
Distrib. Comput. (2007) 20:195–208
DOI 10.1007/s00446-007-0037-x

Distributed transactional memory for metric-space networks

Maurice Herlihy · Ye Sun

Received: 11 November 2005 / Accepted: 18 October 2006 / Published online: 28 July 2007
© Springer-Verlag 2007

Abstract Transactional Memory is a concurrent program-
ming API in which concurrent threads synchronize via trans-
actions (instead of locks). Although this model has mostly
been studied in the context of multiprocessors, it has attrac-
tive features for distributed systems as well. In this paper, we
consider the problem of implementing transactional mem-
ory in a network of nodes where communication costs form a
metric. The heart of our design is a new cache-coherence pro-
tocol, called the Ballistic protocol, for tracking and moving
up-to-date copies of cached objects. For constant-doubling
metrics, a broad class encompassing both Euclidean spaces
and growth-restricted networks, this protocol has stretch log-
arithmic in the diameter of the network.

1 Introduction

Transactional Memory is a concurrent programming API
in which concurrent threads synchronize via transactions
(instead of locks). A transaction is an explicitly delimited
sequence of steps to be executed atomically by a single thread.
A transaction can either commit (take effect), or abort (have
no effect). If a transaction aborts, it is typically retried until
it commits. Support for the transactional memory model
on multiprocessors has recently been the focus of several
research efforts, both in hardware [13,16,32,36,38,43] and
in software [14,15,17,23,31,33,42].

In this paper, we propose new techniques to support the
transactional memory API in a distributed system consisting

Supported by NSF grant 0410042 and by grants from Intel
Corporation and Sun Microsystems.

M. Herlihy (B) · Y. Sun
Brown University, Providence, RI 02912-1910, USA
e-mail: mph@cs.brown.edu

of a network of nodes that communicate by message-
passing with their neighbors. As discussed below, the trans-
actional memory API differs in significant ways from prior
approaches to distributed transaction systems, presenting
both a different high-level model of computation and a dif-
ferent set of low-level implementation issues. The protocols
and algorithms needed to support distributed transactional
memory require properties similar to those provided by prior
proposals in such areas as cache placement, mobile objects
or users, and distributed hash tables. Nevertheless, we will
see that prior proposals typically fall short in some aspect or
another, raising the question whether these (often quite gen-
eral) proposals can be adapted to meet the (specific) require-
ments of this application.

Transactions have long been used to provide fault-
tolerance in databases and distributed systems. In these sys-
tems, data objects are typically immobile, but computations
move from node to node, usually via remote procedure call
(RPC). To access an object, a transaction makes an RPC
to the object’s home node, which in turn makes tentative
updates or returns results. Synchronization is provided by
two-phase locking, typically augmented by some form of
deadlock detection (perhaps just timeouts). Finally, a two-
phase commit protocol ensures that the transaction’s tenta-
tive changes either take effect at all nodes or are all discarded.
Examples of such systems include Argus [28] and Jini [45].

In distributed transactional memory, by contrast, trans-
actions are immobile (running at a single node) but objects
move from node to node. Transactional synchronization is
optimistic: a transaction commits only if, at the time it fini-
shes, no other transaction has executed a conflicting access.
In recent software transactional memory proposals, a conten-
tion manager module is responsible for avoiding deadlock
and livelock. A number of contention manager algorithms
have been proposed and empirically evaluated [12,17,22].

123

196 M. Herlihy, Y. Sun

One advantage of this approach is that there is no need for a
distributed commit protocol: a transaction that finishes with-
out being interrupted by a synchronization conflict can sim-
ply commit.

These two transactional models make different trade-offs.
One moves control flow, the other moves objects. One
requires deadlock detection and commit protocols, and one
does not. The distributed transactional memory model
has several attractive features. Experience with this
programming model on multiprocessors [17] suggests that
transactional memory is easier to use than locking-based syn-
chronization, particularly when fine-grained synchronization
is desired. Moving objects to clients makes it easier to exploit
locality. In the RPC model, if an object is a “hot spot”, that
object’s home is likely to become a bottleneck, since it must
mediate all access to that object. Moreover, if an object is
shared by a group of clients who are close to one another,
but far from the object’s home, then clients must incur high
communication costs with the home.

Naturally, there are distributed applications for which the
transactional memory model is not appropriate. For example,
some applications may prefer to store objects at dedicated
repositories instead of having them migrate among clients.
In summary, it would be difficult to claim that either model
dominates the other. The RPC model, however, has been thor-
oughly explored, while the distributed transactional memory
model is novel.

To illustrate some of the implementation issues, we start
with a (somewhat simplified) description of hardware trans-
actional memory. In a typical multiprocessor, processors do
not access memory directly. Instead, when a processor issues
a read or write, that location is loaded into a processor-
local cache. A native cache-coherence mechanism ensures
that cache entries remain consistent (for example, writing
to a cached location automatically locates and invalidates
other cached copies of that location). Simplifying somewhat,
when a transaction reads or writes a memory location, that
cache entry is flagged as transactional. Transactional writes
are accumulated in the cache (or write buffer), and are not
written back to memory while the transaction is active. If
another thread invalidates a transactional entry, that transac-
tion is aborted and restarted. If a transaction finishes without
having had any of its entries invalidated, then the transac-
tion commits by marking its transactional entries as valid or
as dirty, and allowing the dirty entries to be written back to
memory in the usual way.

In some sense, modern multiprocessors are like miniature
distributed systems: processors, caches, and memories com-
municate by message-passing, and communication latencies
outstrip processing time. Nevertheless, there is one key dis-
tinction: multiprocessor transactional memory designs
extend built-in cache coherence protocols already supported
by modern architectures. Distributed systems (that is, nodes

linked by communication networks) typically do not come
with such built-in protocols, so distributed transactional
memory requires building something roughly equivalent.

The heart of a distributed transactional memory imple-
mentation is a distributed cache-coherence protocol. When
a transaction attempts to access an object, the cache-coher-
ence protocol must locate the current cached copy of the
object, move it to the requesting node’s cache, invalidating
the old copy. (For brevity, we ignore shared, read-only access
for now.)

We consider the cache-coherence problem in a network
in which the cost of sending a message depends on how far
it goes. More precisely, the communication costs between
nodes form a metric. A cache coherence protocol for such
a network should be location-aware: if a node in Boston is
seeking an object in New York City, it should not send mes-
sages to Australia.

In this paper, we propose the Ballistic distributed cache-
coherence protocol, a novel location-aware protocol for met-
ric space networks. The protocol is hierarchical: nodes are
organized as clusters at different levels. One node in each
cluster is chosen to act as leader for this cluster when commu-
nicating with clusters at different levels. Roughly speaking,
a higher-level leader points to a leader at the next lower level
if the higher-level node thinks the lower-level node “knows
more” about the object’s current location.

The protocol name is inspired by its communication pat-
terns: when a transaction requests an object, the request rises
in the hierarchy, probing leaders at increasing levels until the
request encounters a downward link. When the request finds
such a link, it descends, following a chain of links down to
the cached copy of the object.

We evaluate the performance of this protocol by its stretch:
each time a node issues a request for a cached copy of an
object, we take the ratio of the protocol’s communication cost
for that request to the optimal communication cost for that
request. We analyze the protocol in the context of constant-
doubling metrics, a broad and commonly studied class of
metrics that encompasses low-dimensional Euclidean spaces
and growth-restricted networks [1,2,9,11,21,24–26,34,37,
41,44]. (This assumption is required for performance analy-
sis, not for correctness.) For constant-doubling metrics, our
protocol provides amortized O(log Diam) stretch for non-
overlapping requests to locate and move a cached copy from
one node to another. The protocol allows only bounded over-
taking: when a transaction requests an object, the Ballistic
protocol locates an up-to-date copy of the object in finite
time. Concurrent requests are synchronized by path rever-
sal: when two concurrent requests meet at an intermediate
node, the second request to arrive is “diverted” behind the
first.

Our cache-coherence protocol is scalable in the number
of cached objects it can track, in the sense that it avoids

123

Distributed transactional memory for metric-space networks 197

overloading nodes with excessive traffic or state information.
Scalability is achieved by overlaying multiple hierarchies on
the network and distributing the tracking information for dif-
ferent objects across different hierarchies in such a way that
as the number of objects increases, individual nodes’ state
sizes increase by a much smaller factor.

The contribution of this paper is to propose the first pro-
tocol to support distributed transactional memory, and more
broadly, to call the attention of the community to a rich source
of new problems.

The rest of the paper is organized as follows: Sect. 2
discusses related works. Section 3 gives an overview of a dis-
tributed transactional memory system. Section 4 describes a
hierarchical directory used in later sections. Section 5
describes the Ballistic protocol and proves its correctness.
Section 6 examines the competitive performance of the Bal-
listic protocol. Section 7 extends the protocol to multiple
objects in a load-balancing way. Section 8 briefly mentions
the protocol’s fault-tolerance property.

2 Related work

Many others have considered the problem of accessing shared
objects in networks. Most related work focuses on the copy
placement problem, sometimes called file allocation (for
multiple copies) or file migration (for single copy). These
proposals cannot directly support transactional memory
because they provide no ability to combine multiple accesses
to multiple objects into a single atomic unit. Some of these
proposals [5,8] compare the online cost (metric distance) of
accessing and moving copies against an adversary who can
predict all future requests. Others [4,30] focus on minimiz-
ing edge congestion. These proposals cannot be used as a
basis for a transactional cache-coherence protocol because
they do not permit concurrent write requests.

The Arrow protocol [39] was originally developed for
distributed mutual exclusion, but was later adapted as a
distributed directory protocol [10,18,19]. Like the protocol
proposed here, it relies on path reversal to synchronize con-
current requests. The Arrow protocol is not well-suited for
our purposes because it runs on a fixed spanning tree, so its
performance depends on the stretch of the embedded tree.
The Ballistic protocol, by contrast, “embeds itself” in the
network in a way that provides the desired stretch.

The Ballistic cache-coherence protocol is based on hierar-
chical clustering, a notion that appears in a variety of object
tracking systems, at least as early as Awerbuch and Peleg’s
mobile users [7], as well as various location-aware distri-
buted hash tables (DHTs) [2,20,21,37,41]. Krauthgamer and
Lee [25] use clustering to locate nearest neighbors. Talwar
[44] uses clustering for compact routing, distance labels,
and related problems. Other applications include location

services [1,26], animal tracking [9], and congestion control
[11]. Of particular interest, the routing application [44]
implies that the hierarchical construct we use for cache coher-
ence can be obtained for free if it has already been constructed
for routing. Despite superficial similarities, these hierarchi-
cal constructions differ from ours (and from one another) in
substantial technical ways.

To avoid creating directory bottlenecks, we use random
hash ids to assign objects to directory hierarchies. Simi-
lar ideas appear as early as Li and Hudak [27]. Recently,
location-aware DHTs (for example, [2,20,21,37,41]) assign
objects to directory hierarchies based on object id as well.
These hierarchies are randomized. By contrast, Ballistic pro-
vides a deterministic hierarchy structure instead of a random-
ized one. A deterministic node structure provides practical
benefits. The cost of initializing a hierarchical node struc-
ture is fairly high. Randomized constructions guarantee good
behavior in the expected case, while deterministic structures
yield good behavior every time.

While DHTs are also location aware, they typically man-
age immutable immovable objects. DHTs provide an effec-
tive way to locate an object, but it is far from clear how
they can be adapted to track mobile copies efficiently. Prior
DHT work considers the communication cost of publishing
an object to be a fixed, one-time cost, which is not usually
counted toward object lookup cost. Moving an object, how-
ever, effectively requires republishing it, so care is needed
both to synchronize concurrent requests and to make repub-
lishing itself efficient.

There have been many proposals for distributed shared
memory systems (surveyed in [35]), which also present a
programming model in which nodes in a network appear to
share memory. None of these proposals, however, supports
transactions.

3 System overview

Each node has a transactional memory proxy module that
provides interfaces both to the application and to proxies at
other nodes. An application informs the proxy when it starts a
transaction. Before reading or writing a shared object, it asks
the proxy to open the object. The proxy checks whether the
object is in the local cache, and if not, calls the Ballistic pro-
tocol to fetch it. The proxy then returns a copy of the object
to the transaction. When the transaction asks to commit, the
proxy checks whether any object opened by the transaction
has been invalidated (see below). If not, the proxy makes the
transaction’s tentative changes to the object permanent, and
otherwise discards them.

If another transaction asks for an object, the proxy checks
whether it is in use by an active local transaction. If not,
it sends the object to the requester and invalidates its own

123

198 M. Herlihy, Y. Sun

copy. If the object is in use, the proxy can either surrender
the object, aborting the local transaction, or it can postpone
a response for a fixed duration, giving the local transaction a
chance to commit. The decision when to surrender the object
and when to postpone the request is a policy decision. Nodes
must use a globally-consistent contention management pol-
icy that avoids both livelock and deadlock. A number of such
policies have been proposed in the literature [12,17,22]. Per-
haps the simplest is to assign each transaction a timestamp
when it starts, and to require that younger transactions yield to
older transactions. A transaction that restarts keeps its time-
stamp, and eventually it will be the oldest active transaction
and thus able to run uninterrupted to completion.

The most important missing piece is the mechanism by
which a node locates the current copy of an object. As noted,
we track objects using the Ballistic cache coherence proto-
col, a hierarchical directory scheme that uses path reversal
to coordinate concurrent requests. This protocol is a distrib-
uted queuing protocol: when a process joins the queue, the
protocol delivers a message to that process’s predecessor in
the queue. The predecessor responds by sending the object
(when it is ready to do so) back to the successor, invalidating
its own copy.

For read sharing, the request is delivered to the last node
in the queue, but the requester does not join the queue. The
last node sends a read-only copy of the object to the requester
and remembers the requester’s identity. Later, when that node
surrenders the object, it tells the reader to invalidate its copy.
An alternative implementation (not discussed here) can let
read requests join the queue as well.

4 Hierarchical clustering

In this section we describe how to impose a hierarchical struc-
ture (called the directory or directory hierarchy) on the net-
work for later use by the cache coherence protocol.

Consider a metric space of diameter Diam containing n
physical nodes, where d(x, y) is the distance between nodes
x and y. This distance determines the cost of sending a mes-
sage from x to y and vice-versa. Scale the metric so that 1 is
the smallest distance between any two nodes. Define N (x, r)

to be the radius-r neighborhood of x in the metric space.
We select nodes in the directory hierarchy using any dis-

tributed maximal independent set algorithm (for example,
[3,6,29]). We construct a sequence of connectivity graphs as
follows:

– At level 0, all physical nodes are in the connectivity
graph. They are also called the level 0 or leaf nodes.
Nodes x and y are connected if and only if d(x, y) < 21.
Leader0 is a maximal independent set of this graph.

Fig. 1 Illustration of a directory hierarchy

– At level �, only nodes from leader�−1 join the connec-
tivity graph. These nodes are referred to as level � nodes.
Nodes x and y are connected in this graph if and only if
d(x, y) < 2�+1. Leader� is a maximal independent set
of this graph.

The construction ends at level L when the connectivity graph
contains exactly one node, which is called the root node.
L ≤ ⌈

log2 Diam
⌉ + 1 since the connectivity graph at level

�log2Diam� is a complete graph.
The (lookup) parent set of a level � node x is the set of

level �+ 1 nodes within distance 10 · 2l+1 of x . In particular,
the home parent of x is the parent closest to x . By construc-
tion, the home parent is at most distance 2�+1 away from
x . The move parent set of x is the subset of parents within
distance 4 · 2l+1 of x .

A directory hierarchy is a layered node structure. Its ver-
tex set includes the level-0 through level-L nodes defined
above. Its edge set is formed by drawing edges between par-
ent-child pairs as defined above. Edges exist only between
neighboring level nodes. Figure 1 illustrates an example of
such a directory hierarchy. Notice that nodes above level 0
are logical nodes simulated by physical nodes.

We use the following notation:

– home�(x) is the level-� home directory of x . home0(x) =
x . homei (x) is the home parent of homei−1(x).

– moveProbe�(x) is the move-parent set of home�−1(x).
These nodes are probed at level � during a move started
by x .

– lookupProbe�(x) is the lookup-parent set of home�−1(x).
These nodes are probed at level � during a lookup started
by x .

5 The Cache-coherence protocol

For now, we focus on the state needed to track a single cached
object, postponing the general case to Sect. 7. Each non-leaf
node in the hierarchy has a link state: it either points to a child,

123

Distributed transactional memory for metric-space networks 199

or it is null. If we view non-null links as directed edges in the
hierarchy, then they always point down. Intuitively, when the
link points down, the parent “thinks” the child knows where
the object is.

Nodes process messages sequentially: a node can receive a
message, change state, and send a message in a single atomic
step. We provide three operations. When an object is first
created, it is published so that other nodes can find it. (As
discussed briefly in the conclusions, an object may also be
republished in response to failures.) A node calls lookup to
locate the up-to-date object copy without moving it, thus
obtaining a read-only copy. A node calls move to locate and
move the up-to-date object copy, thus obtaining a writable
copy.

1. publish(): An object created at a leaf node p is pub-
lished by setting each homei (p).link = homei−1(p),
leaving a single directed path from the root to p, going
through each home directory in turn.
For example, Fig. 1 shows an object published by leaf
A. A’s home directories all point downwards. In every
quiescent state of the protocol, there is a unique directed
path from the root to the leaf where the object resides,
although not necessarily through the leaf node’s home
directories.

2. lookup(): A leaf q started a lookup request. It pro-
ceeds in two phases. The first phase is an up phase.
The nodes in lookupProbe�(q) are probed at increas-
ing levels until a non-null downward link is found. At
each level �, home�−1(q) initiates a sequential probe
to each node in lookupProbe�(q). The ordering can be
arbitrary except that the home parent of home�−1(q),
which is also home�(q), is probed last. If the probe finds
no downward links at level �, then it repeats the process
at the next higher level.
If, instead, the probe discovers a downward link, then the
second phase, the down phase starts. Downward links
are followed to reach the leaf node that either holds the
object or will hold the object soon. When the object
becomes available, a copy is sent directly to q.

3. move(): The operation also has two phases. In the up
phase, the protocol probes the nodes in moveProbe�(q)

(not lookupProbe�(q)), probing home�(q) last. Then
home�(q).link is set to point to home�−1(q) before it
repeats the process at the next higher level. (Recall that
probing the home parent’s link and setting its link are
done in a single atomic step.)
For the down phase, when the protocol finds a down-
ward link at level �, it redirects that link to home�−1(q)

before descending to the child pointed to by the old link.
The protocol then follows the chain of downward links,
setting each one to null, until it arrives at a leaf node.

This leaf node either has the object, or is waiting for the
object. When the object is available, it is sent directly
to q.

Figure 2 shows the protocol pseudocode for the up phase and
down phase of lookup and move operations. As mentioned,
each node receives a message, changes state, and sends a
message in a single atomic step.

In the analysis to follow, we use lower case letters like p, q
or r to indicate requests. When confusion does not arise, we
also use the same letter to denote the leaf node that generated
the request.

5.1 Cache responsiveness

A cache-coherence protocol needs to be responsive so that
an operation issued by any node at any time is eventualy
completed. In the Ballistic protocol, overtaking can happen
in satisfying concurrent writes: A node B may issue a write
operation at a later (wall clock) time than a node A, and
yet B’s operation may be ordered first if B is closer to the
object. Nevertheless, we will show that such overtaking can
occur only during a bounded window in time, implying that
every write operation eventually completes. It follows that
read operations also eventually complete.

Two parameters are used in proving that a write operation
completes. The first parameter TE, the maximum enqueue
delay, is the time it takes for a move request to reach its pre-
decessor. This number is network-specific but finite, since a
request never blocks in reaching its predecessor. The other
parameter is TO, the maximum time it takes for an object
to travel from one requester to its successor, also finite. TO
includes the time it takes to invalidate existing read-only cop-
ies before moving a writable copy. TO also includes the delay
the contention manager sets before responding to a conflict-
ing successor request.

Theorem 1 (Finite write response time) Every move request
is satisfied within time n · TE + n · TO from when it is
generated.

Proof Let p be the initial publisher of the object. Suppose
a request r is generated at time t . The key insight to show
here is, after time t + n · TE , no newly generated request can
overtake r .

By time at most t + n · TE , either all the successor links
between r and its n predecessors r1, r2, . . . , rn have been
established, or there exists I ≤ n − 1 such that rI is p, the
publish request.

For the first case, at least two requests ri and r j must
come from the same leaf node. By Lemma 1 below, these
two requests are different, otherwise, there is a cycle. Since
a leaf does not generate a new request until an outstanding

123

200 M. Herlihy, Y. Sun

Fig. 2 Pseudocode for lookup
and move operations, lines in
“[]” are for moves only

one has been satisfied, at least one of ri or r j must have seen
the object by time t + n · TE .

Let x be the location of the object at time t + n · TE

(defined to be the destination node if the object is in trasit
at thattime. If the object has not visited request r yet at time
t + n · TE , in either of the two cases above, r is at most n
steps away from x by taking existing successor links at time
t + n · TE . Therefore, r has the object in the local cache by
time t + n · TE + n · TO . ��
Corollary 1 (Bounded overtaking) If a request r is gener-
ated at time t, then all requests generated after time t +n ·TE

will be ordered after r; all requests generated prior to time
t − n · TE will be ordered before r .

Lemma 1 There exists no set of finite number of requests
R = {r1, r2, . . . , r f } whose successor links form a cycle.

Proof We prove that there is at least one request in R enque-
ued behind some request not in R.

An arrow established by a request r , or simply r ’s arrow,
is a downwarad link from a parent node P to child node C
added by r ’s visit. We call arrows established by requests
outside R outside arrows.

The following invariants can be proved by simple case
analysis:

1. The root node always has an arrow.

2. Each request eventually sees at its peak level an arrow
before it starts its down phase.

3. Once a request starts its down phase, it sees an arrow at
every intermediate node until it reaches a leaf where it
discovers its predecessor.

4. r ’s arrow at a level-� node P always points to a child
C = home�−1(r).

5. Before a request r adds an arrow from a parent P to a
child C , it must have already added an arrow at C to a
grandchild at an earlier time t−. And from time t− to the
later time t+ that r ’s arrow at P gets erased by request
r ′ which reaches C from P , after erasing r ’s arrow at P ,
C keeps having a arrow. That arrow can be redirected
from one child of C to another multiple times during
[t−, t+].

Let H be the highest peak level reached by requests in R.
Then the request in R that reaches level H earliest sees an
outside arrow.

We show by induction that for any level between H and
1, some request ri ∈ R sees at that level an outside arrow. In
particular, at level 1, it implies that some ri ∈ R is enqueued
behind an outside request.

The base case is at level H , already shown. Induction from
level k to level k − 1 follows.

123

Distributed transactional memory for metric-space networks 201

Let r be any request in R that sees an outside arrow at
a level-k node. We know that r exists from the induction
hypothesis. Let t be the time the arrow was encountered, and
P be the level-k node. Assume the arrow at P seen by r was
established by request x , an outsider, and it points to P’s
child C , also the home directory of x .

Since x established the arrow from P to C prior to time t ,
by invariant 4, x must have established an arrow at C at an
even earlier time t−.

Let t+ be the later time that request r reaches C after
descending from P and erasing x’s arrow at P . Also by invari-
ant 4, C always had an arrow (the arrow might be redirected)
between t− and t+.

If some request from R sees the arrow at C between time
t− and t+, then the first doing so completes the induction
step. Otherwise, r sees an outside arrow at time t+, which
also completes the induction step. ��

5.2 Implementing serializable transactions

Recall from Sect. 3 that an object is opened before being read
or written. Creating a new writable copy invalidates existing
read-only copies and writable copies, and creating a new
read-only copy downgrades any existing writable copy to a
read-only copy. This provides one-copy consistency for each
object.

A transaction accesses multiple objects using the Ballis-
tic cache-coherence protocol. Acceses to multiple objects
appear to happen instantaneously. As discussed in Sect. 3,
this is achieved by letting the local transactional memory
proxy watch for conflicting accesses.

6 Performance

The Ballistic cache coherence protocol works in any network,
but our performance analysis focuses on constant-doubling
metrics. A metric is a constant-doubling metric if there exists
a constant dim, such that each radius-r neighborhood can be
covered by at most 2dim radius- r

2 neighborhoods. This focus
is not overly restrictive. Constant-doubling networks (and
even stronger models such as growth-restricted or Euclid-
ean space networks) arise often in practice and are common
in the literature (for example, [1,2,9,11,21,24–26,34,37,41,
44]). Section 6.1 describes the properties of constant-dou-
bling metrics that render our performance analysis possible.

The protocol’s work is the communication cost of an oper-
ation. For publish operations, we count the communication
cost of adding links on the publishing leaf’s home parent
path. For move and lookup operations, we count the com-
munication cost of finding the leaf node that will eventually
send back the up-to-date object copy.

The protocol’s distance for a move or lookup operation is
the cost of communicating directly from the requesting node
to its destination (which is the metric distance between these
two nodes).

The protocol’s stretch for a move or lookup operation is
the ratio of the work to the distance. The communication cost
of replying to the requesting node can be ignored since the
message is sent directly via the underlying routing protocol.
For move operations, we are interested in the amortized work
and distance across a sequence of object movements.

There are two kinds of executions, one is called the sequen-
tial execution, the other one is called the concurrent exe-
cution. The difference is, in sequential executions, move
requests do not overlap with each other, while in concur-
rent executions, they can. All executions start with an initial
publish request q0, followed by a sequence of move requests,
q1, q2, . . . , qk , where the move requests are listed in the order
decided by the Ballistic protocol. For sequential executions,
qi ’s do not overlap with each other; for concurrent executions,
they can. We denote executions using Greek letters like α, β.
We do not list lookup operations in executions since they do
not add or remove links in the directory, and therefore does
not impact performance of move operations or other lookup
operations.

The main performance results for sequential executions
are:

Theorem 2 (Publish cost) The publish operation has work
O(Diam).

Theorem 3 (Move cost) If an object has moved a combined
distance of d since its initial publication, the amortized move
stretch is O(min{log2 d, L}).
Theorem 4 (Lookup cost) The stretch for a lookup opera-
tion is constant.

Proofs for those results are given in Sect. 6.1, Sect. 6.2
and Sect. 6.3.

These performance results hold when move requests do
not overlap. Move requests that concurrently probe overlap-
ping parent sets may “miss” one another. The protocol is
still correct, because the requests will eventually meet, but
perhaps at a higher level. If this particular race condition can
be avoided, then similar performance results hold for concur-
rent executions as well. Section 6.4 describes this in further
details.

6.1 Properties of constant-doubling networks

Constant-doubling metrics have the following properties.

1. Bounded link property The metric distance between a
level-� child and its level-(� + 1) parent is less than or
equal to cb · 2�, for some constant cb.

123

202 M. Herlihy, Y. Sun

2. Constant expansion property Any node has no more
than a constant number of lookup parents and lookup
children.

3. Lookup property For any two leaves p and q, let p� be
any of p’s level-� ancestors by following move parents
only. If p� /∈ lookupProbe�(q), then the metric distance
beteween p and q is at least cl · 2� for some constant cl .

4. Move property For any two leaves p and q, let p� be p’s
level-� home directory. If p� /∈ moveProbe�(q), then the
metric distance beteween p and q is at least cm · 2� for
some constant cm .

Notice that out of the four properties, only the constant
expansion property requires constant-doubling metrics. The
other three properties hold in general metrics as well.

Lemma 2 These four properties are satisfied in constant
doubling metrics.

Proof The bounded link property is obvious since the length
of an edge between a level-� child and level-(�+1) parent is
at most 2 · 2�+2 if the parent node is the home parent of the
child node; at most 4 · 2�+2 if the parent node is the move
parent of the child node; at most 10 · 2�+2 if the parent is the
lookup parent of the child node.

For the constant expansion property, we only show here
that for each level-� node C , there are at most a constant
number of lookup parent nodes at level � + 1. The case for
number of children nodes is similar. The first observation is:
by definition of lookup parent, all level-(�+1) lookup parents
of C are within radius-10 · 2�+1 neighborhood of C . Apply-
ing the definition of constant-doubling metrics recursively,
this neighborhood of C can be covered by 25dim radius-2�

neighborhoods.
The second observation is: different level-(� + 1) lookup

parents of C are at least distance 2�+1 from each other since
they belong to the maximal independent set of the level-�
connectivity graph. Therefore, two different lookup parents
cannot be from the same radius-2� neighborhood.

Combing the two observations, C has no more than 25dim

level-(�+1) lookup parents. This number is constant because
dim is constant.

For the lookup property, by definition of move parents,

d(p, p�) < 4 ·
�∑

i=1

2i < 8 · 2�.

Let q�−1 be q’s level-(� − 1) home directory. By definition
of home parents,

d(q, q�−1) <

i=�−1∑

i=1

2i < 2�.

If p� is not lookup parent of q�−1, then by definition of lookup
parent,

d(q�−1, p�) ≥ 10 · 2�.

By the triangle inequality,

d(p, q) ≥ d(q�−1, p�) − d(q, q�−1) − d(q�−1, p�) > 2�.

For the move property, by definition of home parents,

d(p, p�) <

�∑

i=1

2i < 2 · 2�.

Let q�−1 be q’s level-(�−1) home directory. By the definition
of home parents,

d(q, q�−1) <

i=�−1∑

i=1

2i < 2�.

If p� is not the move parent of q�−1, then by the definition
of move parent,

d(q�−1, p�) ≥ 4 · 2�.

By the triangle inequality,

d(p, q) ≥ d(q�−1, p�) − d(q, q�−1) − d(q�−1, p�) > 2�.

��
Lemma 3 There exists a constant cw, such that for any oper-
ation (publish, lookup, or move), if the peak level reached
by this operation is level �, then this operation performs work
at most cw · 2�−1.

Proof Follows from the bounded link property, the constant
expansion property, and a simple examination of protocols
for these three operations. ��

Theorem 2 (publish performance) is straightforward by
the previous lemma and by noticing that L≤ ⌈

log2 Diam
⌉+1.

6.2 Performance of move requests in sequential executions

Lemma 4 In a sequential execution, suppose a move request
q discovers a non-null link at node P at level � (either at its
peak level just before entering the down phase or in its down
phase). If p is the move or publish request that was last to
visit P(and therefore added the non-null link seen by q), then
the distance from p to q is at least cm · 2�−1.

Proof By examing the move operations, when a link is added,
it always points to the home directory of the request that
added that link. Therefore, the non-null link that q saw at
node P must point to home�−1(p). It can also be seen by
examining the move operation that in a sequential execu-
tion, home�−1(p) kept a non-null link from the time when
p visited it in its up phase, until the time when q visited

123

Distributed transactional memory for metric-space networks 203

home�−1(p) in q’s down phase (after erasing p’s level-�
link at A). In a sequential execution, this implies home�−1(p)

kept a non-null link during q’s up phase. Therefore, the reason
that q did not discover any level-(� − 1) link during its up
phase is q did not visit home�−1(q). By the move property,
d(p, q) ≥ cm · 2�−1. ��

Define the distance of a sequential execution to be the sum
of distances for all the move requests.

Lemma 5 In a sequential execution with distance d, the
maximum level reached by any move request does not exceed
min(log2 d + c, L) where c is a constant.

Proof Let q0 be the initial publish request, let � be the max-
imum level reached by any move request, and let q be the
request that peaked at level � (choosing the request ordered
first if there are more than one.)

That � ≤ L is obvious.
Since q is the first move request to see a non-null level-�

link, this non-null link must have been established by the ini-
tial publish request q0. By Lemma 4, d(q0, q) ≥ cm · 2�−1.
By the triangle inequality, d ≥ d(q0, q). So � ≤ log2

d
cm

+ 1.
��

We define a subexecution β of a sequential execution α.
We view a sequential execution α as a sequence q0q1 . . . qk ,
where q0 is the initial publish request, and the rest are subse-
quent non-overlapping move requests. A subexecution β of
α is a consecutive subsequence qi qi+1 . . . qi+ j .

The initial level of a subexecution β that starts with request
qi is the level reached by qi in the execution α and denoted
by L(β). If β starts with q0, the publish request, L(β) = L ,
the maximum level of the Ballistic hierarchy.

The maximum level of a subexecution β is the maximum
level reached by any non-initial request of β ({qi+1, qi+2,

. . . , q j }) in the execution α and denoted by �(β).
The work of a subexecution β is the combined work of

non-initial requests in the execution α.
The distance of a subexecution β is the combined distance

of non-initial requests in the execution α.

Lemma 6 For any subexecution β of a sequential execution
α where �(β) ≤ L(β), work(β) ≤ cw

cm
· �(β) · distance(β).

Proof We argue by induction on the number of requests in
subexecution β.We define c to be the constant cw

cm
.

If β has only one request, the claim holds vacuously.
For the induction step, any length-k subexecution β ′ can

be viewed as a concatenation of a length-(k−1) subexecution
β = qi qi+1 . . . qi+(k−1) and a final request qi+k .

�(β ′) ≤ L(β ′) implies �(β) ≤ �(β ′) ≤ L(β ′) = L(β).
Therefore, by the induction hypothesis, let w and d be the
work and distance of β,

w ≤ c · �(β) · d.

Define �m to be the level reached by request qi+m . By
Lemma 3, the work of the last request of β ′ is

work(qi+k) ≤ cw · 2�k = c · cm · 2�k .

The work of β ′ is

w′ = w + work(qk) ≤ c · �(β) · d + c · cm · 2�k .

The distance of β ′ is

d ′ = d + d(qi+(k−1), qi+k).

Case 1, �k ≤ �k−1. Then �(β ′) = �(β).
By Lemma 4, lk ≤ lk−1 ⇒ d(qi+(k−1), qi+k) ≥ cm ·

2�k−1.

d ′ ≥ d + cm · 2�k−1

w′ ≤ c · �(β) · d + c · cm · 2�k−1

≤ c · �(β) · (d + cm · 2�k−1)

≤ c · �(β ′) · d ′.

Case 2 �k > �k−1. There are two subcases to consider.
In the first, �k > �(β). Then �(β ′) = �k ≥ �(β) + 1.
Since qi+k reaches the highest level among {qi+1, qi+2,

. . . , q j }, but the level still does not exceed qi , by Lemma 4,
d ′ ≥ cm · 2�k−1. So

w′ ≤ c · �(β) · d + c · cm · 2�k−1

≤ c · �(β) · d ′ + c · d ′

≤ c · �(β ′) · d ′

In the second sub case, �k ≤ �(β). Then �(β ′) = �(β).
Let qi+ j (1 ≤ j ≤ k − 1) be the last request in β to reach

a level l j ≥ �k . Because �(β) ≥ �k , such qi+ j exists.
Let β0 be the subexecution qi qi+1 . . . qi+ j , and let β1 be

the subexecution qi+ j qi+ j+1 . . . qi+k . Let w0 and d0 be the
work and distance of β0, and w1 and d1 the work and distance
of β1.

w′ = w0 + w1 and d ′ = d0 + d1.

Since �(β0) = �(β ′) ≤ L(β ′) = L(β0), �(β1) = �k ≤
� j = L(β1), by the induction hypothesis,

w0 ≤ c · �(β0) · d0 and w1 ≤ c · �(β1) · d1

Because �(β ′) = �(β0) ≥ �(β1), so

w′ ≤ c · �(β ′) · d ′.
Therefore, the claim holds for subexecutions of α of length

k as well. ��
The following corollary of Lemma 6 is immediate.

Corollary 2 For any sequential execution α, work(α) ≤
cw

cm
· �(α) · distance(α).

Proof (Theorem 3, move performance)
The proof follows by combining Corollary 2 and Lemma 5.

��

123

204 M. Herlihy, Y. Sun

6.3 Performance of lookup requests in sequential
executions

If a lookup does not overlap with any move request, it is
trivial to see that the stretch for this lookup operation is con-
stant by observing Lemma 3 and then applying the lookup
property. Informally, due to the lookup property of constant-
doubling metrics, the location of an object (indicated by
downward links) is marked at well-known places to direct
lookup requests along a low-stretch path.

A lookup request that overlaps with one or more move
requests is “chasing” a moving object. For such a lookup
request, we relax the definition of distance given before. A
lookup request q starts at start (q), when it sends out its first
probe message, and ends at end(q), when the read-only copy
of the object arrives at q. A move operation p is said to be
overlapping with a lookup operation q if p has the object at
any time during the interval ∆(q) = [start (q), end(q)] or
if p is outstanding at any time during the interval ∆(q). We
redefine the distance of such a lookup request q to be the
maximum metric distance from q to the source of any over-
lapping move request. Notice that we still consider sequen-
tial executions only, that is, there are no overlapping move
requests.

Suppose h is the peak level reached by a lookup request
q. Let startk(q), endk(q) be the start and end time of q’s
level k probe, let ∆k(q) stand for [startk(q), endk(q)], and
qk for homek(q).

Lemma 7 If a lookup request q peaked at level h, then
for any k ≤ h − 1, if no link was deleted at any node in
lookupProbek(q) at any time during the interval ∆k(q), then
there exists a overlapping move request p with d(p, q) ≥
cl · 2k−1.

Proof Since no link was deleted at lookupProbek(q) during
∆k(q), and for every node in lookupProbek(q), when q visi-
ted, its link was null, none of the nodes in lookupProbek(q)

had a non-null link at startk(q).
Lookup operations do not add or delete links in the hierar-

chy. By examining the protocol for move operations, at any
time, there must exist a level-(k − 1) node with a non-null
link. Therefore, there is a level-(k −1) node P with non-null
link at time startk(q). Let p be the leaf of the link path start-
ing from P at time startk(q). Move request p either had
the object at time startk(q), or p was outstanding at time
startk(q), so p overlaps with q.

By the lookup overlap property, the distance between q
and q is at least cl · 2k−1. ��
Proof (Theorem 4, lookup performance)

Set constant c = min{ 1
4 cl ,

1
8 cm}. Suppose lookup request

q peaked at level �.
The idea is that we either find an overlapping request p,

such that distance(p, q) ≥ c · 2�, or we find two

requests p0 and p1, both overlapping with q, such that
distance(p0, p1) ≥ 2c · 2�. In the second case,
distance(q) ≥ c · 2� by the triangle inequality.

By Lemma 7, at level k = �−2, either there exists an over-
lapping move request p with d(p, q) ≥ cl · 2�−2 ≥ c · 2�, or
some request m1 deleted a link at a level-(�−2) node within
lookupProbe�−2(q) during the interval ∆�−2(q).

Similarly, at level k = � − 1, either there exists an over-
lapping move request p with d(p, q) ≥ cl ·2�−1 = 2c ·2�, or
some request m2 deleted a link at level-(� − 1) node within
lookupProbe�−1(q) during the interval ∆�−1(q).

If for either level � − 2 or level � − 1, the first case hap-
pens, then we are done here. The more interesting case is
when both m1 and m2 exist.

The move request m1 was tracing from level �−1 to level
� − 2 at some time during ∆�−2(q). And the move request
m2 was tracing from level � to level � − 1 at some time
during ∆�−1(q). Requests m1 and m2 must be two different
move requests since the interval ∆�−2(q) is strictly before
the interval ∆�−1(q).

Both m1 and m2 overlap with q since they were still travel-
ling to immediate predecessor during ∆�−2(q) and ∆�−1(q)

respectively.
Request m1 reached level � − 1 or higher. Request m2

reached level � or higher. Therefore, both added a non-null
level-(� − 1) link.

Let p0 be the request among m1, m2 that was ordered
earlier in this sequential execution. Let p1 be the request
that deleted p0’s level-(� − 1) link. p1 is either the request
in m1, m2 different from p0, or some third request ordered
between p0 and {m1, m2}−{p0}. Since both m1 and m2 over-
lap with q, and p1 is ordered between m1 and m2, p1 also
overlaps with q.

By Lemma 4, d(p0, p1) ≥ cm · 2�−2 ≥ 2c · 2� since p1

deleted p0’s level-(� − 1) non-null link.
Notice that in this proof, p (or p0 and p1) was outstanding

or holding the object during the interval ∆�−1(q)∪∆�−2(q).
Therefore, we were overly restrictive in defining distance(q)

by requiring the maximum distance overlapping move
request to be outstanding or holding object during ∆(q).
Therefore, the definition of distance(q) can be made weaker
(and our results stronger). ��

6.4 Performance in concurrent executions

Theorems 3 and 4 hold only when move operations do not
overlap. This subsection considers the performance of exe-
cutions in which these operations overlap. (Notice that the
performance for publish requests is unaffected by concur-
rency.)

The analysis for sequential executions does not apply to
concurrent executions because move requests that concur-
rently probe overlapping parent sets may “miss” one another.

123

Distributed transactional memory for metric-space networks 205

If this particulr race condition can be avoided, we can show
that concurrent move and lookup performance would be the
same as sequential operations. We omit the proof of this
claim, but the principal challenge is to show that Lemma 4
still holds if P is the node at which q peaks and starts the
down phase, but it does not necessarily hold if P is a node
that q visits during its down phase. In fact, in concurrent exe-
cutions, if P is a node that q visits during its down phase,
it is even possible that P is some node that q visited before
during its up phase. Therefore, we cannot claim anything on
the distance between q and P (or p, the request who added
the non-null link seen by q).

In this section, we give a high-level description of a modi-
fied Ballistic protocol that achieves similar performance
results for concurrent executions. Lookup requests are han-
dled the same. For a move request q, we want home�(q)

to proble its parents atomically with regard to home�(q)’s
neighboring level-� nodes. Atomicity can be achieved by a
kind of a distributed mutual exclusion protocol on a con-
flict graph that contains all the level-� nodes in the Ballistic
hierarchy for fixed level �. Two level-� nodes with different
home parents, where each has the other’s home parent as its
move parent, are connected by an edge in the conflict graph.
Neighbors in this conflict graph cannot be in the critical sec-
tion at the same time, but non-neighbors can. This problem is
relatd to the classical Dining Philosophers problem. One way
to solve this problem is to extend the protocol in [40]. Each
node obtains permissions from all neighbors before entering
the critical section. Specifically, before home�(q) probes its
parents, it gets permissions from all its neighbors in the level-
� conflicting graph, ensuring no neighbor will be probing at
the same time. Deterministic node ids and sequence numbers
can be used to break symmetry when two neighbors both try
to get permission from the other. One of the two neighbors
will have to wait for the other to finish probing first. The
guarantee here is that home�(q) needs to contact each neigh-
bor only a constant number of times before it gets permission
from every neighbor. The detailed description and the analy-
sis of the protocol will be more involved than that in [40] and
ommitted in this writing. Unlike the standard Ballistic proto-
col, the modified protocol is blocking: a request q may have
to wait at some immediate level before probing its parents.
The work of the protocol, however, remains the same.

7 Support for multiple objects

In this section, we show how to support multiple objects in
a way that balances the load among the nodes. We focus on
growth-restricted networks, a slightly more restrictive prop-
erty than constant doubling: there exists a constant which
bounds the ratio between the number of nodes in N (x, 2r)

and the number of nodes in N (x, r) for arbitrary node x

and arbitrary radius r . The multiple object solution works
correctly without this assumption, but the assumpton is
needed to prove load-balancing properties. but without prov-
able load results. Load-balancing in the more general metrics
is hard due to the possible “non-smooth” population change
when moving between neighboring areas or when expanding
the size of area under inspection.

A physical node which stores information about an object
is subject to two kinds of load: it stores state, and it must
respond to requests. Moreover, since multiple logical nodes
can be mapped to a single physical nodes, a physical node
may be subject to loads for multiple logical nodes. We now
consider how to balance these loads.

If multiple objects share a single directory, then physical
nodes which simulate logical nodes higher in the common
hierarchy will bear a greater load. Instead, the load can be
more evenly shared by letting different objects use different
directory structures mapped onto the physical nodes.

Each object chooses a directory to use based on a random
hash id between 0 and n − 1, where n is the number of
physical nodes, assumed to be a power of 2 without loss of
generality. In load analysis, we assume that each leaf node
(physical node) stores up to m objects and each leaf node
generates up to r requests. We also assume that applications
generate a uniform load in the following sense: each request
is for an object with a random id located at a random node.
Moreover, we assume these conditions continue to hold even
after objects have moved around.

Intuitively, nodes lower in the hierarchy will have lighter
loads, since they handle requests originating from or ending
in a small neighborhood and store links for objects located
in a small neighborhood. At higher levels, we “perturb” the
directory structure for each object to avoid overloading any
particular node.

Here is how the multiple directories are built:

1. Find a base directory as in Sect. 4.
2. Using this directory as a skeleton, n overlapping replace-

ment directories are built. Each is isomorphic to the base
directory. A level-� node in any replacement directory
is at most distance 2�−1 away from the correspond-
ing level-� node in the base directory. By the triangle
inequality, the cost of a mapped level-� edge in the
replacement directory is still bounded by a constant fac-
tor of 2�.

We next describe how to construct a replacement directory for
a given object id by describing how to map a level-� node A
in the base directory. Define h(A, �) = �log2 |N (A, 2�−1)|�.
Then a subset of 2h(A,�) physical nodes are selected (arbi-
trarily) from N (A, 2�−1). Each of these 2h(A,�) nodes is
assigned a unique h(A, �)-bit label and plays the role of A
in the directory for any object whose id has this label as a

123

206 M. Herlihy, Y. Sun

prefix. Obviously, each chosen node is responsible for 1
2h(A,�)

portion of object ids.

Theorem 5 Stretch results for the base directory carry over
to the replacement directory with a constant factor increase.

Proof The cost of a level-� edge in the replacement directory
is still bounded by a constant factor of 2�. ��
Lemma 8 At each level, each physical node replaces at most
one node in the base directory.

Proof Level-� nodes in the base directory are all at least dis-
tance 2� apart. Therefore, their radius-2�−1 neighborhoods
are disjoint. ��

For a physical node, the three measurements: degree, link
storage load, request handling load are all summed over
the logical nodes that it emulates in the replacement
directories.

Growth-restricted networks enjoy the following continu-
ous density property. This is the key lemma and does not
generally hold in constant-doubling metrics.

Lemma 9 In growth-restricted networks, for any constants
c1, c2, c3, for any level �, for any two nodes A and B at
most distance c3 · 2� apart, there exists a constant c =
f (c1, c2, c3) > 0, such that 1

c ≤ |N (A,c1·2�)|
|N (B,c2·2�)| ≤ c.

Proof By applying the property of growth-restricted net-
works and using the triangle inequalities repeatedly. ��
Theorem 6 In growth-restricted networks, each physical
node X has O(log Diam) child degree and parent degree in
the multiple directory structure.

Proof We first look at the contribution to the total parent
degree of X due to X replacing some level-� node A in the
base directory for fixed �. There is only one such A for fixed
� by Lemma 8.

X ∈ N (A, 2�−1). X has as label a string x1x2 . . . xh(A,�)

of length h(A, �). We use xi, j for the substring xi xi+1 . . . x j .
X replaces A for object id ω, where ω1,h(A,�) = x . We

use A(b) to refer to the replacement node of A for object ids
with h(A, �)-bit prefix b. A(x) is obviously node X here.

For each parent P of A in the base directory, for each such
object id ω with ω1,h(A,�) = x , X needs to maintain an edge
to P’s replacement P(ω1,h(P,�+1)).

Notice that not all different ω’s have different replace-
ments for P’s in ω’s directory. They are the same for those
ω’s with the same h(P, � + 1)-bit prefix.

If h(P, �+1) ≤ h(A, �), X needs to connect to one parent
only. This parent is P(ω1,h(P,�+1)) = P(x).

If h(P, � + 1) > h(A, �), X needs to connect to
2h(P,�+1)−h(A,�) different parents. These parents are

P(ω1ω2 . . . ωh(A,�)b1b2 . . . bh(P,�+1)−h(A,�)) with each bi

being either 0 or 1.
d(A, P) ≤ 10 · 2�+1. Therefore, by Lemma 9,

2|h(P,�+1)−h(A,�)| is a constant.
Therefore, for each of A’s parenst P in the base direc-

tory, X has a constant number of parents summing over all
n different object ids (directories), where edges with same
endpoints are combined. For A’s up to constant number of
parents in the base directory, this parent degree increases by
a constant factor.

Sum over X ’s role at up to L levels, the parent degree of
X is O(L) = O(log Diam).

The child degree of X is O(log Diam) for similar reasons.
Notice that we proved here only that X hasa constant num-

ber of parent node per level. They cannot be stored com-
pactly if we create at X a separate parent entry for each
different object id ω. Rather, we create only one entry for
each P(ω1,h(P,�+1)) that X connects to, and index to those
parents using the suffix bits of P(ω1,h(P,�+1))’s label that’s
longer than X ’s label. Once a request for object id ω arrives at
X , X examines the bits ωh(A,�)+1,h(P,�+1), and forwards the
request to the ωh(A,�)+1,h(P,�+1)th parent (P(ω1,h(P,�+1)).
Notice that if h(A, �) ≥ h(P, � + 1), then all requests arriv-
ing at X are forwarded to the same parent. ��
Theorem 7 In growth-restricted metrics, the expected non-
null link storage load at each physical node X is O(m ·
log Diam). This expectation is taken over a uniform object
id distribution.

Proof We first look at the contribution to link storage load
of X due to X replacing some level-� node A in the base
directory for fixed �. There is only one such A for fixed � by
Lemma 8.

Each non-null link X stores corresponds to an object
located at a leaf node p reachable from A by going down
the base directory following move edges only. Therefore,
d(p, A) ≤ 4 · 2�+1. d(p, X) ≤ d(p, A) + d(A, X) ≤ 9 · 2�.
So there can be at most |N (X, 9 ·2�)| such p’s. By Lemma 9,
|N (X, 9 · 2�)| ≤ c · |N (A, 2�−1)| ≤ 2c · 2h(A,�) for some
constant c.

The id of the object whose link X stores must have x as
a prefix. For fixed p, the expected number of such objects
stored at p is at most m

2h(A,�) .
Therefore, the expected link storage load at X at level �

is O(m) for fixed �. Summing over all different levels, the
total expected link storage load at X is O(log Diam). ��
Theorem 8 In growth-restricted metrics, the expected
request handling load at each physical node X is O(r · log
Diam). This expectation is taken over a uniform request
distribution.

Proof We first look at the contribution to message handling
load of X due to X replacing some level-� node A in the base

123

Distributed transactional memory for metric-space networks 207

directory for fixed �. There is only one such A for fixed � by
Lemma 8.

Each up-phase message X handles corresponds to a
request generated by some leaf q reachable from A by going
down the base directory following one lookup edge first, and
then home edges. Therefore, d(q, A) ≤ 11 · 2�. d(q, X) ≤
d(q, A) + d(A, X) ≤ 12 · 2�. So there can be at most
|N (X, 12 · 2�)| such q’s. By Lemma 9, |N (X, 12 · 2�)| ≤
c · |N (A, 2�−1)| ≤ 2c · 2h(A,�) for some constant c.

The object id of the request that X handles must have x as
a prefix. For fixed q, the expected number of such requests
started by q is at most r

2h(A,�) .
Therefore, the expected number of up phase messages

handled by X at level � is O(r) for fixed �.
Similarly, the expected number of down phase messages

handled by X at level � is expected O(r) for fixed �. These are
the requests with destinations being some p with d(p, X) ≤
d(p, A) + d(X, A) ≤ 8 · 2� + 2�−1 ≤ 9 · 2�. And these
requests have object ids starting with x .

Therefore, the expected message handling load at X is
O(r) at level � for fixed �, counting both up phase and down
phase. Summing over all different levels, the total expected
message handlinge load at X is O(r · log Diam). ��

8 Discussion

Distributed transactional memory has fault-tolerance prop-
erties comparable to distributed transactions under the RPC
model. A complete discussion of fault-tolerance is beyond
the scope of this paper, but here is an overview of the princi-
pal issues. A reliable protocol should be used to pass a cached
object from one node’s cache to another’s, to ensure that the
sender invalidates its local copy only if the receiver actually
receives the object.

Naturally, if the node holding an object crashes, that object
will become unavailable (just as in the RPC model). It is sen-
sible to back up long-lived objects on non-volatile storage so
they will become available again when the node recovers.
The directory information used by the Ballistic protocol can
be treated as soft state, in the sense that it can be regenerated
if it is lost. One can detect that part of the directory has been
lost if the root sends periodic ping messages down the chain
to the object’s current location. If a node holding an object
fails to receive a ping for too long, then it can republish the
object, routing around any failed nodes in the former path,
in much the same way that routing protocols rebuild broken
paths.

We have assumed a static physical network. When nodes
can enter or leave the physical network, it may be necessary
to rerun the maximal independent set protocol to rebuild the
hierarchy. Distributed maximal independent set algorithms

typically limit changes to the area around the affected
nodes.

References

1. Abraham, I., Dolev, D., Malkhi, D.: Lls: a locality aware loca-
tion service for mobile ad hoc networks. In: DIALM-POMC,
pp. 75–84 (2004)

2. Abraham, I., Malkhi, D., Dobzinski, O.: Land: stretch (1+ε) local-
ity-aware networks for dhts. In: Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 550–559
(2004)

3. Alon, N., Babai, L., Itai, A.: A fast and simple randomized
parallel algorithm for the maximal independent set problem.
J. Alg. 7, 567–583 (1986)

4. Meyer auf der Heide, F., Vöcking, B., Westermann, M.: Caching in
networks (extended abstract). In: Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 430–439
(2000)

5. Awerbuch, B., Bartal, Y., Fiat, A.: Competitive distributed file
allocation. In: STOC ’93: Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pp. 164–173 (1993)

6. Awerbuch, B., Cowen, L.J., Smith, M.A.: Efficient asynchro-
nous distributed symmetry breaking. In: Proceedings of the 26th
Annual ACM Symposium on Theory of Computing, pp. 214–223
(1994)

7. Awerbuch, B., Peleg, D.: Concurrent online tracking of mobile
users. In: SIGCOMM ’91: Proceedings of the Conference on
Communications Architecture and Protocols, pp. 221–233 (1991)

8. Bartal, Y., Fiat, A., Rabani, Y.: Competitive algorithms for dis-
tributed data management (extended abstract). In STOC ’92:
Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, pp. 39–50. ACM Press (1992)

9. Demirbas, M., Arora, A., Nolte, T., Lynch, N.: A hierarchy-based
fault-local stabilizing algorithm for tracking in sensor networks.
In: 8th International Conference on Principles of Distributed Sys-
tems (OPODIS) (2004)

10. Demmer, M.J., Herlihy, M.P.: The arrow directory protocol. In:
12th International Symposium on Distributed Computing (1998)

11. Grünewald, M., Meyer auf der Heide, F., Schindelhauer, C.,
Volbert, K.: Energy, congestion and dilation in radio networks.
In: Proceedings of the 14th ACM Symposium on Parallel Algo-
rithms and Architectures, 10-13 August 2002

12. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of trans-
actional contention managers. In: Proceedings of the 24th Annual
Symposium on Principles of Distributed Computing (2005, to
appear)

13. Hammond, L., Wong, V., Chen, M., Hertzberg, B., Carlstrom,
B.D., Davis, J.D., Prabhu, M.K., Wijaya, H., Kozyrakis, C.,
Olukotun, K.: Transactional memory coherence and consistency.
In: Proceedings of the 31st Annual International Symposium on
Computer Architecture (2004)

14. Harris, T., Fraser, K.: Language support for lightweight transac-
tions. In: Proceedings of the 18th ACM SIGPLAN Conference on
Object-oriented Programing, Systems, Languages, and Applica-
tions, pp. 388–402 (2003)

15. Harris, T., Marlow, S., Jones, S.P., Herlihy, M.: Composable mem-
ory transactions. In: Principles and Practice of Parallel Program-
ming (2005, to appear)

16. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchro-
nization: double-ended queues as an example. In: Proceedings
of the 23rd International Conference on Distributed Computing
Systems (ICDS), pp. 522–529 (2003)

123

208 M. Herlihy, Y. Sun

17. Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., III.:
Software transactional memory for dynamic-sized data structures.
In: Proceedings of the 22 Annual Symposium on Principles of
Distributed Computing, pp. 92–101. ACM Press (2003)

18. Herlihy, M., Tirthapura, S., Wattenhofer, R.: Competitive concur-
rent distributed queuing. In: Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing, pp. 127–133
(2001)

19. Herlihy, M.P., Tirthapura, S.: Self-stabilizing distributed queue-
ing. In: Proceedings of 15th International Symposium on Distrib-
uted Computing (2001)

20. Hildrum, K., Krauthgamer, R., Kubiatowicz, J.: Object location
in realistic networks. In: Proceedings of the 16th Annual ACM
Symposium on Parallelism in Algorithms and Architectures, pp.
25–35 (2004)

21. Hildrum, K., Kubiatowicz, J.D., Rao, S., Zhao, B.Y.: Distributed
object location in a dynamic network. In: Proceedings of the 14th
ACM Symposium on Parallel Algorithms and Architectures, pp.
41–52 (2002)

22. Scherer, W.N., III, Scott, M.L.: Contention management in
dynamic software transactional memory. In: PODC Workshop on
Concurrency and Synchronization in Java Programs (2004)

23. Israeli, A., Rappoport, L.: Disjoint-access-parallel implementa-
tions of strong shared memory primitives. In: Proceedings of the
13th Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 151–160 (1994)

24. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-
restricted metrics. In: Proceedings of the 34th Annual ACM Sym-
posium on Theory of Computing, pp. 741–750. ACM Press (2002)

25. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for
proximity search. In: SODA ’04: Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 798–807.
Society for Industrial and Applied Mathematics (2004)

26. Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., Morris, R.: A
scalable location service for geographic ad hoc routing. In: Pro-
ceedings of the 6th Annual International Conference on Mobile
Computing and Networking, pp. 120–130. ACM Press (2000)

27. Li, K., Hudak, P.: Memory coherence in shared virtual memory
systems. ACM Trans. Comput. Syst. 7(4), 321–359 (1989)

28. Liskov, B.: Distributed programming in argus. Commun.
ACM 31(3), 300–312 (1988)

29. Luby, M.: A simple parallel algorithm for the maximal indepen-
dent set problem. SIAM J. Comput. 15(4), 1036–1055 (1986)

30. Maggs, B., Meyer auf der Heide, F., Vöcking, B., Westermann,
M.: Exploiting locality for data management in systems of lim-
ited bandwidth. In: FOCS ’97: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, pp. 284–293.
IEEE Computer Society (1997)

31. Marathe, V.J., Scherer, W.N., III, Scott, M.L.: Design trade-
offs in modern software transactional memory systems. In: 7th

Workshop on Languages, Compilers, and Run-time Support for
Scalable Systems (2004)

32. Martfnez, J.F., Torrellas, J.: Speculative synchronization: apply-
ing thread-level speculation to explicitly parallel applications. In:
Proceedings of the 10th International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS-X), pp. 18–29. ACM Press (2002)

33. Moir, M.: Practical implementations of non-blocking synchroni-
zation primitives. In: Proceedings of the 16th Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 219–228.
ACM Press (1997)

34. Ng, E., Zhang, H.: Predicting internet network distance with co-
ordiantes-based approaches. In: Proceedings of IEEE Infocom.
(2002)

35. Nitzberg, B., Lo, V.: Distributed shared memory: a survey of issues
and algorithms. Computer 24(8), 52–60 (1991)

36. Oplinger, J., Lam, M.S.: Enhancing software reliability with spec-
ulative threads. In: Proceedings of the 10th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X), pp. 184–196. ACM Press
(2002)

37. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby cop-
ies of replicated objects in a distributed environment. In: ACM
Symposium on Parallel Algorithms and Architectures, pp. 311–
320 (1997)

38. Rajwar, R., Goodman, J.R.: Transactional lock-free execution
of lock-based programs. In: Proceedings of the 10th Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-X), pp. 5–17. ACM
Press (2002)

39. Raymond, K.: A tree-based algorithm for distributed mutual
exclusion. ACM Trans. Comput. Syst. 7(1), 61–77 (1989)

40. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual
exclusion in computer networks. Commun. ACM 24(1), 9–
17 (1981)

41. Rowstron, A.I.T., Druschel, P.: Pastry: scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In: Middleware (2001), pp. 329–350 (2001)

42. Shavit, N., Touitou, D.: Software transactional memory. In: Pro-
ceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing, pp. 204–213. ACM Press (1995)

43. Stone, J.M., Stone, H.S., Heidelberger, P., Turek, J.: Multiple res-
ervations and the Oklahoma update. IEEE Parallel Distrib Tech-
nol 1(4), 58–71 (1993)

44. Talwar, K.: Bypassing the embedding: algorithms for low dimen-
sional metrics. In: STOC ’04: Proceedings of the 36th Annual
ACM Symposium on Theory of computing, pp. 281–290 (2004)

45. Waldo, J., Arnold, K. (eds.): The Jini Specifications. Jini Technol-
ogy Series. Pearson Education (2000)

123

	Distributed transactional memory for metric-space networks
	Abstract
	Introduction
	Related work
	System overview
	Hierarchical clustering
	The Cache-coherence protocol
	Cache responsiveness
	Implementing serializable transactions
	Performance
	Properties of constant-doubling networks
	Performance of move requests in sequential executions
	Performance of lookup requests in sequential executions
	Performance in concurrent executions
	Support for multiple objects
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

