that as in the previous case, the polynomials that 
vanishes and the corresponding lines of the matrix P will be ignored in the next 

sTeps. However, these lines will provide a basis for the null space of the polynomials 
11,Fa,,Fn}, which represents one of the applications of this algorithm. We 
aso remark that using only this kind of transformation on the lines P of matrix 
, they remain linear independent with respect to polynomial coeficients, after 
each step. 
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In the previous section, the polynomial with the minimum degree is selected 
as pivot polynomial, because Fi(0) # 0 for alli= 1,... , n. Now, we will select as 

pivot polynomial at step 1, the polynomial with the minimum degree among the 
polynomials with a nonzero coeftlicient of X. 

Another application of the modified algorithm which will be presented below i 
solving Hermite Padé approximation problems. We define this problern as follows. 

Definition 3.1. Let F = (F1, F2,... , Fm)be an m-tuple of power series with 
coeficients from a field K and n = (ni, n2,. . , Tn) an m-tuple of integers, n;> -1. A Hermite-Padé approimant for F of lype n is a nontrivial tuple P = 
(P1, P2,.. . , Pm) of polynomials over K, having degrees bounded by n;, Such that: 

P(3).-F(:) = Pi(:):Fi(7)+Pa(z)-Fa(:)+..+Pm(=)-Fm(=) = cN:"+cN+1 2+. 
with N = n1 t...+ nm + m-1= In|. 
Definition 3.2. The defect of P = (Pi, P2,... , Pm) E Km[z] with respect to 
n = (71,Tn2, , m) is dct(P) = minfn +l-deg(P)| = 1,... , m, where the 
zero polynomial has degree -oo. The order of P with respect to F is defined by ord( P) = sup{o ¬ NolP(z)-F(z) = :. R(z), with R E K[[F]}. 

A Hermite-Padé problem has a set of solutions, which will be denoted by: 
Ljigma = {P E K"[]]dct> -$ and ord(P)2 o} 

for a E No and 6 e Zu{+oo}. 
Beckermann and Labahn introduced the so-called o-bases of a Hermite-Padé 

problem and proved some properties of the 

defect and the order, with respect to arithmetic operations between two solu 

tions 
Definition 3.3. Let o E No. The system P1, Pa2,.. , Pm E K"[E] is called a 
T-bases if and only if: 

i): P, Pa... , Pm E LGoo i.e. ord(P.) 2 a 
ii): For each ð E Z U {+oo) and for each Q E LG there erists one and only 

one tuple of polynomials (a1,. . , Cm), des(«i) < dct(Pi) +8 such that 

Q= a1P++am Pn 
Note that as a consequence, the polynomial vectors P, Pa,... , Pm must be 

linearly independents with respect to polynomial coefticients.

Lemma 3.4. If P.QEKm[=], cEK - {0} then: 

i): dele P) = det(P), de(P+)2 minfdt(P'), del(Q)}, det(: P) = det(P)- 

1. 
ii): ord(e-P) = ord(P), od(P+Q)2 minford(P), ondQ)}, ord{: P) = ord[(P}+ 
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interested about the dimension of 1g. It is clear that Lgt'cLg. If 

PEL L*', then ord(P) = a and from the above properties, it is easy to see 

that for each QEL? 
dimbg dimlg -1. 

Considering the coefficients of the polynomials from P as unknowns, one can 
observe that the relation P(:) - P() = #- R{2) is a homogenous lincar system 

ofl equations (the firstI coefficient of the polynomial in the right member are 
0). It follows that a Hermite-Padé problem of order o has at least In7 linearly 

independent solutions over K. This means that the number of linearly independent 
solutions is decreasing to 1 when ! is increasing. This provide us the stop condition 

for the algorithm. 

there exists a cek such that Q- c-PeLG*. This implies 

1. Initialize P as the m order unity matrix 
I-0; kt-m; 

2. repeat 

T-{1sisn|coef(Fi, /)#0}; 
if T= 0 then l-l+1 and goto 2; 
let jET such that deg(F;) = min{deg(F)|i e T}; 

F+F - coelP and P -P -CO P; for all ieT, i#j; 

Fit-F X and P^t-PiX; 
decrease m with the number of polynomials F; that became 0 at this 

coef(F,) 

step; 
l=+1; 

until m= 1; 

After step o, the lines of the matrix P that correspond to nonzero entries 
in the vector of polynomials F, represent a a-base for the Hermite-Padé problem 
of order a. When the algorithm stops, the last nonzero polynomial entry of F is 

x' D(X), where D(X) is a factor of ged(Fi, F2,.. , Fn). The other factor is a 

power of X, that could be determined at the beginning of the algorithm, as in the 

first version of the binary gcd algorithm. 
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