
Computational Intelligence in Software Engineering

Course website: www.cs.ubbcluj.ro/~istvanc/master

Please join Microsoft Teams using TeamCode: 50k2mrs

Hours per week:

Course 2 h/week

Lab 1h/week

Course outline:

1. Search-based Software Engineering

2. Machine learning in Software Engineering

3. Program Comprehension

4. Refactoring

5. Defect Detection and Prediction

6. Software Testing

7. Software Vizualization

8. Effort prediction and Cost estimation

9. Software Reuse

10. Design Patterns identification

11. Research reports presentation

Bibliography

1. Czibula, I., G., Use of search techniques to software development, Editura Risoprint, ISBN

978-973-53-0119-4, 2009 (248 pagini)

2. Mark Harman and Bryan F. Jones. Search-based software engineering. Information &

Software Technology, 43(14):833-839, 2001.

3. Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination of

refactorings for improving the class structure of object-oriented systems. In GECCO '06:

Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages

1909{1916, New York, NY, USA, 2006. ACM Press.

4. Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In

CSMR '01: Proceedings of the Fifth European Conference on Software Maintenance and

Reengineering, pages 30-38, Washington, DC, USA, 2001. IEEE Computer Society.

5. Mitchell, T., Machine Learning, McGraw Hill, 1997

6. Nillson, N., Introduction to Machine Learning, Stanford University, 1996

7. Mary Shaw, Writing Good Software Engineering Research Papers, Proceedings of the 25th

International Conference on Software Engineering, IEEE Computer Society, 2003, pp. 726-736.

http://www.cs.ubbcluj.ro/~istvanc/master

Professional competencies:

• Understanding CI concepts, methods and models

• Understanding the principles of Search Based Software Engineering.

• Learning to conduct incipient original research in Search Based Software Engineering.

Transversal competencies

• The ability to apply computational intelligence techniques in solving software engineering

problems.

• Responsible execution of lab assignments, research and practical reports.

• Application of efficient and rigorous working rules.

• Manifest responsible attitudes toward the scientific and didactic fields.

• Respecting the professional and ethical principles.

Objectives

• To introduce the student a new field of Software Engineering- Search Based Software

Engineering.

• To induce the necessity and importance of using computational intelligence techniques for

solving software engineering problems.

• To present some important activities within software engineering and how are they solved

using computational intelligence techniques.

Activity and grading

10% Class attendance

30% Theoretical research report (written and presented)

30% Lab grade (30% Lab1 70% Lab2)

30% Final exam (written paper in exams session)

Extra session

 In the extra session, all activities can be reconsidered, excepting the oral presentations (the

maximum grade for a research report is 8).

Research report

Each student will have to prepare and present a theoretical research report on a search-based

software engineering topic based on some recent research papers: application of machine learning

techniques for software development related activities.

 a) a written paper of about 4 pages

 b) an oral presentation

 - a one-page outline of the presentation

The paper will contain theoretical considerations on the selected topic and advantages and

disadvantages of the selected approach (here you can list your own opinions)

Deadline

The title of the theoretical report must be sent to me by end of week 7.

The presentation will be scheduled for week 10,11,12.

 The paper must fulfill the requirements of a research paper:

▪ suggestive title corresponding to the contents;

▪ about 10 lines abstract;

▪ introductory section, detailing the purpose of the paper;

▪ a section integrating the topic of the paper in the general field;

▪ a few main sections, according to your topic;

▪ concluding remarks and further work section;

▪ bibliography of five to 10 titles; the bibliography entries have to be written

correctly and completely; all the bibliography items have to be cited in the text;

Lab Grade

Project 1: Download/install an existing open source machine learning framework and create a simple

“hello word” application that uses a machine learning technique.

Sample Open source machine learning frameworks:

 WEKA http://www.cs.waikato.ac.nz/ml/weka/

 Orange http://www.ailab.si/orange/
 https://wiki.python.org/moin/PythonForArtificialIntelligence

 NumL http://numl.net/

 others

Machine Learning techniques (pick one):

• Decision tree learning

• Association rule learning

• Artificial neural networks

• Self-organizing maps

• Clustering

• Reinforcement learning

• Bayesian networks

• Support vector machines

• Genetic algorithms

Deadline week 4

Project 2: Apply a machine learning technique to a software engineering related problem

Approach a real-world software engineering related activity. Try to create a machine learning based

approach to automate/support/improve the targeted activity.

Data collection part should be implemented in this project (do not use existing datasets)

Validation on real-world examples should be provided.

Deadline week 8

http://www.cs.waikato.ac.nz/ml/weka/
https://wiki.python.org/moin/PythonForArtificialIntelligence
http://numl.net/

Software engineering research papers
Based on: Mary Shaw, Writing Good Software Engineering Research Papers, Proceedings of the

25th International Conference on Software Engineering, IEEE Computer Society, 2003, pp. 726-

736.

In a research paper, the author explains to an interested reader what he or she accomplished, and

how the author accomplished it, and why the reader should care. If your result represents an inter-

esting, sound, and significant contribution to our knowledge of software engineering, you’ll have a

good chance of getting it accepted for publication in a conference or journal.

A research paper should answer several questions:

What, precisely, was your contribution?

• What question did you answer?

• Why should the reader care?

• What larger question does this address?

What is your new result?

• What new knowledge have you contributed that the reader can use elsewhere?

• What previous work (yours or someone else’s) do you build on? What do you provide a su-

perior alternative to?

• How is your result different from and better than this prior work?

• What, precisely and in detail, is your new result?

Why should the reader believe your result?

• What standard should be used to evaluate your claim?

• What concrete evidence shows that your result satisfies your claim?

What kinds of questions do software engineers investigate?

Software engineering researchers seek better ways to develop and evaluate software. Development

includes all the synthetic activities that involve creating and modifying the software, including the

code, design documents, documentation

Predicting, determining, and estimating properties of the software systems, including both func-

tional and non-functional properties such as performance or reliability.

Types of software engineering research questions

Type of question Examples

Method or means of

development

How can we do/create/modify/evolve (or automate doing) X?

What is a better way to do/create/modify/evolve X?

Method for analysis

or evaluation

How can I evaluate the quality/correctness of X?

How do I choose between X and Y?

Design, evaluation, or

analysis of a

particular instance

How good is Y? What is property X of artifact/method Y?

What is a (better) design, implementation, maintenance, or ad-

aptation for application X?

How does X compare to Y?

What is the current state of X / practice of Y?

Generalization or

characterization

Given X, what will Y (necessarily) be?

What, exactly, do we mean by X? What are its important char-

acteristics?

What is a good formal/empirical model for X?

What are the varieties of X, how are they related?

Feasibility study or

exploration

Does X even exist, and if so what is it like?

Is it possible to accomplish X at all?

Type of research questions represented in ICSE (International Conference on

Software Engineering) submissions

most common kind of ICSE paper reports an improved method or means of developing software

fairly common are papers about methods for reasoning about software systems, principally analysis

of correctness (testing and verification)

Type of question Submitted Accepted Ratio Acc/Sub

Method or means of development 142(48%) 18 (42%) (13%)

Method for analysis or evaluation 95 (32%) 19 (44%) (20%)

Design, evaluation, or analysis of a particular

instance

43 (14%) 5 (12%) (12%)

Generalization or characterization 18 (6%) 1 (2%) (6%)

Feasibility study or exploration 0 (0%) 0 (0%) (0%)

TOTAL 298(100.0%) 43 (100.0%) (14%)

What kinds of results do software engineers produce?

The tangible contributions of software engineering research may be procedures or techniques for

development or analysis; they may be models that generalize from specific examples, or they may

be specific tools, solutions, or results about particular systems.

Types of research results that are reported in software engineering research papers and provides

specific examples.

Type of result Examples

Procedure or

technique

New or better way to do some task, such as design, implementation,

maintenance, measurement, evaluation, selection from alternatives; in-

cludes techniques for

implementation, representation, management, and analysis; a technique

should be operational—not advice or guidelines, but a procedure

Qualitative or

descriptive model

Structure or taxonomy for a problem area; architectural style, frame-

work, or design pattern; non-formal domain analysis, well-grounded

checklists, well-argued informal

generalizations, guidance for integrating other results, well-organized

interesting observations

Empirical model Empirical predictive model based on observed data

Analytic model Structural model that permits formal analysis or automatic manipulation

Tool or notation Implemented tool that embodies a technique; formal language to support

a technique or model (should have a calculus, semantics, or other basis

for computing or doing inference)

Specific solution,

prototype, answer,

or judgment

Solution to application problem that shows application of SE principles

– may be design, prototype, or full implementation; careful analysis of a

system or its development, result of a specific analysis, evaluation, or

comparison

Report Interesting observations, rules of thumb, but not sufficiently general or

systematic to rise to the level of a descriptive model.

most common kind of ICSE paper reports a new procedure or technique for development or analy-

sis.

Models of various degrees of precision and formality were also common, with better success rates

for quantitative than for qualitative models. Tools and notations were well represented, usually as

auxiliary results in combination with a procedure or technique

Computational Intelligence in Software Engineering

Will investigate the use of search techniques for solving several software engineering

problems - search based software engineering.

Search based software engineering is a research and application domain that has many

unresearched directions, and many already studied fields

Idea: solving software engineering problems using artificial intelligence techniques,

particularly machine learning techniques.

Search Based Software Engineering

Reformulating software engineering problems as search problems.

Metaheuristic search techniques are used in solving different software engineering

problems: testing, module clustering, cost estimation, requirements analysis, systems

integration, software maintenance and evolution of legacy systems.

Harman and Jones (2001): Software engineering is ideal for the application of

metaheuristic search techniques, such as genetic algorithms, simulated

annealing and tabu search
Mark Harman and Bryan F. Jones. Search-based software engineering. Information & Software

Technology, 43(14):833{839, 2001.

Approaching software engineering problems as search problems allows solving these

problems using computational intelligence and consequently benefits from the

advantages offered by AI.

search-based techniques provide solution to the difficult problem of balancing

competing (and sometimes inconsistent) constraints and may suggest ways of finding

acceptable solutions in situations where perfect solutions are either theoretically

impossible or practically infeasible.

Machine Learning

Machine learning is an important research direction in Artificial Intelligence.

Machine learning explores the construction and study of algorithms that can learn

from data

Machine learning is the study of systems models that, based on a set of data (training

data), improve their performance by experiences and by learning some specific

domain knowledge.

there are three basic machine learning strategies:

• supervised learning (the learning strategy that is supervised by a teacher)

• unsupervised learning (learning without supervision)

• reinforcement learning (learning by interaction with the environment).

Machine learning techniques

Decision tree learning

Decision tree learning uses a decision tree as a predictive model, which maps

observations about an item to conclusions about the item's target value.

Association rule learning

Association rule learning is a method for discovering interesting relations between

variables in large databases.

Artificial neural networks

An artificial neural network (ANN) learning algorithm, usually called "neural

network" (NN), is a learning algorithm that is inspired by the structure and functional

aspects of biological neural networks. Computations are structured in terms of an

interconnected group of artificial neurons, processing information using a

connectionist approach to computation. Modern neural networks are non-linear

statistical data modeling tools. They are usually used to model complex relationships

between inputs and outputs, to find patterns in data, or to capture the statistical

structure in an unknown joint probability distribution between observed variables.

Support vector machines

Support vector machines (SVMs) are a set of related supervised learning methods

used for classification and regression. Given a set of training examples, each marked

as belonging to one of two categories, an SVM training algorithm builds a model that

predicts whether a new example falls into one category or the other.

Machine learning techniques

Clustering (Unsupervised classification)

Cluster analysis is the assignment of a set of observations into subsets (called

clusters) so that observations within the same cluster are similar according to some

predesignated criterion or criteria, while observations drawn from different clusters

are dissimilar. Different clustering techniques make different assumptions on the

structure of the data, often defined by some similarity metric and evaluated for

example by internal compactness (similarity between members of the same cluster)

and separation between different clusters. Other methods are based on estimated

density and graph connectivity. Clustering is a method of unsupervised learning, and

a common technique for statistical data analysis.

Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an

environment so as to maximize some notion of long-term reward. Reinforcement

learning algorithms attempt to find a policy that maps states of the world to the

actions the agent ought to take in those states. Reinforcement learning differs from

the supervised learning problem in that correct input/output pairs are never presented,

nor sub-optimal actions explicitly corrected.

Software Engineering

Design, development, and maintenance of software

Application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software

Software development life cycle:

1. Requirement gathering and analysis

2. Design

3. Implementation or coding

4. Testing

5. Deployment

6. Maintenance

Common software development methodologies:

• waterfall

• prototyping

• iterative and incremental development

• feature driven development

• spiral development

• rapid application development

• extreme programming

• agile methodology

• ...

Software Engineering subdisciplines

Requirements engineering: The elicitation, analysis, specification, and validation of

requirements for software.

Software design: The process of defining the architecture, components, interfaces,

and other characteristics of a system or component. It is also defined as the result of

that process.

Software construction: The detailed creation of working, meaningful software

through a combination of coding, verification, unit testing, integration testing, and

debugging.

Software testing: An empirical, technical investigation conducted to provide

stakeholders with information about the quality of the product or service under test.

Software maintenance: The totality of activities required to provide cost-effective

support to software.

Software configuration management: The identification of the configuration of a

system at distinct points in time for the purpose of systematically controlling changes

to the configuration and maintaining the integrity and traceability of the configuration

throughout the system life cycle.

Software engineering management: The application of management activities—

planning, coordinating, measuring, monitoring, controlling, and reporting—to ensure

that the development and maintenance of software is systematic, disciplined, and

quantified.

Software engineering process: The definition, implementation, assessment,

measurement, management, change, and improvement of the software life cycle

process itself.

Software engineering tools and methods: The computer-based tools that are

intended to assist the software life cycle processes (see Computer-aided software

engineering) and the methods which impose structure on the software engineering

activity with the goal of making the activity systematic and ultimately more likely to

be successful.

Software quality management: The degree to which a set of inherent characteristics

fulfills requirements.

Software engineering activities

Requirements analysis

• cost/time estimation

• traceability

Design

• decompose system into subsystems

• components, classes, state machines

Coding

• Implement new functionalities

• Repair bugs

• Refactoring

• Source code repository

• Continuous integration

Testing

• create test cases/unit tests

• integration testing

• system testing

Deployment

• configuration management

• application monitoring

Maintenance

• program comprehension

• refactoring/improving overall design

• fix bugs/create testcases

• concept location

• software visualization

Data available to use

Any artifact produced during the development of a software system.

Design documents

 UML Diagrams- class diagrams, sequence diagrams, use case diagrams etc.

 Functional/architectural/user interface design documents

Source code

 instructions, methods, classes

 comments

 modules, package structure

 test functions, test cases

 source code files (size, creation date/time, modification date/time)

Project management data

 tasks, dependencies, allocation

 task estimated/actual time

Source code repository

 comments entered for checkins

 commit/update date/time, person, location, team member

 modified/moved/removed files

Configuration/deployment

 config files, build files (ant, maven,

Data we can produce/collect

Software metrics

 method/class/package level metrics

Runtime data

 stack traces

 code coverage

 memory allocation/usage

 error conditions

Project management data

 project velocity

User data

 survey

 user behavior (clicks, selects, navigation)

Computational Intelligence in Software Engineering

We present some existing work in the search-based software engineering literature.

Existing approaches we are focusing:

• Refactoring

• Defect Detection and Prediction

• Object-oriented transformation

• Behavioral adaptation of software systems

• Software Testing

• Software Visualization

• Effort prediction and Cost estimation

• Software Reuse

• Design Patterns identification

