
10th Joint Conference on Mathematics and Computer Science, May 22–25, 2014, Cluj, Romania1

C++ Compile-time Reflection and Mock Objects

Gábor Márton, Zoltán Porkoláb

Department of Programming Languages and Compilers, Eötvös Loránd University

martongabesz@gmail.com

gsd@elte.hu

Reflection is an important tool in the hands of programmers since a while. Serializing objects,
creating mock objects for testing or creating object relational mappings are just a few use cases.
Writing generic code in Java or in Python for such use cases is possible today. Though, using
reflection in these managed languages is doable only in runtime, therefore this implies runtime
penalty. Currently C++ has a very limited capability of runtime reflection (operator typeid). [1]

ISO C++ started a study group (SG7) to examine the possibilities of compile-time reflection in
C++. [2] With compile-time reflection it would be possible to have a generic library for serialization
or for object relational mappings. There are several potential notions about how to approach this
kind of reflection. For example introducing high-level new lingual elements like static for, or
creating library interfaces which are hiding compiler intrinsics for each specific reflection subtask.

Without standardized C++ compile-time reflection, creating proxy objects or mock test objects
is a repetitive and error-prone task. In this paper an alternative C++ compile-time reflection
approach is discussed in favor of finding a generic solution for this task. The approach is based
on introducing new library elements. Under the hood these library element implementations has
to be compiler specific intrinsics (compiler specific expressions). With these expressions, variables
and functions could be declared and defined from results of reflection queries.

References

[1] ISO International Standard ISO/IEC 14882:2011(E) Programming Language C++

[2] https://groups.google.com/a/isocpp.org/forum/#!forum/reflection


