

Intelligent methods for inferring software architectures from mobile applications
codebases

Author: Dragoș Dobrean (under the supervision of prof. dr. Laura Dioșan)

In software development refactoring periods are not viewed as
productive tasks by the management team as in many cases, as
quite often there are no visible changes to the product. One of
the main reasons why refactoring is needed is because the
software product has architectural issues which make the
development of new features problematic. By identifying those
issues early, when the code is still being developed, software
projects could avoid long refactoring periods that are costly
from both time and costs perspectives.

Mobile applications are one of the most written pieces of software nowadays, the software architectures used
for building those products as well as their correct implementation represent an important factor in their
success. By using the correct software architecture, mobile applications can easily be expanded to incorporate
the latest software and hardware advancements and to quickly develop new features.

The aim of this thesis is to pave the way for building an automatic checker system for the software architectures
of mobile applications, that can detect architectural issues, early in the development phase, before the code is
pushed to production. For a checker system to detect architectural violations and inconsistencies, we need to
know what the current architecture of the project we are analyzing is. With our study, we have laid the
foundation of such a system by solving the problem of inferring software architectures from mobile codebases.
We have developer three methods for inferring software architectures from mobile codebase:

• mACS -- a purely deterministic method that statically infers the architecture from a mobile codebase
by using the information from the mobile Software Development Kits (SDKs) and a set of heuristics

• CARL -- a non-deterministic method that uses Machine Learning algorithms (clustering) -- which is more
flexible than mACS (could be applied to more architectural patterns)

• HyDe -- a method that combines our two previous approaches (mACS and CARL), the goal of this
method is to combine the adapatbility of CARL with the accuracy of mACS

We have validated our approaches on multiple mobile
applications, from various domains, and we've found
out that our methods have an average precision of 86%
on all the analyzed codebases. In addition, we were
also interested in the portability and extensibility of
our methods to other mobile and non-mobile
platforms. Our methods proved to have increased
flexibility, meaning they can be applied to different
platforms, and different programming languages with
ease and great results.

With our work, we have paved the way for automatically detecting architectural issues in mobile and non-
mobile codebases, by using a novel approach – leveraging the information from the SDKs and Machine Learning
algorithms.

