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Abstract

One way to implement a fault-tolerant a service is by refiigit at sites that fail independently. One of the replioat
techniques is active replication where each request is geecby all the replicas. Thus, the effects of failures can be
completely masked resulting in an increase of the serviedlahility. In order to preserve consistency among repica
replicas must exhibit a deterministic behavior, what hasrb&aditionally achieved by restricting replicas to be gligr
threaded. However, this approach cannot be applied in sa@hes, like transactional systems, where it is not admissib
process transactions sequentially. In this paper, we preaaleterministic scheduling algorithm for multithreadeglicas
in a transactional framework. To ensure replica determimiequests to replicated servers are submitted by meansaifle
and totally ordered multicast. Internally, a determinissicheduler ensures that all threads are scheduled in the seay at
all replicas what guarantees replica consistency

1. Introduction

One way to implement a fault-tolerant service is by repiiwit at several sites that fail independently. If activplieation
[18] is used all the replicas perform the requested servitéance, failures are masked to the client as far as there is an
operational replica.

In order to ensure replica consistency, all replicas mugt@ss the same requests in the same order and must behave
deterministically. That is, replicas must behave as statelimes [18]. The first of these requirements can be achiagsied
group communication primitives [10], in particular rellaliotal order multicast. This kind of multicast guarantéest all
messages are delivered in the same order to all the avaitghlieas. Deterministic behavior has been traditionatiyiaved
by means of single-threaded replicas. However, the approasingle-threaded replicas might be too restrictive imeo
environments. For instance, in a CORBA server [14] or a @matisnal server, that approach is not applicable.

Although, there are some algorithms that allow multithesdeplicas [14], their use in a transactional context is not
feasible, as only one request is processed at a time. Ingaitional context, if each service is executed as a transaand
concurrency control is based on a pessimistic method (Jpekserver would stop processing when a transaction is bbck
on a data item. Therefore, incoming requests are not predasstil that transaction finishes, even if they do not actess
same data items.

In this paper we present a non-preemptive scheduling akgorior multithreaded replicas in a transactional cont&kie
algorithm ensures the deterministic scheduling of actdmicas and it is able to execute several transactions coertily.

This algorithmis used ifiransactional Dragq16], a distributed programming language that providesdegtional replicated
servers.

*This work has been partially funded by the Spanish Reseancin€l (CICYT) contract numbeFIC98-1032-C03-0and the Madrid Regional Research
Council (CAM), contract numbe€AM-07T/0012/1998



This paper is organized as follows. First, the system madééscribed in Section 2. Then, the different sources of non-
determinism are identified in Section 3. Section 4 presemnlsterministic scheduling algorithm for multithreaded|iegs
(MTRDS). The correctness of the MkDs algorithm is proven in Section 5. Section 6 presents soméeimentation issues
to support the algorithm. Finally, we compare our approaabther works and present our conclusions.

2. System model

The system consists of a set of nodes interconnected by nidansietwork. We assume the nodes to be fail-silent
and that there are no network partitions. We do not consiéé&hear malicious failures (i.e., byzantine failures), nioe
non-determinism introduced by software interrupts.

2.1. Communication model

A server provides a set of services that clients invoke byrstilmg requests. Servers are replicated, that is, each one
consists of a group of identical replicas (i.e., with the samde and data). In order to increase the fault toleranpkcas run
at different sites. Clients communicate with replicated/ees (from now on servers) using group communication gives
(multicast) [4]. These primitives can be classified attagdd the order guarantees and fault-tolerance provided [Idal
order ensures that messages are delivered in the same order teeakplicas. With regard to fault-toleranaeliable
multicastensures that a message is delivered to all or none of theablaiteplicas. Messages will be sent by means of
reliable total order multicast. Client/server interaatie synchronous, i.e., the client remains blocked untietisghe reply.

2.2. Transaction model

Clients interact with servers within a transaction. A tractson can finish successfullggmmit$ or not @borts the effect
is as if the transaction had not been executed). The outcbateansaction is notified to servers by the underlying teatisn
processing system.

Transactions are partially ordered sets of read and wriegaijfpns [3]. Two transactions conflict, if they access e
data item and at least one of them is a write operation. Logksised for concurrency control purposes. They are reqgdieste
before accessing a data item and released when the tramséinishes. Hence, if a transaction gets a write lock on a data
item, other transactions accessing that item would be leldcitil that transaction finishes. Once locks are reledabeg,are
granted in fifo order (i.e., there is a queue of blocked tratisas).

A history H of committed transactions is serial if it totally ordersthié transactions [3].

For replicated data, the correctness criterion is one-esggializability [3]. Using this criterion, each copy mugtpear
as a single logical copy and the execution of concurrenstietions must be equivalent to a serial execution over all th
physical copies.

Client transactions can be multithreaded. The client camwsghreads within a transaction, and all the threads ateopar
the same transaction.

2.3. Interaction with servers

The interaction with servers is conversational [7]. Thagislient can issue service requests that refer to earliprags.
The server knows what the client is allowed to do at a poinhefifteraction, and which results have been produced so far.
One of the advantages of this kind of interaction is that ttegypamming of a server is simplified as its code only deals wit
a single client. Furthermore, a server can easily impose®pol of calls to its clients. For instance, a mail servexates
the mail header during the first interaction with a clieng thail body during the next interaction, and so on. The mailese
ensures that no mail is sent without a header and a body. Anatlvantage of this kind of interaction is that the server ca
perform processing without blocking the client (i.e., beem calls).

A new thread is created at each replica for each differeantli.e., each client transaction). A thread executesstalirce
of the replica code and only processes requests from thesgticion. Threads are created when the first call from adidios
is processed at a server. All threads of a replica share ttaecdizghe replica. The thread code itself must be deterninist

Figure 1 shows this behavior with a two-replica server anad tlients T1, T2). At each replica there are two threads,
one per client. Both threads have the same code and onlygzoequests(l, e2) from their transactions.
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Figure 1. Interaction with a replicated server

A server can process a particular service or choose one amseof services (selective reception). The example in Fig.
1 belongs to the former case. Replicas first process serticne then e2. The latter case would be a server that is giitin
process either el or e2. If there are no requests for any afethéces, the thread blocks until an awaited request isvede
If there are requests for both services, one of them is ssleantd processed.

A replicated server can issue calls to other servers (thitdan also act as a client). As all the replicas perform trae
actions, a particular call is then issued by all the repliGdsese calls should be filtered to avoid performing the cailtiple
times. This filtering guarantees that the call is executetty once. The reply is sent back to all the replicas. Thierfiig
can be automatically done using a communication libraryigling m to ngroup communication [13], like GrouplO [8], or
implementing this facility on top of a group communicatidsrary [14].

3. Enforcing determinism

In order to guarantee replica consistency determinism imeistinforced.

The sources of non-determinism can be classified as ext@ndahternal.

The external environment of the replicas is a source of neterchinism. This external environment consists of all the
messages the replica receives (client requests or tramsacanagement messages).

Client requests could reach each replica in a differentrofieen, they can be executed in a different order at eaclceepl
violating replica consistency. Executing conflicting ai@ns in the same order at all replicas removes this sourner
determinism. In general, there is no way to know a priori vleettwo requests will have conflicting operations, thus all
operations will be executed in the same order at all replithgs can be achieved using reliable totally ordered mantic

As a server can be client of other servers, replies to regqusstied from a replicated server must also be received in
the same order at all the replicas. But requests and repkesda the unique external events that replicas receiveveger
also receive transaction management messages. Theseyesessast also be taken into account to achieve determinism.
In particular, transaction termination (abort or commi@saages can release locks that will unblock threads (ittora)
blocked on those locks. Therefore, transaction managemessages must also be totally ordered multicast to guarante
replica consistency.

Providing replicas with the same external environment is erugh to guarantee the determinism of multithreaded
replicas. Multithreading itself is an internal source ofhrgdeterminism. Two replicad and B receiving two conflicting
requests; andr, in the same order can schedule the associated threadsdredifiorder, which will produce inconsistencies
among the replicas. For this reason, it is necessary to geaeplicas with a deterministic scheduler, which ensuresall
replicas will perform the same thread scheduling. Givensttime ordered set of messages and initial statieterministic
scheduleproduces exactly the same thread interleaving, providaittie code run by server threads is deterministic (i.e., it
cannot use local services that yield different results freplica to replica, like the current time).



Unfortunately, total ordered requests and deterministieeduling do not suffice to ensure replica consistency. Desp
delivering messages in the same total order at all replit&snot guaranteed that all the replicas will deliver messaat
the same time. That is, one replica can deliver messages fasin other replicas, what does not violate the total ander
At a given scheduling point, a replica may have some queuessages (Fig. 2), while another one has no messages. The
replica with messages could decide to process the first pgmdéssage, whilst the one with no messages can only decide to
schedule one of its ready threads. That situation will campse again the consistency of the replicas.

Replica 1

[l HO
4’0

Replica 2

Figure 2. Unsynchronized queue states

To prevent this situation, a replica will process a new mgssahen it is the only way to progress (i.e., all the threads
of the replica are blocked or there are no running threadkgrdfore, when a replica has to choose between processing a
new message or scheduling a ready thread, it will always édsatiter, removing the non-determinism. Another deterstiai
possibility is alternating the actions of processing a neessage and scheduling a ready thread. This approach has a
drawback. If a replica has no queued messages, it will bibtide it could be processing a ready thread.
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Figure 3. Message queue levels at a replica

This solution uses implicitly two message queue levels. &tternal levetjueue corresponds to the communication layer.
There is one of such queues at each replica. imternal levelqueues correspond to the services provided by the server.
Each replica thread has an internal queue per service. Hamessage in one of internal queues will be a request from the
associated transaction for that service. In (Fig. 3) thesdévels are shown for a replica with two service§,ande2, and
running two server threads. Hence, each thread has two guewne for each service. As far as it is possible to progrets wi
the messages in the second level, no message is taken fraxtéraal queue. Messages taken from the external queue are
moved to the corresponding second level queue. This pragesgeated until a thread becomes ready.

Selective reception introduces a new source of non-detgsmi As clients can be multithreaded, they can issue cencur
rent requests to a server. Therefore, each server threadasenqueued an arbitrary number of pending requests. When a
selective reception is reached, each server thread of aatdion can choose a different message among the ones that ca
be processed, introducing again replica inconsistendi@greby, in a selective reception messages must be chosamn de
ministically. Guaranteeing that every server thread abwegnsiders the same set of messages, and that the threadg cho



deterministically from this set of messages, it is enougériorce determinism of selective reception. The two-lenesdue
scheme ensures that all server threads will always confidesame set of messages (the ones in the second level) fdreere

it also solves the problem of selective reception. With fltlseme the selection can even be performed randomly, as fiar a
is done in the same way at all replicas. This can be achieversimg a random number generator initialized with the same
seed at all replicas.

4. The deterministic scheduling algorithm

The description of thdultithreaded Deterministic Schedulirdgorithm (MTRDS) will be done in two steps. First, we
introduce the data structures used by the algorithm (Sedtib). Then, we describe how the algorithm works with thehel
of some examples (Section 4.2).

4.1. Algorithm data structures

The algorithm uses several data structures to keep its. stdtese structures are message queues, thread queues, and a
thread table.

As it was discussed in the previous section, there are tweldenf queues. In the external level (communication layer)
messages are totally ordered. This queue holds client segjueplies, and transaction management messages. €hagint
level (server services queues) only holds client requeBtdracting messages from any of these queues is a potgntiall
blocking operation.

That is, a thread trying to extract from an empty queue wilblmeked until a message is queued.

There are queues for ready threads and for blocked ones. Udwemf ready threads, as its name indicates, stores the
threads that are ready to execute. The fifo extracting polithe queue guarantees a fair scheduling among the reashdtir
Each data item of a replica has a queue of blocked threadmw/éitr a conflicting lock. If the thread on executicactive
thread requests a conflicting lock on an item (i.e., an item alrdadked in a conflicting mode by a different transaction),
the thread will be blocked and stored in the associated loekig. Upon transaction termination, threads that are gkbtb
by the release of locks (if any) are moved to the queue of réam@ads.

Finally, a thread table is used to keep track of the relatimanrg clients and the server threads at a replica. When aseque
corresponds to a transaction that is not in the table, it méaat the request is the first one from that transaction. Taen
new thread is created at that replica. Thread terminatiafsis annotated in this table. This is useful to detect the wdmen
a client calls the server once the interaction protocol trastfed (a protocol violation).

4.2. The MTRDS algorithm

We will use an object-oriented notation to describe the @ilgm. The objects involved in the algorithm are: messages
(msg), the queue of ready threads (readyThreadQueuejrbadtable (threadTable), threads (activeThread, SEnvead)
that also encapsulate their internal message queuesatisatition manager (transManager, for the sake of simptiatlock,
recovery and transaction managers are represented watkitigle object), system (an object providing thread mamesgx:
operations), and the external message queue (messaggQLieaimethods for the different objects are summarized biela
1.

In our approach a replica consists of a single process, winage thread is the scheduler. The scheduler implements the
MTRDsS algorithm (Fig. 4) that is non-preemptive. The schedulén isharge of creating new server threads. At a given time
in a replica either the scheduler or a server thread is eieguthe scheduler after performingaheduling stefransfers the
control to a ready thread (that becomesaistveThreall. The active thread returns control to the scheduler whessithes
a scheduling pointdue to the non-preemptive nature of the scheduler). Thediding points are acceptance of a service
request, selective reception, lock request, server agadl gand of execution.

If the active thread returns control to the scheduler withmocking (accepting a message from a non-empty serviceajue
or accessing a non-conflicting data item), it is stored ingheue of ready threads. Otherwise, it will be already bldcke
awaiting a message or a lock. Then, the scheduler iteratéstwan transfer the control to a ready thread.

The scheduler first checks whether there is a ready thredldatlfs the case, the scheduler transfers the control tmit. F
instance, in Fig. 5 (elements that are either added or rechovéhe scheduling step are italized, eh2) the scheduler
checks the queue of ready threads (1). As it is not empty {2ktracts the first thread in the queug? (3-4). Then, the
scheduler transfers the control#b2 (5).



if = activeThread.IsBlocked{hen
readyThreadQueue.Enqueue(activeThread)
else
it is blocked on a service, a replica, or a lock
endIf
activeThread— null
while activeThread = nulDo
if = readyThreadQueue.IsEmptylen
there are ready threads, choose the first one
activeThread— readyThreadQueue.Dequeue()
else
get a message from the external queue, the operation blbthes gqueue is empty
msg+«— messageQueue.Dequeue()
if = threadTable.IsRegistered(msg.Tidfgn
it is the first request from this transaction, a new serveedtt is created for it
activeThread— system.NewServerThread()
threadTable.Register(msg.Tid(), activeThread)
the message is added to the corresponding service queue
activeThread.EnqueueMsg(msg)
elseit is a message for a registered transaction
if (msg.Kind() = request) or (msg.Kind() = repljen
itis a request from a registered client or a reply, get thecasated thread
serverThread— threadTable.GetThread(msg.Tid())
serverThread.EnqueueMsg(msg)
if (msg.Kind() = reply) or serverThread.IsBlockedOn(msgvie()) then
the current message unblocks the thread and it becomes tive #rread
activeThread— serverThread
elsif serverThread.IsTerminatedfjen
the protocol has been violated, the client has issued
a request after the protocol has finished
abort current transaction
else
the thread is not awaiting this request and hence, it is n@lecked
endIf
elseit is an abort or commit message
if (msg.Kind() = abort) or serverThread.IsTerminatetién
do concurrency control and recovery processing;
as a result some locks can be released and some threads kebloc
transManager.ProcessTransTermination(msg.Kind(), kg,
readyThreadQueue)
threadTable.Remove(msg.tid)
elsif serverThread.IsAwaitingRequestifen
the client has violated the protocol, abort the current santion
transManager.ProcessTransTermination(abort, msg, Tid(
readyThreadQueue)
threadTable.Remove(msg.tid)
elseit is a commit but the thread has not terminated
annotate in the server thread that the client transactios teaminated,
if this thread blocks again on a service, the transactior bél aborted
if the thread ends its execution, the transaction will be cotted
serverThread.ClientHasTerminated()
endIf
endIf
endlIf
endlIf
endwhile
system.TransferControl(active Thread)

Figure 4. MTRDS Algorithm

If the queue of ready threads is empty, the scheduler presesgssages from the external queue until there is at least a
ready server thread (a new thread is created or a thread isakel).

If the extracted message is a request of a registered ctlegre are several possibilities. The server thread is leldck
awaiting (a) this request message, (b) a different messa@® a lock, or either (d) it has finished its execution. In arfy
the cases (a-c) the scheduler will enqueue the message tottesponding service queue of the thread. In case (a)lit wil
transfer the control to it. In case (d) the transaction wélldborted and removed from the thread table. In the casesgb-d
new message will be processed, as no threads are still ready.

Case (a) is depicted in Fig. 6. In this example, all servezatls {h1 andth2) are blocked, hence, the queue of ready
threads is empty (a-b). Then, the scheduler processesshmfissage-( 1) from the external queue (3-4). As the message
comes from a registered transaction (5%), and the corresponding thread{) is awaiting it (7-8), the scheduler forwards
the message (9) and transfers the control to it (10).



message
Kind Returns the kind of the message: request, reply, commityanta
Service If the message is a request, this method returns to whiclicees/aimed
Tid Returns the transaction identifier (tid) of the transactssociated to the message
readyThreadQueue
ISEmpty Returns true if the queue is empty
Enqueue Adds a thread to the queue
Dequeue Extracts the first thread from the queue
threadTable
IsRegistered(tid) Returns true if there is an entry for that transaction
Register(tid, thread) Registers a client transaction and its associated semeadh
GetThread(tid) Obtains the thread associated to that transaction
Remove(tid) Remove the entry corresponding to that transaction
thread
IsBlocked Returns true if the thread is blocked
IsTerminated Returns true if the thread has finished its execution
IsAwaitingRequest Returns true if the thread is blocked waiting for a request
IsBlockedOn(service) Returns true if the thread is blocked waiting a request fat #ervice
ClientHasTerminated Annotates that the client transaction has finished
EngueueMsg(msg) Enqueues msg in the corresponding internal service queue
transManager
ProcessTransTermination(abort/commit, tid, readyThreadQueue)
It performs concurrency control and recovery processit@tive to an abort/commit operation; it
queues unblocked threads in readyThreadQueue
system
NewServerThread Starts a new thread
TransferControl(thread)  Transfer the control to that thread
messageQueue
Dequeue Extracts the first message from the queue; if the queue isyimptaller is blocked until a messade
is enqueued by the communication layer

Table 1. Description of object methods
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Figure 5. Transferring control to a ready thread

If the message comes from a new transaction, then a new tigeadated and an entry with the client transaction and
the new thread is added to the thread table. For instanceigin & the queue of ready threads is empty (1-2). Hence,
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Figure 6. Unblocking a thread

the scheduler takes a messagerg) from the external queue (3-4). It checks (5) whether thesags belongs to a new
transaction'3). As this is not the case (6), the scheduler creates a neadl{i@, associates the thread with the transaction
(8), stores the message in the corresponding queue (9)rasfdrs the control to it (10).

If the message is a reply to a call to other server, it will wdkl the corresponding server thread. The message will be
forwarded to the thread and the control transferred to it.

If the message reports a transaction commit, the serveaidhven be either terminated, ready or blocked. In the fir# cas
the transaction is committed. If the server thread is readylacked on a lock or awaiting a reply, then it is annotateat th
the client has finished. If this thread finishes later its exien, the transaction is committed; but if it blocks on avees
gueue, the transaction is aborted (as the client has notletedhe interaction with the server). Otherwise, theadhreill
be blocked awaiting a request, and therefore, the trarsaeiil be aborted (protocol not completed).

If the message reports a transaction abort, the transastaforted.

When the transaction is terminated, either committing @rtibg, the thread is removed from the thread table. Both
commit and abort of a transaction release the locks held dyrémsaction. As a result some threads can be unblocked and
then they will be queued in the queue of ready threads by #ms#action manager.

5. Correctness proof

Definition 1 (Deterministic Scheduler) Given a sequence of messages, an initial state, and detistiniserver code, a
deterministic scheduler produces always the same thraadéaving.

Lemma 5.1 (State ConsistencyReplicas of a multithreaded server implementing BherRDS algorithm have the same
state at any scheduling step if the following conditiongdhdll) messages are totally ordered, (2) server thread cade i
deterministic.

Proof (lemma 5.1):

We will show that the replicas of a multithreaded server hitneesame state at a given scheduling point by induction on
the number of scheduling steps taken:
1. Induction Basis:At the initial state, when a replica has not received any agsyet, all the data structures are empty
and the scheduler is blocked waiting for a message in thereadtenessage queue. This initial state is the same at all the
replicas. When the first message is delivered, the only plesscheduling step is to process this message. As messages a
received in total order (condition 1 of the lemma), all repB will process the same message (the first one in the takaf)or
Additionally, this message can only be the first request odiadaction. Hence, the action taken by all schedulers witbb
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Figure 7. Creating a new server thread

create the associated server thread, to register the nemt,did store the message in the corresponding service gaed¢o
transfer the control to that thread. That is, after the fickesluling step all the replicas have the same state.

2. Induction HypothesisReplicas have the same state afterthe 1 — th scheduling step.

3. Induction StepAssume that the: — 1 first scheduling steps have been taken. Now, the activedhwiibexecute until

it reaches a scheduling point. As the thread code is detéticiicondition 2 of the lemma) and the state of the replisas
the same (induction hypothesis), all the threads will bhingame state when the control is transferred to the schedule
perform then — th scheduling step.

Then, the scheduler performs the- th scheduling step. Now we will show by means of a case study tren — th
scheduling step has been made all the replicas have the satee s

(a) There are ready threads. The first ready thread is sdlémtexecution. All the replicas will choose the same thread
as all the replicas have the same state (induction hypathesi

(b) There are no ready threads, the only possible actionpsdcess a new message from the external queue. This queue
might be empty in some replicas and non-empty in others. Aagmvith an empty queue will block itself until a message
is delivered, then it will process the message. A replicdaihon-empty queue will directly process the first messagigen
gueue. All the replicas will process the same message, téadifferences in the waiting time, thanks to the total oitlgr
(condition 1 of the lemma).

(b.1) If the message is a service request, its treatmentiefiend on the thread table contents that will be the samé at al
replicas (induction hypothesis).

(b.1.1) If the client is not registered, all replicas wilkate a new server thread. A new entry with the transactiorttand
new thread is stored in the thread table at all replicas. Thesanye is stored in the corresponding internal queue and the
control is transferred to that thread at all replicas.

(b.1.2) The client is already registered, and hence, treeederver thread for it. This server thread might be blocked
awaiting a request of this kind, awaiting a different kindreuest, awaiting a lock release or finished. In the first ddse
server thread will become the active thread. In the secoddtdrd cases, the message will be queued on the corresppndin
service queue without unblocking the thread. As the thredidow blocked by the same reason at all replicas (induction
hypothesis), all of them will take the same action. In thetivease, all the replicas will abort the transaction andaesrthe
corresponding entry from the thread table.

(b.2) If the message is a reply (from a call to other servégntit will unblock the calling thread. The message will be
forwarded to the thread and the control transferred to ite $ame thread will be unblocked at all replicas as they hawve th
same state (induction hypothesis).

(b.3) If the message corresponds to a transaction terrométie associated server thread can be terminated, blacked



ready. The state of the thread will be the same at all repl(icasiction hypothesis). The message can be either a commmit o
an abort.

(b.3.1) If the message is an abort, then the thread is remibeadthe thread table and the transaction is aborted at all
replicas.

(b.3.2) If the message is a commit and the server thread haintted, the transaction is committed and the thread is
removed from the thread table at all replicas.

(b.3.3) If the message is a commit and the server thread ckétbawaiting a request, the client has not completed the
protocol. The transaction is aborted at all replicas.

(b.3.4) If the message is a commit and the server thread islocked on a service, then all replicas annotate in the threa
the fact that the client has terminated.

When a transaction finishes either committing or aborting @lssociated concurrency control and recovery tasks are
performed. The lock information will be updated in the sameyvat all replicas as all have the same lock information
(induction hypothesis) and all have processed the samsdction termination message. As a result, some serverdbrea
may be unblocked and moved to the queue of ready threads eAsak queues are traversed in the same order at all replicas,
the same server threads will be unblocked and queued in tgepf ready threads in the same order at all replicas.

All the replicas have the same state after an iteration oatgerithm, and all of them either have chosen an active threa
or not. In the latter case the next iterations will start frhra same state at all the replicas and the reasoning willdsgime
as above. The scheduling step will finish by all the replidasosing the same active thread and all having the same state.

Thus, it has been proven that after the- th scheduling step all the replicas have the same state. |

Theorem 5.1 (One Copy Serializability) A replicated server whose replicas run therrRDS algorithm is one-copy serial-
izable.

Proof (theorem 5.1):

In order to fulfill one copy serializability the replicas msrialize conflicting transactions in the same order. Awen
in Lemma 5.1 all replicas have the same state at any giveratihg step, thus they will execute transactions with elyact
the same interleaving. What is more, transactions will estjlocks in the same order at all replicas and hence, théypevil
serialized in the same order. m|

6. Implementation issues

The MTRDSsalgorithm has been implemented as parfi@nsLib[12], an object-oriented library for distributed trandaat
processing.TransLibis used as run-time support for the programming languagasactional Dragd17]. Both TransLib
andTransactional Dragsupport transactional group servers.

The implementation ofransLibhas been made in Ada 95 [1] using objects and tasks. Sereadbiare implemented as
Ada tasks and thus, services are task entry points. Cleawgscommunication usésrouplO[8], a group communication
library providing reliable total ordered multicast. An émesting feature of this library is that it provides n-to-omumunica-
tion, that is, when a replicated group performs a call, thealiy takes care of not delivering duplicate messages.

TransLibis adaptable in the sense that it can be customized to diffeeeds. The concurrency control, recovery and
scheduling policies can be defined by the programmer. Thededimg policy decides how and when messages are processed
at a server. This policy is encapsulated in a scheduler.cldss scheduler is in charge of taking messages from theredter
gueue and forwarding them to the corresponding server distela TransLibthere are predefined schedulers for replicated
and cooperative groups. The scheduler for replicated gramplements the MRDS algorithm. The one for cooperative
groups allows more concurrency, as they do not have to bedeteeministically. The only requirement of this scheduger
that all server threads of a transaction must choose the s@asage when they perform a selective reception.

In order to enable reuse of schedulers and programmer-difateeduling policies it is necessary to uncouple the sdbedu
from server code and vice versa. To achieve this goal, thedsdar must not know the type of the server nor its interf&ue.
it must still be able to create the right type of server thegadaintain references to them, and forward client requestem.
These requirements have been met by means of two classdhiesr TheRequeshierarchy (Fig. 8, we use the notation
of [6]) encapsulates requests (which kind of service is ested and the associated parameters). The schedulertdslega
to instances of this class the server thread creation anddhml interaction with server threads. T8erverTaskObject
hierarchy (Fig. 9) encapsulates server threads in objecHldw the scheduler to maintain references to them.



Request
GetlD : TID
SetTID(TID)
StartServerTask() -> ServerlaskObject
SetDestinationTask(aServerTaskObject)
MakeCall[)
server : ServerTaskObject

ServerXRequest ServerYRequest
StartServerTask() -> ServerXTaskObject| | StartServerTask() -> ServerYTaskObject

===

ServerXRequestA| |ServerXRequestB ServerYRequestC| [ServerXRequestD
RegA(param.) ReqB(param.) ReqC(param.) || RegD(param.)
Fo MakeCall() MakeCall() MakeCall() MakeCall()

‘ ServerXTaskObject(server).GetServerXTask.A(params.)

Figure 8. Request hierarchy

The state of a request object contains the service to bedcalld its parameters. The scheduler can know the identity
of the client transaction that has submitted the request &gn® of theGet TI D method. Server thread creation is done by
means of th&St ar t Ser ver Task method.

To be able to delegate to the request object the interactitimtiae server thread, two methods are needgst:Dest i -
nati onTask andivakeCal | . TheSet Dest i nat i onTask method allows the scheduler to inform to the request object
about the identity of the server thread to be called. Thigrimation is only known by the scheduler. The interactiorhwlite
server thread is triggered by tiviakeCal | method.

ServerTaskObject,

| : |

ServerXTaskObject ServerYTaskObject
GetServerXTask() -> ServerxTask GetServerYTask() -> ServerYTask

i i

ServerXTask ServerYTask

Task interface Task interface

Figure 9. Server task object hierarchy

7. Related work

Some works have focused on fault-tolerance of multithrdagmlications. [19] describes a log-based rollback-recpv
protocol to resume process execution should a failure odtey use a combination of checkpointing and logging. Check
points contain a snapshot of a process state and additidoaiiation to restart its execution from the point at which state
was saved. The log contains information about the occuerefimon-deterministic events before the failure, to repias
the same conditions during the replay.

The MARS system [11] proposes a solution for determinisneai-time systems with time-triggered event activation and
preemptive scheduling. Replica determinism in enforcadgismed messages and agreeing on external events. Another
approach for real-time systems that solves determinisnfiredftogether with schedulability analysis is [5]. The et
system proposes a different approach based on semi-agfilieation following a leader-follower model [2].

There are some works providing CORBA interfaces for objegication like the Eternal system [14] and the object
group service (OGS) [9]. OGS guarantees determinism byutixerrequest sequentially in the total order they have been



delivered. The Eternal system provides support for refdidanultithreaded CORBA servers. In their approach, aljou
replicated servers are multithreaded (using any of the CORBItithreading models), determinism is enforced by pesieg
RPCs sequentially. During the processing of an RPC, theesean be called from within that RPC (reentrant call), githe
directly or indirectly. The scheduler detects these situt and allows reentrant calls to be executed, as otherivisg
would produce a deadlock, as there is a single active threatirect calls are tracked down by attaching information to
the calls, so the server scheduler can find out that they hese produced by the current RPC under processing, and thus
processes them. As pending calls can only be nested reecalna stack is enough to track them down.

There are two important differences between the approaEheshal and the one of the MkDs algorithm. First, the Eter-
nal system is based on RPC (the CORBA client/server interaotechanism) while our algorithm provides a conversation
interface. The conversational interface introduces soewedifficulties with respect to RPC. With RPC the life of a tds
the life of a single call. However, server threads imibslast for the whole interaction between a client and a sewkich
usually spans to several calls.

The second main difference is yet more important, and it & the Eternal system is intended for a non-transactional
environment, while the NIRDS algorithm is aimed to a transactional one. In a transactieystem it is not possible to
process requests one by one, as it is done in the Eternahsy3tiee reason is that during the processing of a request, the
active server thread can block itself accessing a conftjaddita item, and thus the whole server would be blocked awgaiti
the release of the lock. This means that more concurrenagded in a transactional system in the sense that the griyula
of the interleavings must be finer. InTMDs an arbitrary number of threads can be ready at a given timalitiddally,
the algorithm needs to take into account the internal messabout transaction management in order to guaranteeaepli
determinism.

Another approach for active replication in database systisrproposed in [15]. This approach is based on an optimistic
version of total ordered multicast. It assumes that loclkslusy a transaction are known in advance, and thus requests ca
be executed in parallel as far as they do not conflict, thueasing the concurrency. This proposal provides more aencu
rency than our approach, as well as a reduced transacti@megsing latency, taking advantage of the previous assampti
Additionally, each transaction is executed at a singleicapblnd the rest of the replicas only apply the updates. ,Tthis
approach provides both availability and performance. @natiher hand, the approach is less general than the one fdsen
here, as it requires knowing in advance the locks to be regdes

8. Conclusions

The MTRDsalgorithm provides consistent replication of multithreddransactional servers. Each replica has an attached
scheduler that ensures a deterministic behavior of thécgepl combination with total order multicast. Replicas atde
to process several requests concurrently to prevent thersblocking, as well as to deal deterministically with niypik
ready threads resulting from transaction termination. algerithm has been proposed for servers providing contiersal
interfaces, but it can be easily adapted for RPC-basedaictien (e.g., to use the algorithm in a CORBA environment).
Applications that need data consistency and availabiéty leenefit from this approach.
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