
Soft Concurrent Constraint Programming

Stefano Bistarelli1, Ugo Montanari2, and Francesca Rossi3

1 Istituto per le Applicazioni Telematiche, C.N.R. Pisa,
Area della Ricerca di Pisa, Via G. Moruzzi 1, I-56124 Pisa, Italy.

Email:Stefano.Bistarelli@iat.cnr.it
2 Dipartimento di Informatica, UniversitÁa di Pisa,

Corso Italia 40, I-56125 Pisa, Italy.
Email:ugo@di.unipi.it

3 Dipartimento di Matematica Pura ed Applicata, UniversitÁa di Padova
Via Belzoni 7, 35131 Padova, Italy.
Email:frossi@math.unipd.it

Abstract. Soft constraints extend classical constraints to represent multiple con-
sistency levels, and thus provide a way to express preferences, fuzziness, and
uncertainty. While there are many soft constraint solving algorithms, even dis-
tributed ones, by now there seems to be no concurrent programming framework
where soft constraints can be handled. In this paper we show how the classi-
cal concurrent constraint (cc) programming framework can workwith soft con-
straints, and we also propose an extension of cc languages which can use soft
constraints to prune and direct the search for a solution. We believe that this new
programming paradigm, called soft cc (scc), can be very useful in many web-
related scenarios. In fact, the language level allows web agents to express their
interaction and negotiation protocols, and also to post their requests in terms
of preferences, and the underlying soft constraint solver can £nd anagreement
among the agents even if their requests are incompatible.

1 Introduction

The concurrent constraint (cc) language [Sar93] is a very interesting computational
framework able to merge together constraint solving and concurrency. The main idea
is to choose aconstraint systemand use constraints to model communication and syn-
chronization among concurrent agents.

Until now, constraints in cc werecrisp in the sense that only a
yes/not answer could be de£ned. Recently the classical idea of crisp
constraint has been shown to be too weak to represent real prob-
lems and a big effort has been done toward the use of soft constraints
[FW92,BFBW92,DFP93,Rut94,FL93,SFV95,BMR97,BFM+99,BMR01,Bis01].

Many real-life situations are, in fact, easily described via constraints able to state
the necessary requirements of the problems. However, usually such requirements are
not hard, and could be more faithfully represented as preferences, which should prefer-
ably be satis£ed but not necessarily. In real life, we are often challenged with over-
constrained problems, which do not have any solution, and this also leads to the use of
preferences or in general of soft constraints rather than classical constraints.

Generally speaking, a soft constraint is just a classical constraint plus a way to
associate, either to the entire constraint or to each assignment of its variables, a certain
element, which is usually interpreted as a level of preference or importance. Such levels
are usually ordered, and the order re¤ects the idea that some levels are better than others.
Moreover, one has also to say, via suitable combination operators, how to obtain the
level of preference of a global solution from the preferences in the constraints.

Many formalisms have been developed to describe one or more classes of soft con-
straints. For instance consider the Fuzzy CSPs [DFP93,Rut94], where the crisp con-
straints are extended with a level of preference represented by a real number between 0
and 1, or the probabilistic CSPs [FL93], where the probability to be in the real problem
is assigned to each constraint. Some other examples are the Partial CSPs [FW92] or
the hierarchical CSPs [BFBW92] where a preference is assigned to each constraint, in
order to also solve overconstrained problems.

We think that many network-related problem could be represented and solved by
using soft constraints. Moreover, the possibility to use a concurrent language on top
of a soft constraint system, could lead to the birth of new protocols with an embedded
constraint satisfaction and optimization framework.

In particular, the constraints could be related to a quantity to be minimized but they
could also satisfy policy requirements given for performance or administrative reasons.
This leads to change the idea of QoS in routing and to speak ofconstraint-basedrouting
[AMA +99,Cla89,JS00,CF00]. Constraints are in fact able to represent in a declarative
fashion the needs and the requirements of agents interacting over the web.

The features of soft constraints could also be useful in representing routing prob-
lems where an imprecise state information is given [CN98]. Moreover, since QoS is
only a speci£c application of a more general notion of ServiceLevel Agreement (SLA),
many applications could be enhanced by using such a framework. As an example con-
sider E-commerce: here we are always looking for establishing an agreement between
a merchant, a client and possibly a bank. Also, all auction-based transactions need
an agreement protocol. Moreover, also security protocol analysis have shown to be
enhanced by using security levels instead of a simple notionof secure/insecure level
[BB01]. All these considerations advocate for the need of a soft constraint framework
where optimal answers are extracted.

In the paper, we use one of the frameworks able to deal with soft constraints
[BMR95,BMR97]. The framework is based on a semiring structure that is equipped
with the operations needed to combine the constraints present in the problem and to
choose the best solutions. According to the choice of the semiring, this framework is
able to model all the speci£c soft constraint notions mentioned above. We compare the
semiring-based framework with constraint systems“a la Saraswat” and then we show
how use it inside the cc framework.

The next step is the extension of the syntax and operational semantics of the lan-
guage to deal with the semiring levels. Here, the main novelty with respect to cc is that
tell and ask agents are equipped with a preference (or consistency) threshold which is
used to prune the search.

2 Background

2.1 Concurrent Constraint Programming

The concurrent constraint (cc) programming paradigm [Sar93] concerns the behavior
of a set of concurrent agents with a shared store, which is a conjunction of constraints.
Each computation step possibly adds new constraints to the store. Thus information
is monotonically added to the store until all agents have evolved. The £nal store is a
re£nement of the initial one and it is the result of the computation. The concurrent
agents do not communicate with each other, but only with the shared store, by either
checking if it entails a given constraint (askoperation) or adding a new constraint to it
(tell operation).

Constraint Systems.A constraint is a relation among a speci£ed set of variables. That
is, a constraint gives some information on the set of possible values which these vari-
ables may assume. Such information is usually not complete since a constraint may be
satis£ed by several assignments of values of the variables (in contrast to the situation
that we have when we consider a valuation, which tells us the only possible assign-
ment for a variable). Therefore it is natural to describe constraint systems as systems of
partial information [Sar93].

The basic ingredients of a constraint system de£ned following the information sys-
tems idea are a setD of primitive constraintsor tokens, each expressing some partial
information, and an entailment relation⊢ de£ned on℘(D)×D (or its extension de£ned
on℘(D)×℘(D))1 satisfying:

1. u⊢ P for all P∈ u (re¤exivity) and
2. if u⊢ v, andv⊢ z, thenu⊢ z (transitivity).

As an example of entailment relation considerD as the set of equations over the inte-
gers; then⊢ includes the pair〈{x = 3,x = y},y = 3〉, which means that the constraint
y = 3 is entailed by the constraintsx = 3 andx = y. GivenX ∈℘(D), let X be the set
X closed under entailment. Then, a constraint in an information system〈℘(D),⊢〉 is
simply an element of℘(D) (that is, a set of tokens).

As it is well known,〈℘(D),⊆〉 is a complete algebraic lattice, the compactness of⊢
gives us algebraicity of℘(D), with least elementtrue= {P | /0 ⊢ P}, greatest elementD
(which we will mnemonically denotef alse), glbs (denoted by⊓) given by the closure
of the intersection and lubs (denoted by⊔) given by the closure of the union. The lub
of chains is, however, just the union of the members in the chain. We usea,b,c,d ande
to stand for elements of℘(D); c≥ d meansc⊢ d.

The hiding operator: Cylindric Algebras.In order to treat the hiding operator of the
language, a general notion of existential quanti£er is introduced which is formalized
in terms of cylindric algebras. This leads to the concept ofcylindric constraint system
over an in£nite set of variablesV such that for each variablex∈V, ∃x :℘(D) →℘(D)
is an operation satisfying:

1 The extension is s.t.u⊢ v iff u⊢ P for everyP∈ v.

– u⊢ ∃xu
– u⊢ v implies(∃xu) ⊢ (∃xv)
– ∃x(u⊔∃xv) ≈ (∃xu)⊔ (∃xv),
– ∃x∃yu≈ ∃y∃xu

Procedure calls. In order to model parameter passing,diagonal elementsare added
to the primitive constraints. We assume that, forx,y ranging inV, ℘(D) contains a
constraintdxy which satis£es the following axioms.

– dxx = true,
– if z 6= x,y thendxy = ∃z(dxz⊔dzy),
– if x 6= y thendxy⊔∃x(c⊔dxy) ⊢ c.

Note that the in the previous de£nition we assume the cardinality of the domain forx,
y andzgreater than 1. Note also that, if⊢ models the equality theory, then the elements
dxy can be thought of as the formulasx = y.

The language.The syntax of a cc program is show in Table 1:P is the class of programs,
F is the class of sequences of procedure declarations (or clauses),A is the class of
agents,c ranges over constraints, andx is a tuple of variables. Each procedure is de£ned
(at most) once, thus nondeterminism is expressed via the+ combinator only. We also
assume that, inp(x) :: A,vars(A)⊆ x, wherevars(A) is the set of all variables occurring
free in agentA. In a programP = F.A, A is the initial agent, to be executed in the
context of the set of declarationsF . This corresponds to the language considered in
[Sar93], which allows only guarded nondeterminism. In order to better understand the

Table 1.cc syntax

P ::= F.A

F ::= p(x) :: A | F.F

A ::= success| f ail | tell(c) → A | E | A‖A | ∃xA | p(x)

E ::= ask(c) → A | E +E

extension of the language that we will introduce later, let us remind here (at least) the
meaning of the tell and ask agents. The other constructs are easily understandable.

– agent “ask(c) → A” checks whether constraintc is entailed by the current store
and then, if so, behaves like agentA. If c is inconsistent with the current store, it
fails, and otherwise it suspends, untilc is either entailed by the current store or is
inconsistent with it;

– agent “tell(c) → A” adds constraintc to the current store and then, if the resulting
store is consistent, behaves likeA, otherwise it fails.

A formal treatment of the operational semantics of cc programs can be found in
[Sar93,BP91].

2.2 Soft Constraints

Several formalization of the concept ofsoft constraintsare currently available. In the
following, we refer to the one based on c-semirings [BMR97,Bis01], which can be
shown to generalize and express many of the others.

A soft constraint may be seen as a constraint where each instantiations of its vari-
ables has an associated value from a partially ordered set which can be interpreted as
a set of preference values. Combining constraints will thenhave to take into account
such additional values, and thus the formalism has also to provide suitable operations
for combination (×) and comparison (+) of tuples of values and constraints. This is
why this formalization is based on the concept of c-semiring, which is just a set plus
two operations.

C-semirings.A semiring is a tuple〈A,+,×,0,1〉 such that:

– A is a set and0,1∈ A;
– + is commutative, associative and0 is its unit element;
– × is associative, distributes over+, 1 is its unit element and0 is its absorbing

element.

A c-semiringis a semiring〈A,+,×,0,1〉 such that:+ is idempotent,1 is its absorbing
element and× is commutative. Let us consider the relation≤S overA such thata≤S b
iff a+b = b. Then it is possible to prove that (see [BMR97]):

– ≤S is a partial order;
– + and× are monotone on≤S;
– 0 is its minimum and1 its maximum;
– 〈A,≤S〉 is a complete lattice and, for alla,b∈ A, a+b = lub(a,b).

Moreover, if× is idempotent, then:+ distribute over×; 〈A,≤S〉 is a complete distribu-
tive lattice and× its glb. Informally, the relation≤S gives us a way to compare semiring
values and constraints. In fact, when we havea≤S b, we will say thatb is better than a.
In the following, when the semiring will be clear from the context,a≤S b will be often
indicated bya≤ b.

Problems.Given a semiringS= 〈A,+,×,0,1〉, a £nite setD (the domain of the vari-
ables) and an ordered set of variablesV, aconstraintis a pair〈def,con〉 wherecon⊆V
anddef : D|con| → A. Therefore, a constraint speci£es a set of variables (the ones in
con), and assigns to each tuple of values of these variables an element of the semiring.
Consider two constraintsc1 = 〈de f1,con〉 andc2 = 〈de f2,con〉, with |con| = k. Then
c1 ⊑S c2 if for all k-tuplest, de f1(t) ≤S de f2(t). The relation⊑S is a partial order.

A soft constraint problemis a pair〈C,con〉 wherecon⊆ V andC is a set of con-
straints:con is the set of variables of interest for the constraint setC, which how-
ever may concern also variables not incon. Note that a classical CSP is a SCSP
where the chosen c-semiring is:SCSP= 〈{ f alse, true},∨,∧, f alse, true〉. Fuzzy CSPs
[Sch92] can instead be modeled in the SCSP framework by choosing the c-semiring
SFCSP= 〈[0,1],max,min,0,1〉. Many other “soft” CSPs (Probabilistic, weighted, . . .)

can be modeled by using a suitable semiring structure (Sprob = 〈[0,1],max,×,0,1〉,
Sweight = 〈R,min,+,0,+∞〉, . . .).

Figure 1 shows a fuzzy CSP. Variables are inside circles, constraints are represented
by undirected (unary, binary orn-ary) arcs, and semiring values are written to the right
of the corresponding tuples. The variables of interest (that is the setcon) are represented
with a double circle. Here we assume that the domainD of the variables contains only
elementsa andb.

c1 c3

c2<b, b> --> 0
<b, a> --> 0
<a, b> --> 0.2
<a, a> --> 0.8

 --> 0.1
<a> --> 0.9 <a> --> 0.9

 --> 0.5

X Y

Fig. 1.A fuzzy CSP

Combining and projecting soft constraints.Given two constraintsc1 = 〈def1,con1〉
and c2 = 〈def2,con2〉, their combination c1 ⊗ c2 is the constraint〈def,con〉 de£ned
by con= con1 ∪ con2 anddef(t) = def1(t ↓

con
con1

)× def2(t ↓
con
con2

), wheret ⇓X
Y denotes

the tuple of values over the variables inY, obtained by projecting tuplet from X to
Y. In words, combining two constraints means building a new constraint involving all
the variables of the original ones, and which associates to each tuple of domain values
for such variables a semiring element which is obtained by multiplying the elements
associated by the original constraints to the appropriate subtuples.

Given a constraintc = 〈def,con〉 and a subsetI of V, the projection of c over
I , written c ⇓I is the constraint〈def′,con′〉 where con′ = con∩ I and def′(t ′) =

∑t/t↓con
I∩con=t ′ def(t). Informally, projecting means eliminating some variables. This is

done by associating to each tuple over the remaining variables a semiring element which
is the sum of the elements associated by the original constraint to all the extensions of
this tuple over the eliminated variables. In short, combination is performed via the mul-
tiplicative operation of the semiring, and projection via the additive one.

Solutions. The solutionof an SCSP problemP = 〈C,con〉 is the constraintSol(P) =
(
⊗

C) ⇓con. That is, we combine all constraints, and then project over the variables in
con. In this way we get the constraint overconwhich is “induced” by the entire SCSP.

For example, the solution of the fuzzy CSP of Figure 1 associates a semiring element
to every domain value of variablex. Such an element is obtained by £rst combining all
the constraints together. For instance, for the tuple〈a,a〉 (that is,x = y = a), we have to
compute the minimum between 0.9 (which is the value assigned tox = a in constraint
c1), 0.8 (which is the value assigned to〈x = a,y = a〉 in c2) and 0.9 (which is the value
for y = a in c3). Hence, the resulting value for this tuple is 0.8. We can do the same
work for tuple 〈a,b〉 → 0.2, 〈b,a〉 → 0 and〈b,b〉 → 0. The obtained tuples are then
projected over variablex, obtaining the solution〈a〉 → 0.8 and〈b〉 → 0.

Sometimes it may be useful to £nd only a semiring value representing the least
upper bound among the values yielded by the solutions. This is called thebest level

of consistencyof an SCSP problemP and it is de£ned byblevel(P) = Sol(P) ⇓ /0 (for
instance, the fuzzy CSP of Figure 1 has best level of consistency 0.8). We also say that:
P is α-consistent ifblevel(P) = α; P is consistent iff there existsα > 0 such thatP is
α-consistent;P is inconsistent if it is not consistent.

3 Concurrent Constraint Programming over Soft Constraints

Given a semiringS= 〈A,+,×,0,1〉 and an ordered set of variablesV over a £nite
domainD, we will now show how soft constraints with a suitable pair ofoperators form
a semiring, and then, we evidentiate the properties needed to map soft constraints over
constraint systems“a la Saraswat”.

We start by giving the de£nition of the carrier set of the semiring.

De£nition 1 (functional constraints).We de£neC = (V → D) → A
as the set of all possible constraints that can be built starting from S, D and V.

A generic function describing the assignment of domain elements to variables will be
denoted in the following byη : V → D. Thus a constraint is a function which, given an
assignmentη of the variables, returns a value of the semiring.

Note that in thisfunctionalformulation, each constraint is a function and not a pair
representing the variable involved and its de£nition. Such afunction involves all the
variables inV, but it depends on the assignment of only a £nite subset of them. We
call this subset thesupportof the constraint. For computational reasons we require each
support to be £nite.

De£nition 2 (constraint support).Consider a constraint c∈ C. We de£ne his support
as supp(c) = {v∈V | ∃η,d1,d2.cη[v ; d1] 6= cη[v ; d2]}, where

η[v ; d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note thatcη[v ; d1] meanscη′ whereη′ is η modi£ed with the associationv ; d1

(that is the operator[] has precedence over application).

De£nition 3 (functional mapping). Given any soft constraint〈de f,{v1, . . . ,vn}〉 ∈
C, we can de£ne its corresponding function c∈ C as cη[v1 ; d1] . . . [vn ; dn] =
de f(d1, . . . ,dn). Clearly supp(c) ⊆ {v1, . . . ,vn}.

De£nition 4 (Combination and Sum).Given the setC, we can de£ne the combination
and sum functions⊗,⊕ : C×C → C as follows:

(c1⊗c2)η = c1η×Sc2η
(c1⊕c2)η = c1η+Sc2η.

Notice that function⊗ has the same meaning of the already de£ned⊗ operator (see
Section 2.2) while function⊕ models a sort of disjunction (similar to that introduced in
[BCGR00].

By using the⊕S operator we can easily extend the partial order≤S overC by de£n-
ing c1 ⊑ c2 ⇐⇒ c1⊕Sc2 = c2.

We can also de£ne a unary operator that will be useful to represent the unit elements
of the two operations⊕ and⊗. To do that, we need the de£nition of constant functions
over a given set of variables.

De£nition 5 (constant function).We de£ne function̄a as the function that returns the
semiring value a for all assignmentsη, that is,āη = a. We will usually writeā simply
as a.

It is easy to verify that each constant has an empty support. An example of constants
that will be useful later arē0 and1̄ that represent respectively the constraint associating
0 and1 to all the assignment of domain values.

Theorem 1 (Higher order semiring).The structure SC = 〈C,⊕,⊗,0,1〉 where

– C : (V → D) → A is the set of all the possible constraints that can be built starting
from S, D and V as de£ned in De£nition 1,

– ⊗ and⊕ are the functions de£ned in De£nition 4, and
– 0and1 are constant functions de£ned following De£nition 5,

is a c-semiring.

The next step is to look for a notion of token and of entailmentrelation. We de£ne as
tokens the functional constraints inC and we introduce a relation⊢ that is an entailment
relation when the multiplicative operator of the semiring is idempotent.

De£nition 6 (⊢ relation). Consider the high order semiring carrier setC and the par-
tial order ⊑. We de£ne the relation⊢⊆℘(C)×C s.t. for each C∈℘(C) and c∈ C, we
have C⊢ c ⇐⇒

⊗

C⊑ c.

The next theorem shows that when the multiplicative operator of the semiring is
idempotent, the⊢ relation satis£es all the properties needed by an entailment.

Theorem 2 (⊢ with idempotent × is an entailment relation). Consider the higher
order semiring carrier setC and the partial order⊑. Consider also the relation⊢ of
De£nition 6. Then, if the multiplicative operation of the semiring is idempotent,⊢ is an
entailment relation.

Note that in this setting the notion of token (constraint) and of set of tokens (set of
constraints) closed under entailment is used indifferently. In fact, given a set of con-
straint functionsC1, its closure w.r.t. the entailment is a set̄C1 that contains all the
constraints greater than

⊗

C1. This set is univocally representable by the constraint
function

⊗

C1.
The de£nition of the entailment operator⊢ on top of the higher order semiring

SC = 〈C,⊕,⊗,0,1〉 and of the⊑ relation leads to the notion ofsoft constraint system. It
is also important to notice that in [Sar93,dBGMP97] they claim the constraint system
to be acomplete algebraiclattice. Here we do not ask for this algebricity since the
algebricity of the structureC strictly depends on the properties of the semiring.

Non-idempotent×. If the constraint system is de£ned on top of a non-idempotent mul-
tiplicative operator, we cannot obtain a⊢ relation satisfying all the properties of an
entailment. Nevertheless, we can give adenotationalsemantics to the constraint store,
as described in Section 4, using the operations of the higherorder semiring.

To treat the hiding operator of the language, a general notion of existential quanti£er
has to be introduced by using notions similar to those used incylindric algebras. Note
however that cylindric algebras are £rst of all boolean algebras. This could be possible
in our framework only when the× operator is idempotent.

De£nition 7 (hiding). Consider a set of variables V with domain D and the corre-
sponding soft constraint systemC. We de£ne for each x∈V the hiding function

(∃xc)η = ∑
di∈D

cη[x ; di].

Notice thatx does not belong to the support of∃xc.
To model parameter passing we need instead to de£ne what diagonal elements are.

De£nition 8 (diagonal elements).Consider an ordered set of variables V and the cor-
responding soft constraint systemC. Let us de£ne for each x,y∈V a constraint dxy ∈ C

s.t., dxyη[x ; a,y ; b] = 1 if a = b and dxyη[x ; a,y ; b] = 0 if a 6= b. Notice that
supp(dxy) = {x,y}.

4 Soft Concurrent Constraint Programming

The next step in our work is now to extend the syntax of the language in order to directly
handle the cut level. This means that the syntax and semantics of the tell and ask agents
have to be enriched with a threshold to specify when ask/tellagents have to fail, succeed
or suspend.

Given a soft constraint system〈S,D,V〉 and the corresponding structureC, the syn-
tax of agents in soft concurrent constraintsccprogramming is given in Table 2. We

Table 2.scc syntax

P :: = F.A

F :: = p(X) :: A | F.F

A :: = stop| tell(c) →a A | E | A‖A | ∃X.A | p(X)

E :: = ask(c) →a A | E +E

present here a structural operational semantics for scc programs, in the SOS style, which
consists of de£ning the semantic of the programming languageby specifying a set of
con£gurationsΓ, which de£ne the states during execution, a relation→⊆ Γ×Γ which
describes thetransition relation between the con£gurations, and a setT of terminal
con£gurations.

The set of con£gurations represent the evolutions of the agents and the modi£ca-
tions in the constraint store.

De£nition 9 (con£gurations).The set of con£gurations for a soft cc system is the set
Γ = {〈A,σ〉}∪{〈success,σ〉} whereσ ∈ C. The set of terminal con£gurations is the set
T = {〈success,σ〉} and the transition rule for the scc language are de£ned in Table 3.

Table 3.Transition rules for scc

〈stop,σ〉 −→ 〈success,σ〉 (Stop)

(σ⊗c) ⇓ /0 6< a

〈tell(c) →a A,σ〉 −→ 〈A,σ⊗c〉
(Valued-tell)

σ ⊢ c,σ ⇓ /0 6< a

〈ask(c) →a A,σ〉 −→ 〈A,σ〉
(Valued-ask)

〈A1,σ〉 −→ 〈A′
1,σ

′〉

〈A1‖A2,σ〉 −→ 〈A′
1‖A2,σ′〉

〈A2‖A1,σ〉 −→ 〈A2‖A′
1,σ

′〉

〈A1,σ〉 −→ 〈success,σ′〉

〈A1‖A2,σ〉 −→ 〈A2,σ′〉
〈A2‖A1,σ〉 −→ 〈A2,σ′〉

(Parallelism)

〈E1,σ〉 −→ 〈A1,σ′〉

〈E1 +E2,σ〉 −→ 〈A1,σ′〉
〈E2 +E1,σ〉 −→ 〈A1,σ′〉

(Nondeterminism)

〈A[y/x],σ〉 −→ 〈A′,σ′〉

〈∃xA,σ〉 −→ 〈A′,σ′〉
with y fresh (Hidden variables)

〈p(y),σ〉 −→ 〈A[y/x],σ〉 whenp(x) :: A (Procedure call)

Here is a brief description of the most complex rules:

Valued-tell The valued-tell rule checks for theα-consistency of the SCSP de£ned by
the storeσ∪ c. The rule can be applied only if the storeσ∪ c is b-consistent with
b 6≤ a. In this case the agent evolves to the new agentA over the storeσ⊗c.

Valued-ask The semantics of the valued-ask is extended in a way similar to what we
have done for the valued-tell action. This means that to apply the rule we need
to check if the storeσ entails the constraintc and also if the store is “consistent
enough” w.r.t. the thresholda set by the programmer.

Nondeterminism and parallelism The composition operators+ and‖ are not modi-
£ed w.r.t. the classical ones: a parallel agent will succeed if all the agents succeeds;
a nondeterministic rule chooses any agent whose guard succeeds.

Hidden variables The semantics of the existential quanti£er is similar to thatde-
scribed in [Sar93] by using the notion offreshnessof the new variable added to
the store.

Observables.Given the transition system as de£ned in the previous section, we now
de£ne what we want to observe of the program behaviours described by the transitions.
To do this we de£ne for each agentA the set of constraints

SA = {σ ⇓var(A)| 〈A,1〉 →∗ 〈success,σ〉}

that collects the results of the successful computations that the agent can perform. The
computed storeσ is projected over the variables of the agentA to discard anyfresh
variable introduced in the store by the∃ operator.

The observableSA could be re£ned by considering, instead of the set of successful
computations starting from〈A,1〉, only a subset of them. One could be interested in
considering for example only thebestcomputations: in this case, all the computations
leading to a store worse than one already collected are disregarded. With a pessimistic
view, the representative subset could instead collect all the worst computations (that
is, all the computations better than others are disregarded). Finally, also a set contain-
ing both the best and the worst computations could be considered. These options are
reminiscent of Hoare, Smith and Egli-Milner powerdomains respectively.

Let us also notice that different cut levels in the ask and tell operations could lead
to a different £nal setsSA. In fact, it can be proved that if the thresholds of the ask and
tell operations of the program are not worse than a givenα, we can be sure to £nd in
the £nal store only solutions not worse thanα. This observation can be useful when we
are looking just for the best stores reachable from an initial given agent. In fact, we can
move the cut up and down (in a way similar to a binary search) and perform a branch
and bound exploration of the search tree in order to £nd the £nalsuccess sets.

In this paper we only consider a semantics that collects success states. We plan to
extend the operational semantics to collect also failing and hunging computations.

5 A simple example

In the following we will show the behaviour of some of the rules of our transition
system. We consider in this example a soft constraint systemover the fuzzy semiring.
Consider the constraints

c(x,y) =
1

1+ |x−y|
andc′(x) =

{

1 if x≤ 10,

0 otherwise.

Let’s now evaluate the following agent in the empty startingstore 1:

〈tell(c) →0.4 ask(c′) →0.8 stop,1〉.

By applying theValued-tellrule we need to check(1⊗c) ⇓ /0 6< 0.4. Since1⊗c = c
and c ⇓ /0= 1, the agent can perform the step, and it reaches the state〈ask(c′) →0.8

stop,c〉. Now we need to check (by following the rule ofValued-ask) if c ⊢ c′ and
c ⇓ /0 6< 0.8. While the second relation easily holds, the £rst one does nothold (in fact,
for x = 11 andy = 10 we havec′(x) = 0 andc(x,y) = 0.5). If instead we consider the
constraint

c”(x,y) =
1

1+2×|x−y|

in place ofc′, then the conditionc⊢ c” easily holds and the agentask(c”)→0.8 stopcan
perform its last step, reaching thestopandsuccessstates:〈stop,c⊗c”〉→ 〈success,c⊗
c”〉.

6 A Possible Application

We consider in this section a network problem, involving a set of processes running on
distinct locations and sharing some variables, over which they need to synchronize.

Each process is connected to a set of variables, shared with other processes, and
it can perform several moves. Each of such moves involves performing an action over
some or all the variables connected to the process. An actionover a variable consists
of giving a certain value to that variable. A special value “idle” models the fact that a
process does not perfom any action over a variable. Each process has also the possibility
of not moving at all: in this case, all its variables are giventhe idle value.

The desired behavior of a network of such processes is that, at each move of the
entire network:

1. processes sharing a variable perform the same action overit;
2. as few processes as possible remain idle.

To describe a network of processes with these features, we use an SCSP where each
variable models a shared variable, and each constraint models a process and connects
the variables corresponding to the shared variables of thatprocess. The domain of each
variable in this SCSP is the set of all possible actions, including the idle one. Each way
of satisfying a constraint is therefore a tuple of actions that a process can perform on
the corresponding shared variables.

In this scenario, softness can be introduces both in the domains and in the con-
straints. In particular, since we prefer to have as many moving processes as possible,
we can associate a penalty to both the idle element in the domains, and to tuples contain-
ing the idle action in the constraints. As for the other domain elements and constraint
tuples, we can assign them suitable preference values to model how much we like that
action or that process move.

For example, we can use the semiringS= 〈[−∞,0],max,+,−∞,0〉, where 0 is the
best preference level (or, said dually, the weakest penalty), −∞ is the worst level, and
preferences (or penalties) are combined by summing them. According to this semiring,
we can assign value−∞ to the idle action or move, and suitable other preference levels
to the other values and moves. Figure 2 gives the details of a part of a network and it
shows eigth processes (that is,c1, . . . ,c8) sharing a total of six variables. In this example,
we assume that processesc1, c2 andc3 are located on sitea, processesc5 andc6 are
located on siteb, andc4 is located on sitec. Processesc7 andc8 are located on sited.
Siteeconnects this part of the network to the rest. Therefore, forexample, variablesxd,
yd andzd are shared between processes located in distinct locations.

As desired, £nding the best solution for the SCSP representing the current state of
the process network means £nding a move for all the processes such that they perform
the same action on the shared variables and there is a minimumnumber of idle pro-
cesses. However, since the problem is inherently distributed, it does not make sense,

a

b

c

e

d

c_4

w_c

c_1 c_2

u_a

c_5

c_6

v_b

c_7

c_8

c_3

y_d

z_d

x_d

Fig. 2.The SCSP describing part of a process network.

and it might not even be possible, to centralize all the information and give it to a single
soft constraint solver.

On the contrary, it may be more reasonable to use several softconstraint solvers,
one for each network location, which will take care of handling only the constraints
present in that location. Then, the interaction between processes in different locations,
and the necessary agreement to solve the entire problem, will be modelled via the scc
framework, where each agent will represent the behaviour ofthe processes in one loca-
tion.

More precisely, each scc agent (and underlying soft constraint solver) will be in
charge of receiving the necessary information from the other agents (via suitable asks)
and using it to achieve the synchronization of the processesin its location. For this pro-
tocol to work, that is, for obtaining a global optimal solution without a centralization of
the work, the SCSP describing the network of processes has tohave a tree-like shape,
where each node of the tree contains all the processes in a location, and the agents have
to communicate from the bottom of the tree to its root [BMR97]. In our example, the
tree structure we will use is the one shown in Figure 3(a), which also shows the di-
rection of the child-parent relation links (via arrows). Figure 3(b) describes instead the
partition of the SCSP over the four involved locations. The gray connections represent
the synchronization to be assured between distinct locations. Notice that, w.r.t. Figure
2, we have duplicated the variables representing variablesshared between distinct loca-
tions, because of our desire to £rst perform a local work and then to communicate the
results to the other locations.

The scc agents (one for each location plus the parallel composition of all of them)
are therefore de£ned as follows:

e a

b

c

d
1

1

1

2

(a) A pos-
sible tree
structure for
our network.

x_c

w_c

z_c

v_b
z_b

y_b

a

b

c

c_1 c_2

c_3

c_4

c_5

c_6

c_7

c_8

u_a

y_a
x_a

d

x_d
y_d

z_d

x_e

(b) The SCSP partitioned over the four loca-
tions.

Fig. 3.The ordered process network.

Aa : ∃ua(tell(c1(xa,ua)∧c2(ua,ya)∧c3(xa,ya)) → tell(enda = true) → stop)

Ab : ∃vb(tell(c5(yb,vb)∧c6(zb,vb)) → tell(endb = true) → stop)

Ac : ∃wc(tell(c4(xc,wc,zc)) → tell(endc = true) → stop)

Ad : ask(enda = true∧endb = true∧endc = true∧endd = true) →

tell(c7(xd,yd)∧c8(xd,yd,zd)∧xa = xd = xc∧ya = yd = yb∧zb = zd = zc)

→ tell(endd = true) → stop

A : Aa | Ab | Ac | Ad

AgentsAa,Ab,Ac andAd represent the processes running respectively in the location
a, b, c andd. Note that, at each ask or tell, the underlying soft constraint solver will only
check (for consistency or entailment) a part of the current set of constraints: those local
to one location. Due to the tree structure chosen for this example, where agentsAa, Ab,
andAc correspond to leaf locations, only agentAd shows all the actions of a generic
process: £rst it needs to collect the results computed separately by the other agents (via
the ask); then it performs its own constraint solving (via a tell), and £nally it can set
its end ¤ag, that will be used by a parent agent (in this case theagent corresponding to
locatione, which we have not modelled here).

7 Conclusions and Future Work

We have shown that cc languages can deal with soft constraints. Moreover, we have
extended their syntax to use soft constraints also to directand prune the search process
at the language level. We believe that such a new programmingparadigm could be very
useful for web and internet programming.

In fact, in several network-related areas, constraints arealready been used
[BB01,AMA+99,Cla89,JS00,CF00]. The soft constraint framework has the advantage
over the classical one of selecting a “best” solution also inoverconstrained or undercon-
strained systems. Moreover, the need to express preferences and to search for optimal
solutions shows that soft constraints can improve the modelling of web interaction sce-
narios.

References
[AMA +99] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus. Rfc2702:Requirements for traf£c

engineering over mpls. Technical report, Network Working Group, September 1999.
[BB01] G. Bella and S. Bistarelli. Sof constraints for security protocolanalysis: Con£dentiality. In I.V. Ramakr-

ishnan, editor,Proc. of PADL 2001, 3rd international symposium on Practical Aspects of Declarative Lan-
guages, volume 1990 ofLNCS, pages 108–122. Springer-Verlag, mar 2001.

[BCGR00] S. Bistarelli, P. Codognet, Y. Georget, and F. Rossi. Labeling and partial local consistency for soft constraint
programming. InProc. of the 2nd International Workshop on Practical Aspects of Declarative Languages
(PADL’00), volume 1753 ofLNCS. Springer-Verlag, 2000.

[BFBW92] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierachies.Lisp and Symbolic Computation,
5(3):223–270, 1992.

[BFM+99] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-based CSPs and
Valued CSPs: Frameworks, properties, and comparison.CONSTRAINTS: An international journal. Kluwer,
4(3), 1999.

[Bis01] S. Bistarelli.Soft Constraint Solving and programming: a general framework.PhD thesis, Dipartimento di
Informatica, UniversitÁa di Pisa, Italy, mar 2001. TD-2/01.

[BMR95] S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. InProc. IJCAI95, San Fran-
cisco, CA, USA, 1995. Morgan Kaufman.

[BMR97] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and Optimization.Journal of
the ACM, 44(2):201–236, Mar 1997.

[BMR01] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Logic Programming: Syntax and Se-
mantics.ACM Transactions on Programming Languages and System (TOPLAS), 2001. To Appear.

[BP91] F.S. De Boer and C. Palamidessi. A fully abstract model for concurrent constraint programming. In
S. Abramsky and T.S.E. Maibaum, editors,Proc. TAPSOFT/CAAP, volume 493. Springer-Verlag, 1991.

[CF00] M. Calisti and B. Faltings. Distributed constrained agents for allocating service demands in multi-provider
networks,. Journal of the Italian Operational Research Society, XXIX(91), 2000. Special Issue on
Constraint-Based Problem Solving.

[Cla89] D. Clark. Rfc1102: Policy routing in internet protocols. Technical report, Network Working Group, May
1989.

[CN98] S. Chen and K. Nahrstedt. Distributed qos routing with imprecise state information. InProc. International
Conference on Computer, Communications and Networks (ICCCN’98), oct 1998.

[dBGMP97] F. S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving concurrent constraint programs
correct.TOPLAS, 19(5):685–725, 1997.

[DFP93] D. Dubois, H. Fargier, and H. Prade. The calculus of fuzzy restrictions as a basis for ¤exible constraint
satisfaction. InProc. IEEE International Conference on Fuzzy Systems, pages 1131–1136. IEEE, 1993.

[FL93] H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a probabilistic approach. InProc.
European Conference on Symbolic and Qualitative Approaches to Reasoning and Uncertainty (ECSQARU),
volume 747 ofLNCS, pages 97–104. Springer-Verlag, 1993.

[FW92] E.C. Freuder and R.J. Wallace. Partial constraint satisfaction.AI Journal, 58, 1992.
[JS00] R. Jain and W. Sun. QoS/Policy/Constraint-based routing. InCarrier IP Telephony 2000 Comprehensive

Report. International Engineering Consortium, aug 2000. ISBN: 0-933217-75-7.
[Rut94] Zs. Ruttkay. Fuzzy constraint satisfaction. InProc. 3rd IEEE International Conference on Fuzzy Systems,

pages 1263–1268, 1994.
[Sar93] V.A. Saraswat.Concurrent Constraint Programming. MIT Press, 1993.
[Sch92] T. Schiex. Possibilistic constraint satisfaction problems,or “how to handle soft constraints?”. InProc. 8th

Conf. of Uncertainty in AI, pages 269–275, 1992.
[SFV95] T. Schiex, H. Fargier, and G. Verfaille. Valued Constraint Satisfaction Problems: Hard and Easy Problems.

In Proc. IJCAI95, pages 631–637, San Francisco, CA, USA, 1995. Morgan Kaufmann.

