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Abstract. The transactional approach to contention management guarantees atom-
icity by aborting transactions that may violate consistency. A major challenge in
this approach is to schedule transactions in a manner that reduces the total time to
perform all transactions (the makespan), since transactions are often aborted and
restarted. The performance of a transactional scheduler can be evaluated by the
ratio between its makespan and the makespan of an optimal, clairvoyant scheduler
that knows the list of resource accesses that will be performed by each transac-
tion, as well as its release time and duration.
This paper studies transactional scheduling in the context of read-dominated work-
loads; these common workloads include read-only transactions, i.e., those that
only observe data, and late-write transactions, i.e., those that update only towards
the end of the transaction.
We present the BIMODAL transactional scheduler, which is especially tailored to
accommodate read-only transactions, without punishing transactions that write
most of their duration, called early-write transactions. It is evaluated by compari-
son with an optimal clairvoyant scheduler; we prove that BIMODAL achieves the
best competitive ratio achievable by a non-clairvoyant schedule for workloads
consisting of early-write and read-only transactions.
We also show that late-write transactions significantly deteriorate the competitive
ratio of any non-clairvoyant scheduler, assuming it takes a conservative approach
to conflicts.

1 Introduction

A promising approach to programming concurrent applications is provided by transac-
tional synchronization: a transaction aggregates a sequence of resource accesses that
should be executed atomically by a single thread. A transaction ends either by com-
mitting, in which case, all of its updates take effect, or by aborting, in which case, no
update is effective. When aborted, a transaction is later restarted from its beginning.

Most existing transactional memory implementations (e.g. [3, 13]), guarantee con-
sistency by making sure that whenever there is a conflict, i.e. two transactions access a
same resource and at least one writes into it, one of the transactions involved is aborted.
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We call this approach conservative. Taking a non-conservative approach, and ensur-
ing progress while accurately avoiding consistency violation, seems to require complex
data structures, e.g., as used in [16].

A major challenge is guaranteeing progress through a transactional scheduler, by
choosing which transaction to delay or abort and when to restart the aborted transaction,
so as to ensure that work eventually gets done, and all transactions commit.1 This goal
can also be stated quantitatively as minimizing the makespan—the total time needed to
complete a finite set of transactions. Clearly, the makespan depends on the workload—
the set of transactions and their characteristics, for example, their arrival times, duration,
and (perhaps most importantly) the resources they read or modify.

The competitive approach for evaluating a transactional scheduler A calculates the
ratio between the makespan provided by A and by an optimal, clairvoyant scheduler, for
each workload separately, and then finds the maximal ratio [2,8,10]. It has been shown
that the best competitive ratio achieved by simple transactional schedulers is Θ(s),
where s is the number of resources [2]. These prior studies assumed write-dominated
workloads, in which transactions need exclusive access to resources for most of their
duration.

In transactional memory, however, the workloads are often read-dominated [12]:
most of their duration, transactions do not need exclusive access to resources. This
includes read-only transactions that only observe data and do not modify it, as well as
late-write transactions, e.g., locating an item by searching a list and then inserting or
deleting.

We extend the result in [2] by proving that every deterministic scheduler is Ω(s)-
competitive on read-dominated workloads, where s is the number of resources. Then,
we prove that any non-clairvoyant scheduler which is conservative and thus too “coarse”,
is Ω(m) competitive for some workload containing late-write transactions, where m is
the number of cores. (These results appear in Section 3.) This means that, for some
workloads, these schedulers utilize at most one core, while an optimal, clairvoyant
scheduler exploits the maximal parallelism on all m cores. This can be easily shown
to be a tight bound, since at each time, a reasonable scheduler makes progress on at
least one transaction.

Contemporary transactional schedulers, like CAR-STM [4], Adaptive Transaction
Scheduling [20], and Steal-On-Abort [1], are conservative, thus they do not perform
well under read-dominated workloads. These transactional schedulers have been pro-
posed to avoid repeated conflicts and reduce wasted work, without deteriorating through-
put. Using somewhat different mechanisms, these schedulers avoid repeated aborts by
serializing transactions after a conflict happens. Thus, they all end up serializing more
than necessary in read-dominated workload, but also in what we call bimodal work-
load, i.e., a workload containing only early-write and read-only transactions. Actually,
we show that there is a bimodal workload, for which these schedulers are at best Ω(m)-
competitive (Section 4).

These counter-examples motivate our BIMODAL scheduler, which has an O(s) com-
petitive ratio on bimodal workloads with equi-length transactions. BIMODAL alternates

1 It is typically assumed that a transaction running solo, without conflicting accesses, commits
with a correct result [13].



between writing epochs in which it gives priority to writing transactions, and reading
epochs in which it prioritizes transactions that have issued only reads so far. Due to
the known lower bound [2], no algorithm can do better than O(s) for bimodal traf-
fic. BIMODAL also works when the workload is not bimodal, but being conservative it
can only be trivially bound to have O(m) competitive makespan when the workload
contains late-write transactions.

Contention managers [13,19] were suggested as a mechanism for resolving conflicts
and improving the performance of transactional memories. Several papers have recently
suggested that having more control on the scheduling of transactions can reduce the
amount of work wasted by aborted transactions, e.g., [1,4,14,20]. These schedulers use
different mechanisms, in the user space or in the operating system level, but they all end
up serializing more than necessary, in read-dominated workloads.

Very recently, Dragojevic et al. [6] have also investigated transactional scheduling.
They have taken a complementary approach that tries to predict the accesses of trans-
actions, based on past behavior, together with a heuristic mechanism for serializing
transactions that may conflict. They also present counter-examples to CAR-STM [4]
and ATS [20], although they do not explicitly detail which accesses are used to gener-
ate the conflicts that cause transactions to abort; in particular, they do not distinguish
between access types, and the portion of the transaction that requires exclusive access.

Early work on non-clairvoyant scheduling (starting with [15]) dealt with multi-
processing environments and did not address the issue of concurrency control. More-
over, they mostly assume that a preempted transaction resumes execution from the same
point, and not restarted. For a more detailed discussion, see [2, 6].

2 Preliminaries

2.1 Model

We consider a system of m identical cores with a finite set of shared data items {i1, . . . , is}.
The system has to execute a workload, which is a finite partially-ordered set of transac-
tions Γ = {T1, T2, . . .}; the partial order among transactions is induced by their arrival
times. Each transaction is a sequence of operations on the shared data items; for sim-
plicity, we assume the operations are read and write. A transaction that only reads data
items is called read-only; otherwise, it is a writing transaction.

A transaction T is pending after its first operation, and before T completes either
by a commit or an abort operation. When a transaction aborts, it is restarted from its
very beginning and can possibly access a different set of data items. Generally, a trans-
action may accesses different data items if it executes at different times. For example, a
transaction inserting an item at the head of a linked list, may access different memory
locations when accessing the item at the head of the list at different times.

The sequence of operations in a transaction must be atomic: if any of the opera-
tions takes place, they all do, and that if they do, they appear to other threads to do so
atomically, as one indivisible operation, in the order specified by the transaction. For-
mally, this is captured by a classical consistency condition like serializability [17] or
the stronger opacity condition [11].



Two overlapping transactions T1 and T2 have a conflict if T1 reads a data item
X and T2 executes a write access to X while T1 is still pending, or T1 executed a
write access to X and T2 accesses X while T1 is still pending. Note that a conflict
does not mean that serializability is violated. For example, two overlapping transac-
tions [read(X), write(Y )] and [write(X), read(Z)] can be serialized, despite having
a conflict on X . We discuss this issue further in Section 3.

2.2 Transactional Schedulers and Measures

The set of data items accessed by a transaction, i.e., its data set, is not known when
the transaction starts, except for the first data item that is accessed. At each point, the
scheduler must decide what to do, knowing only the data item currently requested and
if the access wishes to modify the data item or just read it.

Each core is associated with a list of transactions (possibly the same for all cores)
available to be executed. Transactions are placed in the cores’ list according to a strat-
egy, called insertion policy. Once a core is not executing a transaction, it selects, accord-
ing to a selection policy, a transaction in the list and starts to execute it. The selection
policy determines when an aborted transaction is restarted, in an attempt to avoid re-
peated conflicts. A scheduler is defined by its insertion and selection policies.

Definition 1 (Makespan). Given scheduler A and a workload Γ , makespanA(Γ ) is
the time A needs to complete all the transactions in Γ .

Definition 2 (Competitive ratio). The competitive ratio of a scheduler A for a work-
load Γ , is makespanA(Γ )

makespanOpt(Γ ) , where OPT is the optimal, clairvoyant scheduler that has
access to all the characteristics of the workload.
The competitive ratio of A is the maximum, over all workloads Γ , of the competitive
ratio of A on Γ .

We concentrate on “reasonable” schedulers, i.e., ones that utilize at least one core at
each time unit for “productive” work: a scheduler is effective if in every time unit, some
transaction invocation that eventually commits executes a unit of work (if there are any
pending transactions).

We associate a real number τi > 0 with each transaction Ti, which is the execution
time of Ti when it runs uninterrupted to completion.

Theorem 1. Every effective scheduler A is O(m)-competitive.

Proof. The proof immediately follows from the fact that for any workload Γ , at each
time unit some transaction makes progress, since A is effective. Thus, all transactions
complete no later than time

∑
Ti∈Γ τi (as if they are executed serially). The claim fol-

lows since the best possible makespan for Γ , when all cores are continuously utilized,
is 1

m

∑
Ti∈Γ τi. ut

We say that transaction Ti is early-write if the time from its first write access until
its completion, denoted ωi, is at least half of its duration (any other constant can be
used, in fact). Formally, 2ωi > τi.



We pick a small constant α > 0 and say that a transaction Ti is late-write if ωi ≤
ατi, i.e., the transaction needs exclusive access to resources during at most an α-fraction
of its duration. For a read-only transaction, ωi = 0.

A workload Γ is bimodal if it contains only early-write and read-only transactions;
said otherwise, if a transaction writes, then it does so early in its execution.

3 Lower Bounds

We start by proving a lower bound of Ω(s) on the competitiveness achievable by any
scheduler, where s is the number of shared data items, for late-write workloads, includ-
ing only late-write transactions. This complements the lower bound proved in [2], for
workloads that include only early-write transactions.

We use Rh, Wh to denote (respectively) a read and a write access to data item ih.

Theorem 2. There is a late-write workload Γ , such that every deterministic scheduler
A is Ω(s)-competitive on Γ .

Proof. To prove our result we first consider the scheduler A to be work-conserving, i.e.,
it always runs a maximal set of non conflicting transactions [2], and then show how to
remove this assumption.

Assume that s is even and let q = s
2 . The proof uses an execution of q2 = s2

4 equal-
length transactions, described in Table 1. Since transactions have all the same duration,
we normalize it to 1.

1 2 . . . q

1 [R1, . . .,Rq , Rq+1, Wq+1] [R1, . . .,Rq , Rq+1, Wq+1] . . . [R1, . . .,Rq , Rq+1 , Wq+1]
2 [R1, . . ., Rq ,Rq+2, Wq+2] [R1, . . ., Rq ,Rq+2, Wq+2] . . . [R1, . . ., Rq ,Rq+2, Wq+2]
...

...
...

...
...

i [R1, . . . ,Rq ,Rq+i, Wq+i] [R1, . . . ,Rq ,Rq+i, Wq+i] . . . [R1, . . . ,Rq ,Rq+i, Wq+i]
...

...
...

...
...

q [R1, . . . , Rq , R2q , W2q] [R1, . . . , Rq , R2q , W2q] . . . [R1, . . . , Rq , R2q , W2q]

Table 1. The set of transactions used in the proof of Theorem 2.

The data items {i1, . . . , is} are divided into two disjoint sets, D1 = {i1, . . . , iq}
and D2 = {iq+1, iq+2, . . . , i2q}. Each transaction reads q data items in D1 and reads
and writes to one data item in D2. For every ij ∈ D2, q transactions read and write to
ij (the ones in row j − q in Table 1).

All transactions are released and available at time t0 = 0. The scheduler A knows
only the first data item requested and if it is accessed for read or write. The data item
to be read and then written is decided by an adversary during the execution of the
algorithm in a way that forces many transactions to abort. Since the first access of all
transactions is a read and A is work conserving, A executes all q2 transactions.



Let time t1 be the time at which all q2 transactions have executed their read access
to the data item they will then write, but none of them has already attempt to write. It is
simple to see that transactions can be scheduled for this to happen. Then, at some point
after t1 all transactions attempt to write but only q of such transactions can commit (the
transactions in a single column of Table 1). Otherwise, serializability is violated. All
other transactions abort.

When restarted, all of them write to the same data item i1, i.e., [R1,. . .,Rq,Rq+1,W1].
This implies that after the first q transactions commit (any set in a column), having run
in parallel, the remaining q2 − q transactions end up being executed serially (i.e., even
though they are run in parallel only one of them can commit at each time). So, the
makespan of the on-line algorithm is 1 + q2 − q.

On the other hand, an optimal scheduler OPT executes the workload as follows: at
each time τi with i ∈ {0, . . . , q − 1}, OPT will execute the set of transactions depicted
in column i+1 in Table 1. Thus, OPT achieves makespan q. Therefore, the competitive
ratio of any work-conserving algorithm is 1+q2−q

q = Ω(s).
As in [2] to remove the initial assumption that the scheduler is work conserving, we

modify the requirement of data items in the following way: if a transaction belonging
to Γ is executed after time q then it requests to write into i1 as done in the above proof
when a transaction is restarted. Otherwise, it requests the data items as in Table 1. Thus
the online scheduler will end up serializing all transactions executed after time q.

On the other hand, the optimal offline scheduler is not affected by the above change
in data items requirement since it executes all transactions by time q. The claim follows.

ut

Next, we prove that when the scheduler is too “coarse” and enforces consistency
by aborting one conflicting transaction whenever there is a conflict, even if this conflict
does not violate serializability, the makespan it guarantees is even less competitive.
We remark that all prior competitive results [2, 8, 10] also assume that the scheduler is
conservative. Formally,

Definition 3. A scheduler A is conservative if it aborts at least one transaction in every
conflict.

Note that prominent transactional memory implementations (e.g., [3, 13]) are con-
servative.

Theorem 3. There is a late-write workload Γ , with α < 1
m , such that every determin-

istic conservative scheduler A has Ω(m)-competitive makespan on Γ .

Proof. Consider a workload Γ with m late-write transactions, all available at time t =
0. Each transaction T ∈ Γ first reads items {i1, i2, . . . is−1}, and then modifies item
is, i.e., Ti = [R1, . . . , Rs−1,Ws], for every i ∈ {1, . . . ,m}. All transactions have the
same duration d, and they do not modify their data set when running at different times.

The scheduler A will immediately execute all transactions. At time d−ε all transac-
tions will attempt to write into is. Since A is conservative, only one of them commits,
while the remaining m − 1 transactions abort. Aborted transactions will be restarted



later, and each transaction will write into i1 instead of is. Thus, all the remaining trans-
actions have to be executed serially in order not to violate serializability. Since A exe-
cutes all transactions in a serial manner, makespanA(Γ )=

∑m
i=1 di = md.

On the other hand, the optimal scheduler OPT has complete information on the set
of transactions, and in particular, OPT knows that at time d−ε, each transaction attempts
to write to is. Thus, OPT delays the execution of the transactions so that conflicts do
not happen: at time t0 = 0, only transaction T1 is executed; for every i ∈ {2, . . . , m},
Ti starts at time t + (i− 1)ε, where ε = αd. (See Figure 1.)

T1:

T3:

T2:

Tm:

1

R1 R2 R3

1 + 2ε1 + ε

Ws commit
d− ε d

R1 R2 Rs−1R3 Ws commit

R1 R2 Rs−1 Ws commit

d + ε

R1 Rs−1 Ws commit

d + (m− 1)ε

Fig. 1. The execution used in the proof of Theorem 3.

Thus, makespanOpt(Γ )=d + (m − 1)ε, and the competitive ratio is md
d+(m−1)dα >

m
1+α·m ≥ m

2 . ut
In fact, the makespan is not competitive even relative to a clairvoyant online sched-

uler [6], which does not know the workload in advance, but has complete information
on a transaction once it arrives, in particular, the set of resources it accesses.

As formally proved in [6], knowing at release time, the data items a transaction
will access, for transactions which do not change their data sets during the execution,
facilitates the transactional scheduler execution and greatly improves performance.

4 Dealing with Read-Only Transactions: Motivating Example

Several recent transactional schedulers [1, 4, 14, 20] attempt to reduce the overhead
of transactional memory, by serializing conflicting transactions. Unfortunately, these
schedulers are conservative and so, they are Ω(m)-competitive. Moreover, they do not
distinguish between read and write accesses and do not provide special treatment to
read-only transactions, causing them not to work well also with bimodal workloads.

There are bimodal workloads of m transactions (m is the number of cores) for which
both CAR-STM and ATS have a competitive ratio (relative an optimal offline scheduler)
that is at least Ω(m). This is because both CAR-STM and ATS do not ensure the so-
called list scheduler property [7], i.e., no thread is waiting to execute if the resource
it needs are available, and may cause a transaction to wait although the resources it
needs are available. In fact, to reduce the wasted work due to repeated conflicts, these
schedulers may serialize also read-only transactions.

Steal-on-Abort (SoA) [1], in contrast, allows free cores to take transactions from
the queue of another busy core; thus, it ensures the list scheduler property, trying to



execute as many transactions concurrently as possible. However, in an overloaded sys-
tem, with more than m transactions, SoA may create a situation in which a starved
writing transaction can starve read-only transactions. This yields bimodal workloads in
which the makespan of Steal-on-Abort is Ω(m) competitive, as we show below. (Steal-
on-abort [1], as well as the other transactional schedulers [4, 14, 20], are effective, and
hence they are O(m)-competitive, by Theorem 1.)

The Steal-On-Abort (SoA) scheduler: Application threads submit transactions to a
transactional threads pool. Each transactional thread has a work queue where avail-
able transactions wait to be executed. When new transactions are available they are
distributed among the transactional threads’ queues in round robin.

When two running transactions T and T ′ conflict, the contention manager policy
decides which to commit. The aborted transaction, say T ′, is then “stolen” by the trans-
actional thread executing T and is enqueued in a designated steal queue. Once the
conflicting transaction commits, the stolen transaction is taken from the steal queue and
inserted to the work queue. There are two possible insertion policies: T ′ is enqueued
either in the top or in the tail of the queue. Transactions in a queue are executed serially,
unless they are moved to other queues. This can happen either because a new conflict
happen or because some transactional thread becomes idle and steals transactions from
the work queue of another transactional thread (chosen uniformly at random) or from
the steal queue if all work queues are empty.

SoA suggests four strategies for moving aborted transactions: steal-tail, steal-head,
steal-keep and steal-block. Here we describe a worst case scenario for the steal-tail
strategy, which inserts the transactions aborted because of a conflict with a transaction
T , at the tail of the work queue of the transactional thread that executed T , when T
completes. Similar scenarios can be shown for the other strategies.

The SoA scheduler does not specify any policy to manage conflicts. In [1], the
SoA scheduler is evaluated empirically with three contention management policies:
the simple Aggressive and Timestamp contention managers, and the more sophisticated
Polka contention manager.2 Yet none of these policies outperform the others, and the
optimal one depends on the workload. This result is corroborated by an empirical study
that has shown that no contention manager is universally optimal, and performs best in
all reasonable circumstances [9] .

Moreover, while several contention management policies have been proposed in the
literature [10,19], none of them, except Greedy [10], has nontrivial provable properties.

Thus, we consider the SoA scheduler with a contention management policy based
on timestamps, like Greedy [10] or Timestamp [19]. These policies do not require costly
data structures, like the Polka policy. Our choice also provides a fair comparison with
CAR-STM, which embeds a contention manager based on timestamps.

2 In the Aggressive contention manager, a conflicting transaction always aborts the competing
transaction. In the Timestamp contention manager, each transaction is associated with the sys-
tem time when it starts and the newer transaction is aborted, in case of a conflict. The Polka
contention manager increases the priority of a transaction whenever the transaction success-
fully acquires a data item; when two transactions are in conflict, the attacking transaction
makes a number of attempts equal to the difference among priorities of the transactions before
aborting the competing transaction, with a exponential backoff between attempts [19].



Theorem 4. Steal-on-Abort with steal-tail has Ω(m)-competitive makespan for some
bimodal workload.

Proof. We consider a workload Γ with n = 2m − 1 unit-length transactions, two
writing transactions and 2m − 3 read-only transactions, depicted in Table 2. At time
t1 = 0, a writing transaction U1=[R1,W1] is available and at time t1 + ε, when the
writing transaction is executing its first access, m−1 read-only transactions [R2,R1,R3]
become available. Let S1 denote this set of read-only transactions.

All the transactions are immediately executed. But in their second access, all the
read-only transactions conflict with the writing transaction U1. All the read-only trans-
actions are aborted, because U1 have a greater priority than these latter, and they are
inserted in the work queue of the transactional thread where U1 was in execution.

At time t2, immediately before U1 completes, m − 1 other transactions become
available: a writing transaction U2=[R1,W4,W3] and a set of m − 2 read-only trans-
actions [R1,R4], denoted S2. Each of these transactions is placed in one of the idle
transactional threads, as depicted in Table 2.

Immediately after time t2, U2, all the transactions in S2 and one read-only trans-
action in S1 are running. In their second access all the read-only transactions in S2

conflict with the writing transaction U2. We consider U2 to discover the conflict and to
abort all the read-only transaction in S2. Actually, if U2 arrives immediately before the
read-only transactions, it has a bigger priority.

The aborted read-only transactions are then moved to the queue of the worker thread
which is currently executing U2. Then, U2 conflicts with the third access of the read-
only transaction in S1. Thus, U2 is aborted and it is moved to the tail of the correspond-
ing work queue. We assume the time between cascading aborts is negligible.

In the following we repeat the above scenario, until all transactions commit. In
particular, for every i ∈ {3, . . .m}, we have that immediately before time ti, there are
m− i+1 read-only transactions [R2,R1,R3] and the writing transaction U2 in the work
queue of thread 1 and m−2 read-only transactions [R1,R4] in the work queue of thread
i− 1. All the remaining threads have no transaction in their work queues. Then, at time
ti, the worker thread i takes the writing transaction from the work queue of thread 1
and the other free worker threads take a read-only transaction [R1,R4] from the work
queue of thread i− 1. Thus, at each time ti, i ∈ {3, . . . m}, the writing transaction U2,
one read-only transaction [R2,R1,R3] and m − 2 read-only transactions [R1,R4] are
executed, but only the read-only transaction in S1 commits.

Finally, at time tm U2 commits, and ,hence, all read-only transactions in S2 commit
at time tm+1.

Note that, in the scenario we built, the way each thread steals the transactions from
the work queues of other threads is governed by a uniformly random distribution as
requested by the Steal on Abort work-steal strategy.

Thus, makespanSoA(Γ )=m + 2. On the other hand, the makespan of an optimal
offline algorithm is less than 4, because all read-only transactions can be executed in 2
time units, and hence, the competitive ratio is at least m+2

4 . ut
In the following section, we present a conservative scheduler, called BIMODAL,

which is O(s)-competitive for bimodal workloads. BIMODAL embeds a simple con-
tention management policy utilizing timestamps.
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5 The BIMODAL Scheduler

The BIMODAL scheduler architecture is similar to CAR-STM [4]: each core is associ-
ated with a work dequeue (double-ended queue), where a transactional dispatcher en-
queues arriving transactions. BIMODAL also maintains a fifo queue, called RO-queue,
shared by all cores to enqueue transactions which abort before executing their first writ-
ing operation and that are predicted to be read-only transactions.

Transactions are executed as they are available unless the system is overloaded.
BIMODAL requires visible reads in order for a conflict to be detected as soon as possible.

Once two transactions conflict, one of them is aborted and BIMODAL prohibits them
from executing concurrently again and possibly repeating the conflict. In particular, if
the aborted transaction is a writing transaction, BIMODAL moves it to the work dequeue
of the conflicting transaction; otherwise, it is enqueued in the RO-queue.

Specifically, the contention manager, embedded in BIMODAL, decides which trans-
action to abort in a conflict, according to two levels of priority:

1. In a conflict between two writing transactions, the contention manager aborts the
newer transaction. Towards this goal, a transaction is assigned a timestamp when
it starts, which it retains even when it aborts, as in the greedy contention man-
ager [10].

2. To handle a conflict between a writing transaction and a read-only transaction, BI-
MODAL alternates between periods in which it privileges the execution of writing
transactions, called writing epochs, and periods in which it privileges the execution
of read-only transactions, called reading epochs.

Below, we detail the algorithm and we provide its competitive analysis.

5.1 Detailed Description of the BIMODAL Scheduler

Transactions are assigned in round-robin to the work dequeues of the cores (inserted at
their tail), starting from cores whose work dequeue is empty; initially, all work dequeues
are empty.

At each time, the system is in a given epoch associated with a pair (mode, ID),
where mode ∈ {Reading ,Writing} is the type of epoch and ID is a monotonically
increasing integer that uniquely identifies the epoch. A shared variable ξ stores the pair
corresponding to the current epoch and it is initially set to (Writing , 0).

When in a writing epoch i, the system moves to a reading epoch i + 1, i.e., ξ =
(Reading , i + 1), if there are m transactions in the RO-queue or every work dequeue is
empty. Analogously, if during a reading epoch i+1, m transactions have been dequeued
from the RO-queue or this queue is empty, the system enters writing epoch i + 2, and
so on. A process in the system, called ξ-manager, is responsible to managing epoch
evolution and updating the shared variable ξ. The ξ-manager checks if the above con-
ditions are verified and sets the variable ξ in a single atomic operation (e.g., using a
Read-Modify-Write primitive).

A transaction T that starts in the i-th epoch, is associated with epoch i up to the time
it either commits or aborts. An aborted transaction may be associated to a new epoch



when restarted. Moreover, it may happen that while a transaction T , associated with
epoch i, is running, the system transitions to an epoch j > i. When this happens, we say
that epochs overlap. To manage conflicts between transactions associated with different
epochs, we give higher priority to the transaction in the earlier epoch. Specifically, if a
core executes a transaction T belonging to the current epoch i while some core is still
executing a transaction T

′
in epoch i − 1, and T and T

′
have a conflict, T is aborted

and immediately restarted.

Writing epochs. The algorithm starts in a writing epoch. During a writing epoch, each
core selects a transaction from its work dequeue (if it is not empty) and executes it.
During this epoch:

1. A read-only transaction that conflicts with a writing transaction is aborted and en-
queued in the RO-queue. We may have a false positive, i.e., a writing transaction T ,
wrongly considered to be a read-only transaction and enqueued in the RO-queue,
because it has a conflict before invoking its first writing access.

2. If there is a conflict between two writing transactions T1 and T2, and T2 has lower
priority than T1, then T2 is inserted at the head of the work dequeue of T1. (As in
the permanent serializing contention manager of CAR-STM.)

Reading epochs. A reading epoch starts when the RO-queue contains m transactions,
or the work dequeues of all cores are empty. The latter option ensures that no transaction
in the RO-queue is indefinitely, waiting to be executed.

During a reading epoch, each core takes a transaction from the RO-queue and ex-
ecutes it. The reading epoch ends when m transactions have been dequeued from the
RO-queue or this latter is empty. Conflicts may occur during a reading epoch, due to
false positives or because epochs overlap. If there is a conflict between a read-only trans-
action and a false positive, the writing transaction is aborted. If the conflict is between
two writing transactions (two false positives), then one aborts, and the other transaction
simply continues its execution; as in a writing epoch, the decisions are based on their
priority. Once aborted, a false positive is enqueued in the head of the work dequeue of
the core where it executed.

5.2 Analysis of the BIMODAL scheduler

We first bound (from below) the makespan that can be achieved by an optimal conser-
vative scheduler.

Theorem 5. For every workload Γ , the makespan of Γ under an optimal, conservative
offline scheduler OPT satisfies makespanOpt(Γ ) ≥ max{

P
ωi

s ,
P

τi

m }.

Proof. There are m cores, and hence, the optimal scheduler cannot execute more than
m transactions in each time unit; therefore, makespanOpt(Γ ) ≥

P
τi

m .
For each transaction Ti in Γ with ωi 6= 0, let Xfi be the first item Ti modifies.
Any two transactions Ti and Tj whose first write access is to the same item, i.e.,

that have Xfi = Xfj , have to execute the part after their write serially.
Thus, at most s transactions with ωi 6= 0 proceed at each time, implying that

makespanOpt(Γ ) ≥
P

ωi

s . ut



We analyze BIMODAL assuming all transactions have the same duration.
A key observation is that if a false positive is enqueued in the RO-queue and exe-

cuted during a reading epoch because it is falsely considered to be a read-only transac-
tion, either it completes successfully without encountering conflicts or it is aborted and
treated as a writing transaction once restarted.

Theorem 6. BIMODAL is O(s)-competitive for bimodal workloads, in which for every
writing transaction Ti, 2ωi ≥ τi.

Proof. Consider the scheduling of a bimodal workload Γ under BIMODAL. Let tk be
the starting time of the last reading epoch after all the work deques of cores are empty,
and such that some transactions arrive after tk.

At time tk, no transactions are available in the work queues of any core, and hence,
no matter what the optimal scheduler OPT does, its makespan is at least tk.

Let Γk be the set of transactions that arrive after time tk, and let nk = |Γk|. Since
at time tk, OPT does not schedule any transaction, it will schedule new transactions to
execute as they arrive. On the other hand, BIMODAL may delay the execution of new
available transactions because the cores are executing the transactions in the RO-queue
(if any). Since RO-queue has less than m transactions, this will take at most τ time
units, where τ is the duration of a transaction (the same for all transactions).

By Theorem 5,

MakespanOpt(Γk) ≥ 1
2
(
∑nk

i=1 ωi

s
+

∑nk

i=1 τi

m
) ,

and therefore,

MakespanOpt(Γ ) ≥ tk +
1
2
(
∑nk

i=1 ωi

s
+

∑nk

i=1 τi

m
) .

On the other hand, we have that

MakespanBimodal(Γ ) ≤ tk + τ +
nk∑

i=1

4ωi +
1
m

nk∑

i=1

τi .

The penultimate term holds because 2ωi ≥ τi, for every writing transaction Ti ∈
Γk, and taking into account the impact of false positives during reading epochs. In fact,
a writing transaction T may conflict only once during a reading epoch, because when
restarted T will be treated as a writing transaction. This is just as if T is executed during
a writing epoch with its duration doubled, to account for the time spent for the execution
of the read-only transaction that aborted T (if there is one). The last term holds since
all transactions have the same duration.

Therefore, the competitive ratio is

MakespanBimodal(Γ )
MakespanOpt(Γ )

≤ tk + τ +
∑nk

i=1 4ωi + 1
m

∑nk

i=1 τi

tk + 1
2 (
Pnk

i=1 ωi

s +
Pnk

i=1 τi

m )
,

which can be shown to be in O(s).
Note that if tk does not exist, we can take tk to be the time immediately before the

first transaction in Γ is available, and repeat the reasoning with tk = 0 and Γk = Γ . ut



6 Discussion

We have studied the competitive ratio achieved by non-clairvoyant transactional sched-
ulers on read-dominated workloads. The BIMODAL transactional scheduler, presented
in this paper, allows to achieve maximum parallelism on read-only transactions, without
harming early-write transactions. On the other hand, we proved that the long reading
periods of late-write transactions cannot be overlapped to exploit parallelism, and must
be serialized if the writes at the end of the transactions are in conflict.

This last result assumes that the scheduler is conservative, namely, it aborts at least
one transaction involved in a conflict. This is the approach advocated in [13] as it re-
duces the cost of tracking conflicts and dependencies. It is interesting to investigate,
whether less conservative schedulers can reduce the makespan and what is the cost of
improving parallelism. Keidar and Perelman [18] prove that contention managers that
abort a transaction only when it is necessary to ensure correctness have local computa-
tion that is NP-complete; however, it is not clear whether being less accurate in ensuring
consistency can be done more efficiently.

Our study should be completed by considering other performance measures, e.g.,
the average response time of transactions.

The contention manager embedded in SwissTM [5] is also bimodal, distinguishing
between short and long transactions, and it would be interesting to see whether our
analysis techniques can be applied to it.

Finally, while we have theoretically analyzed the behavior of BIMODAL, it is im-
portant to see how it compares, through simulation, with prior transactional schedulers,
e.g., [1, 4, 14, 20].

Acknowledgements: We would like to thank Adi Suissa for many helpful discussions
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tions.
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