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ABSTRACT

It is now well-admitted that formal methods are helpful for
many issues raised in the Web service area. In this paper
we present a framework for the design and the verification
of WSs using process algebras and their tools. We define
a two-way mapping between abstract specifications writ-
ten using these calculi and executable Web services written
in BPEL4WS; the translation includes also compensation,
event, and fault handlers. The following choices are avail-
able: design and verification in BPEL4WS, using process
algebra tools, or design and verification in process algebra
and automatically obtaining the corresponding BPEL4WS
code. The approaches can be combined. Process algebras
are not useful only for temporal logic verification: we re-
mark the use of simulation/bisimulation for verification, for
the hierarchical refinement design method, for the service
redundancy analysis in a community, and for replacing a
service with another one in a composition.

Categoriesand Subject Descriptors

D.2.4 [Software Engineering]: Software/ Program Verifi-
cation—Model checking; Formal methods; D.2.1 [Software
Engineering]: Requirements/ Specifications—Languages
(Lotos)

General Terms

Design, Languages, Verification

Keywords
BPEL4WS, Formal Methods, Process Algebra, Web Ser-

vices

1. INTRODUCTION

Web services (WSs) are distributed and independent pieces
of code solving specific tasks which communicate with each
other through the exchange of messages. A more unusual
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specificity that distinguishes them from more traditional
software components is that they are deployed and then ac-
cessed through the internet. Some XML-based standardized
technologies have already been proposed to support WSs de-
velopment: WSDL interfaces abstractly describe messages
to be exchanged, SOAP is a protocol for exchanging struc-
tured information, UDDI is used to publish and discover
WSs, BPEL4WS (BPEL for short) is a notation for describ-
ing executable business process behaviors. WSs raise many
theoretical and practical issues which are part of on-going
research. Some well-known problems related to WSs are to
specify them in an adequate, formally defined and expres-
sive enough language, to compose them (automatically), to
discover them through the web, to ensure their correctness.

Formal methods provide an adequate framework (many
specification languages and reasoning tools) to address most
of these issues (description, composition, correctness). Dif-
ferent proposals have emerged recently to abstractly de-
scribe WSs, most of which are grounded on transition sys-
tem models (Labelled Transition Systems, Mealy automata,
Petri nets, etc.) [5, 15, 24, 13, 20, 12].

With respect to these works, we use process algebras (PAs
for short) as abstract representation. Process algebras offer
more respect to all these previous approaches: they not only
provide temporal logic model checking, but also bisimulation
(resp. simulation) analysis, that is we can establish whether
two processes have equivalent behaviors (resp. whether one
of the two includes the behavior of the other). Bisimulation
analysis is useful to establish when a service can substitute
another services in a composition [7]; another use of bisimu-
lation is to check the redundancy of service in a community.
Because process algebras support simulation analysis, we
can apply to WSs a well-know design method, the hierarchi-
cal refinement [18, 17]: intuitively we start with an abstract
description of a process and we refine it iteratively, obtain-
ing at each step a less abstract one. At each stage, using
simulation and bisimulation we can verify the correspon-
dence between the current version and the previous (more
abstract) one. It can be applied also in the BPEL modelling
of WSs, using the two-way mapping. Moreover we argue,
with a simple consideration, that the simulation can be part
of the problem of automatic composition of services.

In Figure 1 we present a framework, for the design and
verification of WSs using process algebras [6] (e.g. CCS, 7-
calculus, LOTOS). In this paper we focus on LOTOS, one
of the most expressive process algebra. We provide a two-
way mapping between BPEL/WSDL and LOTOS, and gen-
eral guidelines for translations between BPEL/WSDL and



a process algebra. We choose LOTOS because it allows us
the data handling, and the verification and the modelling of
the BPEL handlers.

Respect to the quoted previous works, we study also the
direction from a formal language to BPEL. Using the two-
way mapping, that allows an automatic translation between
the two languages, two choices are available: designing in
BPEL and verifying with a process algebra, designing and
verifying in a process algebra. These two approaches are not
alternative, but they can be combined in the same develop-
ment.

Designing in BPEL and verifying with a process al-
gebra. Going from BPEL to a PA allows us the verification
step in PA, and the converse allows to see the counterexam-
ples directly in BPEL, hopefully even in the visual interface
for designing BPEL services. Obviously one can correct in
PA, and the BPEL corrected code is automatically gener-
ated. This approach is useful also for reverse engineering
issues, and when we want to verify BPEL services devel-
oped by others.

Designing and verifying in a process algebra. We
point out that using the mapping we can automatically ob-
tain BPEL/WSDL specifications. To our knowledge this is
the first work in this direction. As advocated in a previ-
ous work [27], being simple, abstract and formally defined,
PAs make it easier to specify the message exchange between
WSs, and to reason on the specified systems. They are espe-
cially worthy as a first description step because they enable
one to analyze the problem at hand, to clarify some points,
to sketch a (first) solution using an abstract language (then
dealing only with essential concerns), to have at one disposal
a formal description of one or more services-to-be, therefore
adequate to use existing reasoning tools to verify and en-
sure some temporal properties (safety, liveness and fairness
properties), behavior equivalences (bisimulation), and exe-
cution traces. Process algebras design allows the distributed

development and software reuse.

PA tools @ CWEB-NC
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Vsual
Interface BPELANSDL

Figure 1: Proposal overview

In Section 3 we focus on the two-way mapping between
LOTOS to BPEL and we give the guidelines formalizing
the translation between process algebras and BPEL. In Sec-
tion 4 we illustrate the features provided by our approach:
temporal logic model checking, execution traces, simulation,
bisimulation. We discuss the hierarchical refinement and
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other problems that we can solve using a process algebra
representation for WSs and a bisimulation analysis. In Sec-
tion 5 presents related works and motivates our contribution
with respect to them. We draw up concluding remarks in
Section 6 and we mention some future works.

2. PRELIMINARIES

2.1 LOTOSin aNutshdll

LOTOS is a specification language for distributed open
systems normalized by the ISO [16]. It combines two spec-
ification models: one for static aspects (data and opera-
tions) which relies on the algebraic specification language
ACT ONE [9] and one for dynamic aspects (processes) which
draws its inspiration from the CCS [22] and CSP [14] PAs.

2.1.1 Abstract Datatypes

LOTOS allows the representation of data using algebraic
abstract types. In ACT ONE, each sort (or datatype) de-
fines a set of operations with arity and typing (the whole
is called signature). A subset of these operations, the con-
structors, are sufficient to create all the elements of the sort.
Terms are obtained from all the correct operation composi-
tions. Azioms are first order logic formulas built on terms
with variables; they define the meaning of each operation
appearing in the signature.

2.1.2 Basic LOTOS

This PA authorizes the description of dynamic behav-
iors evolving in parallel and synchronizing using rendez-vous
(all the processes involved in the synchronization should be
ready to evolve simultaneously along the same action). A
process P denotes a succession of actions (also called event,
channel or game in other formalisms) which are basic enti-
ties representing dynamic evolutions of processes; a process
can be recursive. The symbol stop denotes an inactive be-
havior (it could be viewed as the end of a behavior) and the
exit one depicts a normal termination. The specific i action
corresponds to an internal (unobservable) evolution.

Now, we present LOTOS behavioral operators. The pre-
fixing operator (G3B proposes a rendez-vous on the action
G, or an independent firing of this action, and then the be-
havior B is run. The non deterministic choice between two
behaviors is represented using [|. LOTOS has at its dis-
posal three parallel composition operators. The general case
is given by the expression By |[G1, ..., G»]| B2 expressing the
parallel execution between behaviors B1 and B2. It means
that B1 and B2 evolve independently except on the actions
G1, ..., Gy, on which they evolve at the same time firing the
same action (they also synchronize on the termination exit).
Two other operators are particular cases of the former one
to write out interleaving Bi|||Bz which means an indepen-
dent evolution of composed processes B1 and Bz (empty list
of actions), and full synchronization Bi||Bz where the com-
posed processes synchronize on all actions (list containing
all the actions used in each process). Moreover, the com-
munication model proposes a multi-way synchronization: n
processes may participate to the rendez-vous.

The disabling operator Bi[>B2 model the interruption:
the behavior B; could be interrupted at any moment by
the behavior Bz; when B; is interrupted, B2 is executed
(without having interruptions).



2.1.3 FullLOTOS

In this part, we describe the extension of basic LOTOS to
manage data expressions, especially to allow value passing
synchronizations. A process is parameterized by a (optional)
list of formal actions Gie1..,m and a (optional) list of formal
parameters Xjec1..n of type Tjei1..n. The full syntax of a
process is the following:

process P [Go, ..., Gm] (Xo0:T0, ...
endproc

, Xn:Th) ¢ func:= B

where B is the behavior of the process P and func corre-
sponds to the functionality of the process: either the process
loops endlessly (noexit), or it terminates (exit) possibly re-
turning results of type Tjc1..n (exit(To, ..., Thn)).

Action identifiers are possibly enhanced with a set of pa-
rameters (offers). An offer has either the form G!V and cor-
responds to the emission of a value V, or the form G?7X:S
which means the reception of a value of type S in a variable
X.

A behavior may depend on Boolean conditions. Thereby,
it is possible that it be preceded by a guard [Boolean expres-
sion] — B. The behavior B is executed only if the condition
is true. Similarly, the guard can follow an action accompa-
nied with a set of offers. In this case, it expresses that the
synchronization is effective only if the Boolean expression
is true (e.g., G?X:Nat [X>3]). In the sequential composi-
tion operator, the left-hand side process can transmit some
values (exit) to a process B (accept):

. exit(Xo, ..., X») > accept Y5:S0, ..., Y,:S, in B

To end this section, let us say a word about CADP!, a
toolbox that supports developments based on LOTOS spec-
ifications. It proposes a wide panel of functionalities from
interactive execution to formal verification techniques (min-
imization, bisimulation, proofs of temporal properties, com-
positional verification, etc).

2.2 Other Process Algebras

Numerous processes algebras have been proposed: CCS
[22], CSP [14], ACP [4] are the basic ones. Extensions are
m-calculus [25], Timed CSP [29]. Although syntactically dif-
ferent, all process algebras share a set of basic and dynamic
constructs: actions, sequence, parallel composition, synchro-
nizing actions, non deterministic choice, emission, reception,
process, local process, recursive process.

2.3 Equivalences between processes

Two process are considered equivalent if their behavior is
indistinguishable from an external observer interacting with
them. In the process algebra community several notions of
process equivalence have been proposed. More on the topic
can be found in [22]. An approach is trace-based: two pro-
cess are equivalent if they show the same execution traces.
A process is contained in another one if the set of its ex-
ecution traces are included in the set of execution traces
of the other. Another approach is tree-based: two process
are equivalent if they have equivalent execution trees, that
is they simulate each other (they bisimulate). A process is
simulated by another one if all its behaviors are contained
in the behaviors of the other. A group of process running

"ttp://www.inrialpes.fr/vasy/cadp/
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concurrently are simulated by another group of process run-
ning concurrently if all their behaviors are contained in the
behaviors of the other. It is known that simulation implies
containment. As example let us discuss Figure 2.

Figure 2: Processes Equivalences; a is a ticket pur-
chase, b ticket use for the match, ¢ a ticket change.

The left process corresponds in basic LOTOS to a; (b[]c),
the right one to a;b [] a; c. They have the same traces (ab or
ac), and so they are trace-equivalent. They do not bisimu-
late each other; after doing a the left process will do either b
or ¢, while the right process on doing a, it will either choose
to move in a state from which it does b or in a state from
which it doesc; depending on this choice, it cannot do one
of the two actions whereas the left process leaves both pos-
sibilities open. Let a is a ticket purchase, b ticket use for
the match, ¢ a ticket change; the left process always allows
to change the ticket after the purchase, the right one does
not.

3. THE TWO-WAY MAPPING BETWEEN
LOTOSAND BPEL

In this section we show the two-way mapping between
LOTOS, a process algebra that allows data handling, and
BPEL. Our goal is showing a two-way mapping between the
two languages, that allows an automated translation. For
lack of space, it is not possible to introduce the basics of
BPEL, XMLSchema, and XPath. Accordingly, the reader
who is not used with them should refer to [3, 1, 2].

When it is possible, we present together both directions
of the mapping. While the translation from BPEL to LO-
TOS implicitly preserves the BPEL structure, the converse
does not: LOTOS allows to use the construct in very flexi-
ble manner, BPEL does not. In the LOTOS design we have
to be careful, if we want a simple automatic translation, to
write behavior structurally similar to BPEL ones. For ex-
ample in BPEL a service can communicate only with other
services, there is no message exchange inside a service. In
LOTOS instead, as in all process algebras, there are no con-
straints about this. In order to obtain a simple automatic
translation from a process algebra, we have to follow this
simple rule in the design. The details of other similar rules
will be given during the explanation. We remark that in
our framework, when we design and correct in BPEL, the
LOTOS-BPEL direction is free from this problem: we start
from LOTOS code, that is BPEL-like structured, because
directly obtained by the translation from BPEL.

In our presentation we refer to Table 1 , where we show
sample code of both languages; the correspondence is about
both directions of the mapping. Figure 3 gives a very general



picture. We show the mapping of basic construct, dynamic
behavior, data definition and handling, and fault, compen-
sation, event handlers. Finally we give general guidelines for
translations between PAs and BPEL. An example of trans-
lation using this mapping is given in [10].

3.1 General Outline

An external view of interacting WSs shows processes (ser-
vices) running concurrently. Such a kind of global system
in LOTOS is described using LOTOS main behavior (that
is the outermost process): it instantiates processes com-
posed in parallel and synchronizing on all actions represent-
ing their interactions.

Sample BPEL Code Sample LOTOS Specification

< ... actl ... > ..actl..; exit(5) >

</act1> accept x:Nat in ..act2..
<assign ... >

<copy>

<from expression="5"/>
<to var="x"/>

<copy>
</assign>
< ... act2 ... >
</act2>
<receive ... variable="m"> g?m:Nat
</receive
<reply ... variable="m"> glm:Nat
</reply>
<invoke ... invar="mS" gS!mS:Nat; gR?mR:Nat;
outvar="mR">
</invoke>
<pick ... > (g1?ml:Nat; ..actl..) []
<onMessage ... variable="ml1">|(g27m2:Nat; ..act2..)
< ... actl ...>
</onMessage>
<onMessage ... variable="m2">
< ... act2 ... >
</onMessage>
</pick>
<sequence ...> ..actl..; ..act2..
< ... actl ... >
< ... act2 ... >
</sequence>
<flow ... > ..actl. .
< ... actl ... > ([cond1]->1ink1 '1; []

<source linkname="link1" [not(cond1)]->1ink1 '0;)

condition="cond1"/>

</act1> Il
< ... act2 ... >
<target linkname="link1"/> |( linkl ?x:Bool;
</act2> ([x=1]->..act2.. [] [x=0]1->i;) )
</flow>
<switch> [x>=0] -> ..actl..;
<case condition= ]
"bpws:getVariableData(x)>=0">| [x<0] -> ..act2.. ;
<..actl..>
</..actl..>
</case>
<otherwise>

<..act2..>

</..act2..>
</otherwise>
</switch>

<while condition= proc whilel [..](..) :=

"bpws:getVariableData(x)>=0">| [x<0]-> i;

<..actl..> ]

</..actl..> [x>=0]->..actl..; whilel[..](..)
</while> endproc

Table 1: The BPEL-LOTOS two-way mapping ex-
amples

At the basis of our mapping there is the correspondence
between LOTOS actions and BPEL interactions. BPEL ser-
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vices and LOTOS processes instantiated in the main process
correspond to each other. The direction from BPEL to LO-
TOS is straightforward: we simply automatically build a
main behavior containing the instantiation of all the pro-
cesses (each of them correspond to a service), in the manner
described above. About the other direction, from LOTOS
to BPEL, the LOTOS programmer have to respect this rule:
he has to write the main behavior simply instantiating all
the processes representing services, in the usual manner.

To describe behaviors, in LOTOS we have the process
definition, in BPEL the service description. In LOTOS a
defined process can be instantiated (with action passing,
that renames the name of action in the definition, and pa-
rameter passing). From LOTOS to BPEL, we use the be-
haviors specified in the process definition to generate the
BPEL service description with the names of partner links,
port type, operations, variables. From BPEL to LOTOS, we
use the service description to generate, including the names
of actions, both the process definition and the process in-
stantiations. We have a process instantiation if the process
represents a scope or a while.

We do not consider bindings issues. For the data type def-
initions in BPEL/WSDL we have XMLSchema, in LOTOS
we can define abstract data types. In LOTOS we initialize
the data structures defined with the type construct at the
beginning of the main process.

To summarize, the main process first initializes data, then
instantiates the process/services running concurrently.

3.2 Basic behaviorsand interactions

At the core of BPEL process model is the notion of peer-
to-peer interaction between partners described in WSDL.
All BPEL basic activities perform interactions between WSs.
An interaction is characterized by the partner link, the port
type, and the operation involved in the two communicat-
ing partners (each partner defines these three elements for
each interaction). In parallel, LOTOS has at its disposal
the notion of action to represent dynamic evolutions and of
rendez-vous to describe synchronizations among processes.
Consequently, when process/services are instantiated, LO-
TOS synchronizing actions are equivalent to BPEL interac-
tions. When the process representing a service is defined,
an action is simply an emission or a reception. The name
of the action stores information (parter link, port type, op-
eration in BPEL, process and action names in LOTOS) on
the receiver in the emission case, on the sender in the re-
ception case. This name can contain a description of the
interaction (e.g. request, notification, cancellation). When
we instantiate, we have to compose the names of the action
of both interacting processes/services; we consider two syn-
chronizing action, we concatenate their definition name, and
we give the concatenated name to both.

Let us go forward in more details. Starting the mapping
from BPEL, in order to build the name of LOTOS action,
we use the information in partner link, port type, operation
attributes in the receive, reply, and invoke. Let a partner
1 (resp. 2) have a partner link pl; (resp. pl2), a port type
p1 (resp. p2), an operation o1 (resp. o02), and a variable
v1(resp. v2) associated with the exchanged message. Let a
reservation request the object of the partner 1 message, and
an availability response the object of the partner 2 message.
Then the process associated with the partner 1 has in the
definition the action pli_pi1_0o1_resReq and the process for



the partner 2 the action pla_p2_o02_avResp. When the two
processes are instantiated in the main behavior, the name of

their synchronized action is pli _p1_-01_resReq_pla_p2_o02_avResp,

and vy (resp. v2) is the parameter of the action for the part-
ner 1 (resp. 2). Moreover if we have a message with N part
tags, in LOTOS we have an action with N parameters, one
for each part of the message.

Starting from LOTOS instead, we extract the port type,
operation and message definitions analyzing the names of
LOTOS actions in the instantiated processes. For example if

we have two actions pli _p1_01 _pla_p2_02 and pli _p1_0} _pla_p2_02,

we conclude that we have the service 1 with partner link pl;,
port type p1 and operations o1 and o}, and a service 2 with
partner link pls, port type p2 and operation o2. Moreover we
know that there are two interactions: one between service 1
in partner link pli, port type pi1, operation o1, and service
2 in partner link pl2, port type p2, operation o2; the other
interaction is between service 1 in partner link pli, port type
p1, operation o}, and service 2 in partner link pla, port type
p2, operation o2.

The reception of a message is expressed using the receive
activity in BPEL and using a action with a reception in all
its parameters in LOTOS.

In BPEL, the emission is written with the reply or the
asynchronous invoke activity whereas in LOTOS we use a
action with an emission in all its parameters. The BPEL
synchronous invoke, performing two interactions (sending a
request and receiving a response) corresponds in LOTOS to
an emission followed immediately by a reception. In LOTOS
we have two different actions, because we have two interac-
tions in BPEL; the names of actions share the same partner
link, the same port type, the same operation but they dif-
fers only by a letter S or R at the end (representing the
emission and the reception of the invoke). Using this rule
we can distinguish in the LOTOS code when a contiguous
emission-reception is an invoke.

3.3 Structured Behaviors

Now we introduce the mapping for LOTOS dynamic con-
structs and BPEL structured activities.

The pick BPEL activity is executed when it receives one
message defined in one of its onMessage tag or when it is
fired by an onAlarm event; we cannot model the latter case
because basic LOTOS does not have the notion of time. The
equivalent construct in LOTOS is obtained using the non de-
terministic choice, in which the first action of each branch
is a reception; it is chosen the branch whose beginning re-
ception is performed first. In the LOTOS modelling, if we
use the non deterministic choice with an emission as first ac-
tion, then an automatic translation to BPEL becomes very
difficult. For example the following LOTOS behavior, be-
cause the a is an emission, does not have a straightforward
translation in BPEL:

. alx:Nat; b?x:Nat; [] c?x:Nat; b?x:Nat;..

When we design in a process algebra, we have to think
to BPEL code structure, in order to simplify the automatic
translation.

The sequence activity in BPEL match with the LOTOS
prefixing operator ’;’.

In BPEL we have the flow activity, in LOTOS the full
synchronization constructs ’||’. Because in BPEL we cannot

have interaction inside a service, therefore we do not have
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synchronizations in a parallel composition inside a process
representing a service.

The mapping about the link tag is more involved, because
LOTOS does not have an explicit construct of dependence
relation between concurrent actions. In BPEL we specify
with the source tag the activity that has to occur first, and
with the target tag the dependent activity. In LOTOS we
have an action for each link. These actions are put after the
end of the source behavior, and before the beginning of the
target one; the two behaviors synchronizes on these actions,
that is they have to execute them at the same time. In
this way we are sure that the source behavior is completed
before the beginning of the target one. In Table 1, in the
flow sample, activity act2 can be executed only both after
executing activity act! and the condition cond! is true. In
LOTOS after executing actl, we execute the action linkl,
representing the link, and assign to its parameter the value
1 if the condition cond! is true, 0 otherwise; act2 can be
executed only if the condition is true and only after actl,
because it can be executed only after the action link1l. More
about the translation of the links can be found in [10].

The switch tag defines an ordered list of case tag. A case
corresponds to a possible activity which may be executed.
The condition of a case is a Boolean expression on variables.
In our process algebra we have a standard pattern combining
guarded expression and non deterministic choice, very often
used in the design with LOTOS.

To define an environment with own local variables and
with own handler of faults and events, in BPEL there is the
scope activity, in LOTOS the concept of local process. The
process corresponding to the scope is local to the process
representing the outer scope. The outermost scope in BPEL
is the global one. We deal with this activity in Section 3.5

The while BPEL tag and LOTOS recursive processes cor-
respond to each other. The condition of the while is the
exit condition of the recursive process. The behavior of this
recursive process matches exactly the body of the BPEL
loop, and conversely. The recursive process is instantiated
by the process corresponding to the scope that contains the
while. In the LOTOS modelling, recursive processes have to
respect the structure of the BPEL while, in order to simplify
the translation.

3.4 DataDescriptions

In this subsection, we are going to discuss three levels of
data representation in LOTOS and BPEL: data type defini-
tions, XPath and LOTOS, data manipulation.

3.4.1 Datatype definitions

LOTOS allows us to define abstract data types, that is
data domains and operations on them (e.g. a list with op-
erations: add an element, extract the first one etc.); many
basic types (char, natural, etc.) are already defined. In
BPEL, types are described using XMLSchema; elements can
be simple (lots are already defined) or complex (composed
by other elements). A simple element and LOTOS basic
data type corresponds each other; moreover we can use the
rename construct in LOTOS, for example to rename the
type string with 'lastname’. We have a complex element in
XMLSchema and abstract data type in LOTOS, having one
data type for each element composing the complex one.

In XMLSchema complex elements can be composed in dif-
ferent manners, depending from the indicators that establish



the order, and the number of occurrences of simple elements.

Order Indicators. The indicator all: each element oc-
curs exactly once, in any order. In LOTOS we can define
the abstract data type list. The element of the list, that can
be added in any order, are the element in the complex type.
The indicator choice: an element in a set is chosen. In LO-
TOS we can define the abstract data type set. The element
of the set are the element in the complex type. The indicator
sequence: it specifies the elements and the order in which
they have to appear. In LOTOS we can use a list whose
elements can be added only in a fixed order, depending on
the type.

Occurrence Indicators. They are use to define how
often an element can occur, in details mazOccurs the max-
imum number of times and minOccurs the minimum. In
LOTOS we have the constraints on the list with a fixed or-
der.

Group Indicators. They define a set of elements, with
indicators, that can be referenced in another element. In
LOTOS we can simply use the abstract data type of the
group in the abstract data type of the element that uses
the group. For example, if a ’choice’ is referenced in a ’all’
indicator, an element of the list is a set.

3.4.2 Variable declaration and manipulation

In LOTOS, variables are either parameters of processes
or parameters of a action. In BPEL, variables can represent
both data and messages. They are defined using the variable
tag (global when defined before the activity part) and their
scope may be restricted (local declarations) using a scope
tag. In LOTOS, only process parameters need to be declared
(not necessary for action variables) whereas in BPEL either
global and local variables involved in interactions have to be
declared. In LOTOS, in local process we can declare local
variables.

A BPEL message corresponds to a set of action parame-
ters in LOTOS. In particular a BPEL part corresponds to a
parameter of a action in LOTOS.

The BPEL assign tag has three equivalents in LOTOS de-
pending on their use: (i) let X;:T;=V; in B means the initial-
ization of variables X; of types T; with values V; (Vi € 1..n)
in the behavior B, (ii) Bi; ezit(Y;) > accept X;:T; in Ba
denotes the modification of variables X; (replaced by new
values Y;), (iii) P(X;) is an instantiation of a process or a
recursive call meaning assignments of values X; to the pa-
rameters of the process P. Conversely, these LOTOS con-
structs can be mapped into BPEL using assign, and more
precisely the copy tag.

3.4.3 LOTOS and XPath

In BPEL/WSDL we can define either message or data
variables, whose type are XMLSchema data structures (el-
ement or complex element). XPath is used in BPEL to
manipulate data structures: to select element in a complex
one, to get value from a variable, to perform operations (e.g.
sum, multiplication). LOTOS data structures are abstract
data type that are endowed by operations. For example lists
have operations for adding an element, extracting the first
element and so on. Natural numbers has sum, multiplica-
tion and so on. We can use these operations to manipulate
data structures. In BPEL we use XPath as expression lan-
guage; for example we can query data from a variable, and
if the variable is a complex type (e.g. a record), we can
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select the part of interest and retrieve the value. LOTOS
instead is similar to the common programming languages
like C: when we write a variable, we have its value directly,
as in the assign example of Table 1.

3.5 BPEL scope and LOTOS pattern of pro-
cesses

In BPEL the scope tag defines a behavior context (local
variables, event handlers, fault handlers, compensation han-
dler) for its primary activity. The primary activity describes
the normal behavior of the scope. In LOTOS we can define
a pattern of processes that behaves in the same way. We
point out that a LOTOS user, in the design of a scope with
handlers have to respect this pattern of processes, in order
to obtain automatically BPEL code. Vice versa, from BPEL
specification we can get the LOTOS one, automatically fill-
ing this pattern of processes.

In BPEL we can have nested scope. The outermost scope
is the global service. In LOTOS we have the concept of local
process. In LOTOS the process/scope is local to the outer
process/scope. Each process/scope instantiate the following
processes:

primary activity: a process primaryActivity for the pri-
mary activity of the scope. In the case of normal ter-
mination, its last action is an end (to end fault and
event handlers); we explain it below.

event handler: a process eventHandlers, executed in full
synchronization with primaryActivity, because in BPEL
event handlers are concurrent with the primary activ-
ity of the scope to which the event handler is attached.

fault handlers: a process faultManager that catches a
fault storing its name, launches the process Kill to
terminate the primaryActivity and eventHandlers,
then, depending on the fault name, calls the corre-
sponding process to perform the fault activities.

compensation handler: a process for the compensation han-
dler. In BPEL we can have at most one compensation
handler in a scope. The name of the compensation
handler is the name given in the scope attribute of the
activity compensate. This process models the activity
of the corresponding compensation handler.

Each process/scope has the following structure (LOTOS
pseudo-code):

proc scopeName [..](..) :=
( (primaryActivity[..]1(..)
[> Kil1[10O
)
| [fault,end] | faultManager[..](..)
endproc

The eventHandlers is concurrent with primaryActivity;
they both can be interrupted by the process Kill, launched
by the faultManager when a fault occurs. The process for
the compensation handler is called inside a process repre-
senting a fault or another compensation handler: in BPEL
it can be invoked, using the compensate tag, only either in
a fault handler or in another compensation handler.

Now, we introduce the translation about the handlers in
details.

|| eventHandlers[..1(..))



3.5.1 Fault Handlers

When a fault occurs in a BPEL scope, all activities in the
primary activity and in the event handlers of the scope begin
to terminate. Let faultName the parameter that stores the
name of the fault . In LOTOS we define a process faultMan-
ager running concurrently respect the process representing
the scope, synchronizing on the actions fault and end. The
fault action has the parameter faultName to communicate
the name of the fault; the end does not have parameters
because we do not need to send or to receive messages, but
only to communicate an event. It follows the faultManager
definition:

proc faultManager [fault, end] (faultName:String):=
( fault?faultName:String; Kill;
[faultNamel]-> faultProci[..](..)
[faultName2]-> faultProc2[..]1(..)

)
[1 end;
endproc

If the scope terminates without faults, the process rep-
resenting the scope performs as last action the action end,
allowing to faultManager to terminate without doing noth-
ing. A fault in BPEL is launched through the tag throw
(that has with attribute the name of the fault) or as re-
sponse to an invoke activity; in LOTOS through action
fault. After this the process K1ll is instantiated. This
process doing nothing, but terminate primaryActivity and
eventHandlers using the disabling operator ’[>’. Finally,
the process corresponding to the fault name is chosen: for
example faultProcl corresponds to the fault faultNamel.

We consider now the problem of fault propagation and
handling. In BPEL, when a fault occurs in a scope S that
cannot handle it, S terminates abnormally and the fault
is propagated to the next scope up. If S can handle the
fault, it terminates normally after executing the fault han-
dler activities. From BPEL to LOTOS translation we know
which fault handler will catch a fault by parsing the BPEL
files. Similarly, from LOTOS to BPEL translation, by pars-
ing the LOTOS specification we know the fault handler that
will catch the fault; if the fault is not caught, we have a stop
action instead of the fault one.

3.5.2 Compensation Handlers

While a business process is running, it might be necessary
to undo one of the steps that have already been successfully
completed. To each scope we can optionally associate its
compensation handler that undoes the primary activity of
the scope; once a scope completes successfully, its compen-
sation handler become ready to run. This can happen in
either of two cases: explicit or implicit compensation. We
map the compensation handler into a LOTOS process local
to the process representing the scope.

explicit compensation: It occurs upon the execution of
a compensate activity, that can occur inside a fault
handler or a compensation handler of the scope im-
mediately enclosing the scope to be compensated; the
compensate activity has an attribute scope whose value
specifies the name of the scope to be compensated.
The compensate activity is modelled in LOTOS by a
call to the process representing the compensation han-
dler associated with the scope.
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implicit compensation: It occurs when there is a fault
handling. Let A be a scope, and B an its nested com-
pensatable scope. Consider the following scenario: B
is completed successfully, but another activity in A
throws a fault. Implicit compensation ensures that
whatever happened in scope B get undone by running
its compensation handler. Therefore, the implicit com-
pensation of a scope goes through all its nested scopes
and runs their compensation handlers in reverse or-
der of completion of those scopes. We can map this
mechanism in LOTOS by calling in the same order the
processes representing the compensation handlers; all
these calls are executed in fault Manager of A before
the beginning of the fault activities. Obviously we have
to store the order in which the scopes are completed.
We can use a queue data structure in LOTOS to do it;
this queue has global visibility and it is updated when
a scope completes or if a scope is compensated. The
process faultManager of A can use this structure to
know the order of completion.

3.5.3 Event Handlers

We have to consider the BPEL semantics of the event han-
dler: it can accept messages an arbitrary number of times,
until the scope ends. We adopt in LOTOS a recursive pro-
cess, concurrent to the primary activity of the scope in which
is contained. We cannot model the onAlarm tag, because in
LOTOS there is no notion of time. It follows the structure
of eventHandlers:

proc eventHandlers [onMessagel, onMessage2,..]1(..):
Q¢
(onMessagel?ml:T; ..act_ml..;) []
(onMessage2?m2:T; ..act_m2..;) []

)
eventHandlers [onMessagel, onMessage2,..](..

)
[1 end;
endproc

)

The action onMessagel represents the reception of a mes-
sage m1, whose type is T. After receiving the message, the
corresponding activity act-m1 is executed. Then the process
recursively calls itself, and it ends when an end interaction
happens.

3.6 Guidédlines for translation between a PA
and BPEL

Slightly modifying the mapping for LOTOS, we easily ob-
tain a mapping for other process algebras. In fact, while
syntactically different, they share many concepts: the emis-
sion (message sending), the reception (message receiving),
the sequence of actions, the concurrency of actions (parallel
composition) and their synchronization, the processes and
local ones, non deterministic choice of actions. In Figure
3 we give the outline of the correspondences. We remark
that for modelling in a PA| if one wants a simple automatic
translation, the PAs processes have to respect the BPEL
structure, as in LOTOS.

If the PA does not support the data definition and han-
dling, the mapping is slightly different: in this case the mes-
sages are tokens, and we cannot distinguish between parts
in a message. In details from BPEL to PAs we use the in-
formation in partner link, port type, operation attributes in



BPEL concept Process Algebra concept
service (process) | process

scope local process

interaction synchronizing action

receive reception

reply emission

asynchronous in- | emission

voke

synchronous emission immediately followed by a
invoke reception

sequence sequence construct

flow parallel composition

while recursive process

pick non deterministic choice

Figure 3: The BPEL-PA correspondences

order to build the name of a action. If a partner 1 (resp. 2)
has a partner link pl; (resp. pl2), a port type p1 (resp. p2),
an operation o1 (resp. 02), and a variable vi(resp. v2) as-
sociated with the exchanged message, then the name of the
action in the instantiation is pli _p1-01_vi_pla_p2_02v2. In
another words, now the message it is not a parameter of the
action, but it is a part of the action name: it characterizes
the interaction. It is worth noting that for the translation
from PAs to BPEL, if the designer respects such a struc-
ture, partner links, port types, and operations involved in
the BPEL interactions can be deduced automatically from
PAs actions. Otherwise, the user have to give the names
manually.

We end this section discussing why LOTOS is a better
choice than other process algebras. A first advantage is due
to the disabling operator: if a PA does not have a disabling
operator (e.g. CCS, m-calculus), it is much more complex
and inefficient (but still possible) to deal with the BPEL
handlers.

Another advantage of LOTOS is the data definition and
the data handling. We can verify services that deals with
data and with messages having more than one part, about
properties that depends on values; we can carry out a black
box testing. Moreover, starting the modelling from LOTOS,
we can check the data types.

4. DESIGNANDVERIFICATIONFEATURES

In this section we discuss the features that process al-
gebras provide for design and verification, and we sketch
some problems, for a future work, that deal with simulation
and bisimulation. Examples of WS developed using process
algebras can be found in [27], where a sanitary agency is
modelled in CCS, and in [28], where a simple e-commerce
application is designed using LOTOS.

Distributed development and reuse. Allowing the
modularization, the modelling from a process algebra sup-
ports the distributed development and the software reuse.

Verification features. The following verification facili-
ties are available at an early stage of the Web services de-
ployment:

e temporal logic model checking, in order to prove prop-
erties of the service: liveness (something good hap-
pens), safety (bad events do not happens), request-

249

response (a request is always satisfied, also for infinite
behaviors), and others. We can verify for example mu-
tual exclusion properties (e.g. if the provider can sat-
isfies only one request among multiple concurrent re-
quests, it satisfies the first confirmed request). If the
property is not satisfied, a counterexample is returned.

e bisimulation, to check whether the behaviors of two
services or two versions of the same service are equiva-
lent; if they are different, it is shown a counterexample.

e simulation, to check whether the behavior of a ser-
vices is included by the behavior of other interacting
services; if it is not, it is shown a counterexample.

e execution traces of the service (manually or random
guided), to understand the behavior of the service. In
the verification community (and in [24]), often the sim-
ulation name is used to denote execution traces anal-
ysis; this is no the case of this paper.

In the case of a process algebra allowing the data handling,
it is available:

e data type checking, in the case of LOTOS and other
process algebras allowing data handling.

e black box testing: for a class of input values, some
properties are satisfied.

Respect previous approach [24, 11, 23, 12], one of the
main advantage of using process algebra is the availability
of the simulation and bisimulation analysis; simulation sup-
ports the hierarchical refinement design method, while the
bisimulation allows the redundancy analysis of a community,
and it can be used to establish when a service can substitute
another one in a composition [7]. Moreover we argue, with a
simple consideration, that the simulation can be part of the
problem of automatic composition of services. In the rest of
the section we discuss briefly these issues, considering them
for a future work.

Hierarchical refinement [18, 17]. It is a well-known
method for design development. It proceeds top-down: start-
ing with a highly abstract specification, we construct a se-
quence of behavior descriptions, each of which refers to its
predecessors as a specification, and is thus less abstract than
the predecessor. At each stage the current implementation
is verified to satisfy its specification. The last description in
the sequence contains no abstractions, and constitutes the
final implementation. The behavioral equivalence between
a specification and its implementation is checked by simula-
tion or by a trace-based equivalence. The advantage of using
a two-way mapping, rather than only the direction starting
from BPEL, is that we can apply hierarchical refinement
also in the BPEL modelling of WS.

Automatic Composition and Redundancy. The sim-
ulation can be part of the problem of automatic composition
of services: intuitively, a service is composable from a bun-
dle of other ones, if it can be simulated by them, that is if
its behaviors are contained in their behaviors.

When a community of Web services is used to compose
a new service (e.g. [5]), it is useful to know which services
in the community are redundant: we calculate it off-line,
using bisimulation. On-line, before starting the composi-
tion algorithm, we select services avoiding that two or more
equivalent services are activated.



5. RELATED WORKS

We are going to introduce three kinds of related works
aiming at: i) specifying WSs at an abstract level using for-
mal description techniques and reasoning on them, ii) us-
ing jointly abstract descriptions and executable languages
(mainly BPEL), iii) developing WSs from abstract specifi-
cations.

At this abstract level, lots of proposals originally tended to
describe WSs using semi-formal notations, especially work-
flows [21]. More recently some more formal proposals grounded
for most of them on transition system models (LTSs, Mealy
automata, Petri nets) have been suggested [15, 24, 13, 5, 20].
With regards to the reasoning issue, works have been dedi-
cated to verifying WS description to ensure some properties
of systems [12, 8, 24, 11, 23]. Summarizing these works, they
use model checking to verify some properties of cooperat-
ing WSs described using XML-based languages (DAML-S,
WSFL, BPEL, WSCI). Accordingly, they abstract their rep-
resentation and ensure some properties using ad-hoc or well-
known tools (e.g. SPIN, LTSA). We have a deeper look in
the following of this section at proposals focusing on BPEL.

In comparison to these existing works, the strength of
our alternative approach (using PA) is to work out all these
issues (description, composition, reasoning) at an abstract
level, based on the use of expressive (especially compared to
the former proposals) description techniques and adequate
tools. The compositionality property of process algebra is
also very convenient in one area where composition is one
of the main concern.

The second bunch of related work [12, 26, 11, 24, 30] deals
with mappings between abstract and concrete descriptions
of WSs. Let us emphasize that in first attempts [27, 28],
we have already proposed some guidelines to map process
algebra and BPEL. Nevertheless, these guidelines (for CCS
and LOTOS) were not defined in details and they deal with
a subset of BPEL; in this work we include in the mapping
also fault, compensation, and event handlers. Two relevant
related works are [11, 12]. In the first one, the authors
proposed a formal approach to model and verify the com-
position of WSs workflows using the FSP (Finite State Pro-
cesses) notation and the LTSA tool. Their paper introduces
a translation of the main BPEL structured activities (se-
quence, switch, while, pick and flow) into FSP processes.
In the second one, it is presented an approach to analyze
BPEL composite web services communicating through asyn-
chronous messages. They use guarded automata as an in-
termediate language from which different target languages
(and tools) can potentially be employed. They especially
illustrate with the use of Promela/SPIN as the formal lan-
guage and the corresponding model checker.

Compared to them, our attempt is more general: (i) we
show a two-way mapping, useful to develop WSs and also to
reason on deployed ones (the latter direction was the single
goal of mentioned related works). All other previous works
give only a mapping from BPEL to a formal language. (ii)
we consider in the mapping also compensation and event
handlers, and we deal with fault handlers explicitly. (iii)
we can verify not only temporal logic properties, but also
behaviors equivalences between services using bisimulation.
Using this facilities we can apply the hierarchical refinement
design method to WSs, also in the BPEL modelling.

Finally, the recent proposal of Lau and Mylopoulos [19] ar-
gue the use of TROPOS as starting point of WS design, but
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they do not deal with verification, but requirements issues.
A more general methodology, integrating the requirements
analysis and the generation of BPEL code, was proposed in
[26].

6. CONCLUDING REMARKSAND FUTURE
WORK

We present a framework, for the design and the verifica-
tion of WSs using process algebras. We illustrate a two-way
mapping between a very expressive process algebra, LO-
TOS, and BPEL. We give also general guidelines for trans-
lations between a process algebra and BPEL.

Process algebras allow not only temporal logic model check-
ing, but also a simulation and bisimulation analysis; they
allow a design method, hierarchical refinement [18, 17|, that
we can apply to WSs. In fact the two-way mapping allows
us to design and verify both in process algebra and in BPEL.
In Section 4, we sketch how simulation and bisimulation are
involved in the automatic composition of services and in the
redundancy check of services. In our opinion, these connec-
tions deserve to be studied in a future work, together with
the generalization of the mapping to other languages and its
implementation. In our current mapping, we do not consider
dynamic process instantiation and correlation set. Moreover
we do not tackle the problem of the dynamic choice of the
partner to talk to (our interactions are established before the
conversation between partners starts); for this reason we do
not consider BPEL endpoint references. It is interesting to
extend the mapping in these directions. Finally, we plan
to experiment the use of process algebras in the methodol-
ogy proposed in [26], where only temporal model checking
is performed; in particular we are interested in adding the
simulation and bisimulation analysis.
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