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ABSTRACT
As multicore processors become increasingly prevalent, sys-
tem complexity is skyrocketing. The advent of the asymmet-
ric multicore compounds this – it is no longer practical for an
average programmer to balance the system constraints asso-
ciated with today’s multicores and worry about new prob-
lems like asymmetric partitioning and thread interference.
Adaptive, or self-aware, computing has been proposed as
one method to help application and system programmers
confront this complexity. These systems take some of the
burden off of programmers by monitoring themselves and
optimizing or adapting to meet their goals.

This paper introduces a self-aware synchronization li-
brary for multicores and asymmetric multicores called Smart-
locks. Smartlocks is a spin-lock library that adapts its in-
ternal implementation during execution using heuristics and
machine learning to optimize toward a user-defined goal,
which may relate to performance or problem-specific criteria.
Smartlocks builds upon adaptation techniques from prior
work like reactive locks [1], but introduces a novel form of
adaptation that we term lock acquisition scheduling designed
specifically to address asymmetries in multicores. Lock ac-
quisition scheduling is optimizing which waiter will get the
lock next for the best long-term effect when multiple threads
(or processes) are spinning for a lock.

This work demonstrates that lock scheduling is im-
portant for addressing asymmetries in multicores. We study
scenarios where core speeds vary both dynamically and in-
trinsically under thermal throttling and manufacturing vari-
ability, respectively, and we show that Smartlocks signifi-
cantly outperforms conventional spin-locks and reactive locks.
Based on our findings, we provide guidelines for application
scenarios where Smartlocks works best versus less optimally.
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1. INTRODUCTION
As multicore processors become increasingly prevalent,

system complexity is skyrocketing. It is no longer practi-
cal for an average programmer to balance all of the system
constraints and produce an application or system service
that performs well on a variety of machines, in a variety
of situations. The advent of the asymmetric multicore is
making things worse. Addressing the challenges of apply-
ing multicore to new domains and environments like cloud
computing has proven difficult enough; programmers are not
accustomed to reasoning about partitioning and thread in-
terference in the context of performance asymmetry.

One increasingly popular approach to complexity manage-
ment is the use of self-aware hardware and software. Self-
aware systems take some of the burden off of programmers
by monitoring themselves and adapting to meet their goals.
They have been called adaptive, self-tuning, self-optimizing,
autonomic, and organic systems, and they have been applied
to a broad range of systems including embedded, real-time,
desktop, server, and cloud systems.

This paper introduces a self-aware synchronization library
for multicores and asymmetric multicores called Smartlocks.
Smartlocks is a spin-lock library that adapts its internal im-
plementation during execution using heuristics and machine
learning. Adaptations optimize toward user-defined goals
programmed using Application Heartbeats [2] or other suit-
able application monitoring frameworks and may relate to
performance or problem-specific criteria.

Smartlocks takes a different approach to adaptation than
its predecessor, the reactive lock [1]. Reactive locks optimize



performance by adapting to scale, i.e. adjusting their algo-
rithm to match how much lock contention there is. Smart-
locks use this technique but also a novel adaptation – de-
signed specifically for asymmetric multicores – that we call
lock acquisition scheduling. When threads are contending
for a lock, lock acquisition scheduling is granting the lock in
the order expected to maximize the long-term benefit.
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Figure 1: The Impact of Lock Acquisition Scheduling on
Asymmetric Multicores. Good scheduling finishes 4 critical
sections sooner and creates more spare execution resources.

One reason lock acquisition scheduling is an important
performance opportunity is because asymmetries make cy-
cles lost to spinning idly more expensive on faster cores.
Figure 1 illustrates. Using spin-locks can be thought of as
executing a cycle of three computation phases: acquiring the
lock (A), executing the critical section (CS), then releasing
the lock (R). The figure shows two scenarios where two slow
threads and one fast thread contend for a spin-lock: the top
uses a Test and Set lock not optimized for asymmetry; the
bottom shows what happens when Smartlocks is used. We
assume the memory system limits acquire and release but
that the critical section executes faster on the faster core.

In the top scenario, the lock naively picks the slower thread,
causing the faster thread to idle in the acquire stage. In the
bottom scenario, Smartlocks prioritizes the faster thread,
minimizing its spin time. The savings are put to use ex-
ecuting a critical section, and the threads complete 4 total
critical sections sooner. That performance improvement can
be utilized as a latency improvement when a task requires
executing some fixed number of critical sections, or it can
be utilized as a throughput improvement since more overall
critical sections will get executed. Smartlocks’ lock acquisi-
tion scheduler also has the advantage that it can (simulta-
neously or alternatively) optimize the total spare execution
cycles, which can be utilized for other computations.

We empirically evaluate Smartlocks on a related scenario
in Section 4. We measure throughput for a synthetic bench-
mark based on a work-pool programming model (without
work stealing) running on an asymmetric multicore where
core clocks speeds vary due to two thermal throttling events.
We compare Smartlocks to conventional locks and reactive
locks, and show that Smartlocks significantly outperforms
them, achieving near-optimal results. A second experiment
evaluates the performance impact of lock acquisition schedul-
ing on applications from the SPLASH-2 benchmark suite
[3]. We collect results running on real asymmetric multicore
hardware that demonstrate Smartlocks can achieve speedup
of 1.2x over other lock strategies. Based on our findings, we
provide a set of guidelines for application scenarios where
Smartlocks performs best versus less optimally.

The rest of this paper is organized as follows. Section 2
gives background about the historical development of var-
ious lock techniques and compares Smartlocks to related
works. Section 3 describes the Smartlocks implementation.
Section 4 details the benchmarks and experimental setup
referenced above. Finally, Section 5 concludes and identifies
several additional domains in asymmetric multicore where
Smartlocks techniques may be applied.

2. BACKGROUND AND RELATED WORK
In parallel programming, a synchronization object is a

mechanism that limits access to a resource to ensure its
consistency while many threads (or processes) are using it.
Because synchronization objects are important, there are
many types of them with different access limits and proper-
ties: mutexes, barriers, condition variables, read-write locks,
spin-locks, etc. Spin-locks are a type of synchronization ob-
ject that are particularly efficient for multicore applications.
They are commonly used and are the focus of Smartlocks.1

This section begins with a basic description of spin-lock al-
gorithms followed by the historical development of various
algorithms and the challenges they solved. Then, this sec-
tion compares Smartlocks to its most closely related works.

2.1 The Anatomy of a Lock
Using spin-locks in applications can be thought of as ex-

ecuting a cycle of three computation phases: acquiring the
lock, executing the application’s critical section, then re-
leasing the lock. Depending on the algorithms used in its
acquire and release phases, the spin-lock has three defining
properties: its protocol, its wait strategy, and its scheduling
policy (summarized in Figure 2).

The protocol is the synchronization mechanism the spin-
lock uses to guarantee mutual exclusion so that only one
thread can hold a lock at a time. Typical mechanisms in-
clude global flags, counters, or distributed queues that locks
manipulate using hardware-supported atomic instructions.
The wait strategy is the action threads take when they fail
to acquire the lock such as spinning or spinning with backoff
to reduce polling.2 Lastly, the scheduling policy determines
which waiter should go next when threads are contending for
a lock. Most lock algorithms have fixed scheduling policies
intrinsic to their protocol mechanism, such as “Free-for-all”
and “FIFO.” Free-for-all refers to an unpredictable ordering
while FIFO refers to a first-come first-serve fair ordering.

The best-known spin-lock algorithms include Test and
Set (TAS), TAS with Exponential Backoff (TASEB), Ticket
locks, MCS queue locks, and priority locks (PR Locks). Ta-
ble 1 summarizes their protocol mechanisms and scheduling
policies. The next section explains the historical evolution
of various lock algorithms and the other table information.

Spin-lock

Protocol Wait Strategy Scheduling Policy

Figure 2: Properties of a Spin-Lock Algorithm

2.2 A Historical Perspective on Spin-Locks
Because spin-locks are an important part of multiproces-

sor and multicore programming, a wide variety of algorithms

1Other “Smart” synchronization objects are planned.
2Some non spin-locks use a blocking wait strategy.



Table 1: Summary of Lock Algorithms
Algorithms Protocol Mechanism Policy Scalability Target Scenario

TAS Global Flag Free-for-All Not Scalable Low Contention

TASEB Global Flag Randomizing Try-Retry Not Scalable Mid Contention

Ticket Lock Two Global Counters FIFO Not Scalable Mid Contention

MCS Distributed Queue FIFO Scalable High Contention

Priority Lock Distributed Queue Arbitrary Scalable Asymmetric Sharing Pattern

Reactive Adaptive (not priority) Adaptive (not arbitrary) Scalable Dynamic (not asymmetric)

Smartlocks Adaptive (w/ priority) Adaptive (arbitrary) Scalable Dynamic (w/ asymmetry)

exists. Table 1 summarizes the scalability and target sce-
nario for various spin-lock protocols. Two of the most ba-
sic are the Test and Set lock and the Ticket lock. Both
have poor scaling performance when many threads or pro-
cesses are contending for the lock because they poll global
lock state and degrade the shared memory system perfor-
mance [4]. This led to an optimization on Test and Set
called Test and Set with Exponential Backoff that limits con-
tention by systematically introducing wait periods between
polls. Other efforts to improve performance scalability were
based on distributed queues. In these “queue locks,” wait-
ers spin instead on local variables [4]. Popular queue locks
include the MCS lock, the CLH variant, and a recent one
with various improvements called QOLB [5, 6, 7].

One key deficiency of queue locks (that Smartlocks ad-
dresses via adaptivity) is poor performance at smaller scales
due to the overhead of operations on the distributed queue.
Another key deficiency of the above algorithms (especially
the queue locks) is that they perform poorly when the num-
ber of threads (or processes) exceeds the number of available
cores, causing context switches [8]. Problems arise when a
running thread spins, waiting for action from another thread
that is swapped out. [9] and [8] develop lock strategies
to improve such interactions between locks and the kernel
scheduler and avoid descheduling threads at inconvenient
times. The preemption-safe ticket locks, queue locks, and
scheduler-conscious queue locks from these works could be
included in Smartlocks’ dynamic repertoire of lock strategies
– as could future developments in scalable algorithms.

Orthogonal efforts have designed special-purpose locks for
some scenarios to improve performance. These are impor-
tant predecessors to Smartlocks because they are the first
hints at the benefits of lock acquisition scheduling. The
write-biased readers-writer lock [10] is one example that en-
ables concurrent read access and exclusive write access, pri-
oritizing writers over readers. Priority locks explicitly pri-
oritize lock holders and were developed for database appli-
cations where transactions have different importance [11].
They present challenges such as priority inversion, starva-
tion, and deadlock, and are a rich area of research [12].
NUCA-aware locks were developed to improve performance
on NUCA memory systems [13]; they release locks preferen-
tially to near neighbors to improve locality. Smartlocks’ lock
scheduling can emulate these policies (see Section 3.2.3).

The key advantage of Smartlocks over its predecessors is
that Smartlocks is a one-size-fits-most machine learning so-
lution that automates the discovery of good policies. Pro-
grammers can ignore the complexity of a) identifying good
scheduling policies and which special-purpose lock algorithm
among dozens they should use or b) programming a priority
lock to make it do something useful while avoiding prior-

ity inversion, starvation, and deadlock. The next section
compares Smartlocks to adaptive lock strategies.

2.3 Adaptive Locks
Various adaptive techniques have been proposed to de-

sign synchronization strategies that scale well across differ-
ent systems, under a variety of dynamic conditions [1, 14,
15]. These are Smartlocks’ closest related works. A recent
patch for Real-Time Linux modifies kernel support for user-
level locks so that locks switch wait strategies from spin-
ning to blocking if locks spin too long. This is an adapta-
tion that Smartlocks could use. Other works are orthogonal
compiler-based techniques that build multiple versions of the
code using different synchronization algorithms then sample
throughout execution, switching to the best code as neces-
sary [15]. Other techniques such as reactive locks [1] are
library-based like Smartlocks and have the advantage that
they can be improved over time, having those improvements
reflected in apps that dynamically link against them.

Like Smartlocks, reactive locks perform better than the
scalable lock algorithms at smaller scales by dynamically
adapting their internal protocol to match the contention
scale. Table 1 compares reactive locks, Smartlocks, and the
other locks. The key difference is that Smartlocks is opti-
mized for asymmetric multicores through a novel adaptation
technology we call lock acquisition scheduling. Section 4.1.2
demonstrates empirically that lock acquisition scheduling is
an important optimization for asymmetric multicores.

The Smartlocks approach also differs in another important
way: while prior work focused on performance optimization,
Smartlocks targets broader optimization goals including lo-
cality, latency, application-specific criteria, or combinations
thereof. Furthermore, whereas existing approaches attempt
to infer performance from indirect statistics internal to the
lock library (such as the lock contention level), Smartlocks
can use monitoring frameworks for end-to-end application-
or system-level feedback. Suitable frameworks like Appli-
cation Heartbeats [2] provide a direct measure of how well
adaptations are helping an application meet its goals.3

2.4 Machine Learning in Multicore
Recently, researchers have begun to realize that machine

learning is a powerful tool for managing the complexity of
multicore systems. Several important recent works have
used machine learning to build a self-optimizing memory
controller [16] and to coordinate management of interact-
ing chip resources such as cache space, off-chip bandwidth,
and the power budget [17]. Our insight is that machine
learning can be applied to synchronization as well, and our
results demonstrate that machine learning significantly im-
proves performance for the benchmarks we study.

3See Section 3.1 on annotating goals with Heartbeats.
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3. SMARTLOCKS
Smartlocks is a spin-lock library that adapts its internal

implementation during execution using heuristics and ma-
chine learning. Smartlocks optimizes toward a user-defined
goal (programmed using Application Heartbeats [2] or other
suitable application monitoring frameworks) which may re-
late to performance, problem-specific criteria, or combina-
tions thereof. This section describes the Smartlocks API and
how Smartlocks are integrated into applications, followed by
an overview of the Smartlocks design and details about each
component. We conclude by describing the machine learning
engine and its justification.

3.1 Programming Interface
Smartlocks is an adaptive C / C++ library for spin-lock

synchronization and resource-sharing. The underlying im-
plementation is parallel and dynamic, but the interfaces ab-
stract the details and are essentially identical to pthreads
mutexes. Smartlocks applications are pthreads applications
that use pthreads thread spawning etc. but Smartlocks in-
stead of mutexes. The key interface difference is that Smart-
locks creation takes a pointer to an application monitoring
object that will provide a reward signal for optimization.

One suitable application monitoring framework is the Ap-
plication Heartbeats framework. Heartbeats is a generic,
portable programming interface developed in [2] that appli-
cations use to indicate high-level goals and measure their
performance or progress toward meeting them. The frame-
work also enables external components such as system soft-
ware or hardware to query an application’s heartbeat per-
formance, also called the heart rate. Goals may include
throughput, power, output quality, or combinations.

Figure 3 part a) shows the interaction between Smart-
locks, the external application monitor (in this case Heart-
beats), and the application. The application instantiates a
Heartbeat object and one or more Smartlocks. Each Smart-
lock is connected to the Heartbeat object which provides the
reward signal that drives the lock’s optimization process.
The signal feeds into each lock’s machine learning engine

Smartlock

Protocol 
Selector

Wait Strategy
Selector

Lock Acquisition
Scheduler

Selector Installer Selector Installer Policy
Generator

Installer

Monitor
Framework

Spin-lock

Protocol Wait Strategy Scheduling Policy

Figure 4: Smartlock Functional Design. A component to
optimize each aspect of a lock.

and heuristics which tune the lock’s protocol, wait strategy,
and lock scheduling policy to maximize the reward.

As illustrated in Figure 3 part b), Smartlocks are shared
memory objects. All application threads acquire and release
a Smartlock by going through a top-level wrapper that ab-
stracts the internal distributed implementation of the Smart-
lock. Each application thread actually contains an internal
Smartlock node that coordinates with other nodes for lock-
ing (and waiting and scheduling). Each Smartlock object
has adaptation engines as well that run alongside applica-
tion threads in a separate helper thread. Adaptation engines
for each Smartlock get executed in a round-robin fashion.
The helper thread may run in a reserved core or share a
core with an application thread or another application via
SMT technologies (e.g. Intel’s hyperthreading). On future
many-cores, spare cores are expected to be available.

3.2 Design Overview
Figure 4 shows the components of the Smartlock design:

the Protocol Selector, the Wait Strategy Selector, and the
Lock Acquisition Scheduler. Each corresponds to one of the
three general features of lock algorithms (see Section 2.1)
and is responsible for the runtime adaptation of that feature.

3.2.1 Protocol Selector
The Protocol Selector is responsible for protocol adap-

tation within the Smartlock. Supported protocols include
{TAS, TASEB, Ticket Lock, MCS, PR Lock}, each with dif-
ferent performance scaling depending on the amount of lock
contention. The Protocol Selector identifies what contention
scale the Smartlock is experiencing and dynamically matches
the best protocol. There are two major challenges to doing
this: 1) determining an algorithm for when to switch and
what protocol to use and 2) ensuring correctness and good
performance during protocol transitions.

As shown in Figure 4, the Protocol Selector has Selector
and Installer components to address each problem. The Se-
lector uses the method in [1]: it measures lock contention
and compares it against threshold regions empirically de-
rived for the given host architecture and configuration. When
contention deviates from one region, the Selector initiates in-
stallation of a new protocol. Alternatively, the self-tuning
approach in [18] could be used. As illustrated in Figure 5,
the Selector executes in the Smartlock helper thread (de-
scribed previously in Section 3.1). The Installer installs a
new protocol using a standard technique called consensus
objects [1]. See Section 3.2.4 for details. Protocol transi-
tions have some built-in hysteresis to prevent thrashing.

3.2.2 Wait Strategy Selector
The Wait Strategy Selector adapts wait strategies. Sup-

ported strategies include {spinning, backoff}, and could be
extended to include blocking or hybrids. Designing the Wait
Strategy Selector poses two challenges: 1) designing an algo-
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rithm to determine when to switch strategies and 2) ensuring
correctness and reasonable performance during transitions.
The Wait Strategy Selector has a component to address each
of these problems: a Selector and an Installer.

The current implementation of the Selector is trivial since
none of the protocols in Smartlocks’ repertoire supports dy-
namic wait strategies. I.e. TASEB is fixed at backoff and
MCS and PR Lock are fixed at spinning. Eventually, the
Wait Strategy Selector adaptation algorithm will run in the
Smartlocks’ helper thread as illustrated in Figure 5. Care-
ful handling of transitions in the wait strategy are again
achieved through consensus objects (see Section 3.2.4).

3.2.3 Lock Acquisition Scheduler
The Lock Acquisition Scheduler is responsible for adapt-

ing the scheduling policy, which determines which thread
should acquire a contended lock. As illustrated in Figure 4,
the Lock Acquisition Scheduler consists of the Policy Gen-
erator and the Installer which use machine learning to op-
timize the scheduling policy and smoothly coordinate pol-
icy transitions, respectively. Like the Protocol Selector and
Wait Strategy Selector, the Lock Acquisition Scheduler im-
plementation poses challenges: a) generating timely schedul-
ing decisions and b) generating good scheduling decisions.

To address the timeliness challenge, since locks are typi-
cally held for less time than it takes to compute which waiter
should go next, the scheduler adopts a decoupled architec-
ture (shown in Figure 5) that does not pick every next lock
holder but works at a more relaxed granularity. The sched-
uler enforces scheduling decisions through priority locks and
per-thread priority settings (the scheduling policy) which it
updates every few lock acquisitions. Updates happen with-
out blocking any Smartlock acquire and release operations.
Smoothly handling decoupled policy updates requires no
special efforts in the Installer since a) only one of Smart-
locks’ protocols (the PR Lock) supports non-fixed policies
(see Table 1) and b) our PR Lock implementation allows
partial or incremental policy updates (or even modification
while a thread is in the wait pool) with no ill effects.

To address the quality challenge of finding good policies,
the Policy Generator uses an efficient machine learning en-
gine (described in Section 3.2.5). The use of machine learn-
ing is a deliberate design decision that enables Smartlocks
to address a wide variety of asymmetries. The authors be-
lieve that multicores will become increasingly complex and
dynamic and that developing heuristics that are a) general
and b) capable of co-optimizing for several interacting and
competing goals is too hard. If such heuristics can even be
developed, machine learning is a robust, general, and simpler

(though perhaps less familiar) alternative. Important recent
work in coordinating management of interacting CMP chip
resources has come to a similar conclusion [17].

3.2.4 Consensus Objects
Consensus objects is an approach from [1] for ensuring cor-

rectness in the face of dynamic protocol changes. Formally,
consensus objects require that a) that each protocol has a
unique consensus object (logically valid or invalid) and that
only one can be valid at a time, b) that a process must able
to atomically access the consensus object while completing
the protocol even though other processes may attempt to ac-
cess the consensus object, and c) that the state of the lock
protocol can only be modified by the process holding the
consensus object [1]. To satisfy these requirements, Smart-
locks uses the locks themselves as the consensus objects and
executes transitions only in the release operation. The con-
sensus objects are used in conjunction with a mode variable
that indicates what protocol should be active. The Protocol
Selector sets the mode variable to initiate a change. Next
time a lock holder executes a release operation, it releases
only the new lock protocol (resetting the state) while not re-
leasing the old lock. Any threads waiting to acquire the old
lock will fail and retry the acquire using the new protocol.

3.2.5 Policy Generator Learning Engine
To adaptively prioritize contending threads, Smartlocks

use a Reinforcement Learning (RL) [19] algorithm which
reads a reward signal from the application monitor and at-
tempts to maximize it. From the RL perspective, this presents
a number of challenges: the state space is mostly unob-
servable, state transitions are semi-Markov due to context
switches, and the action space is exponentially large. Be-
cause we need an algorithm that is a) fast enough for on-
line use and b) can tolerate severe partial observability, we
adopt an average reward optimality criterion [20] and use
policy gradients to learn a good policy [21].

The goal of policy gradients is to improve a policy, which
is defined as a conditional distribution over “actions,” given
a state. At each timestep, the agent samples an action from
this policy and executes it. In our case, actions are the pri-
ority ordering of the threads (since there are n threads and
k priority levels, there are kn possible actions). Throughout
this section, we will denote the distribution over actions as
π, and we will denote parameters of the distribution by θ.

To compute the quality of any particular policy, we mea-
sure the average reward obtained by executing that policy.
The average reward obtained by executing actions according
to policy π(·|θ) is a function of its parameters θ. We define
the average reward to be η(θ) ≡ E{R} = limt→∞

1
t

Pt
i=1 ri,

where R is a random variable representing reward, and ri
is a particular reward at time i. The average reward is a
function of the parameters because different settings induce
a different distribution over actions, and different actions
change the evolution of the system state over time.

The goal of policy gradients is to estimate the gradient of
the average reward of the system with respect to the policy
parameters then optimize the policy by moving in the direc-
tion of expected improvement. The reward is the signal from
the application monitor (e.g. the heart rate), smoothed over
a small window of time. Since it is intractable to compute
the expectations in η(θ) exactly, policy gradients approxi-



mates with importance sampling [21], as follows:

∇θη(θ) = ∇θE{R} ≈
1

N

NX
t=1

rt∇θ log π(at|θ) (1)

where the sequence of rewards rt is obtained by executing
the sequence of actions at sampled from π(·|θ). At its core,
therefore, our learning algorithm only requires a sequence of
rewards rt and the ability to compute the gradient of the log
probability of the action selected at time t. The fact that
this algorithm does not depend on a detailed model of the
system dynamics is a major virtue of the approach.

So far, we have said nothing about the particular form of
the policy. We must address the exponential size of the naive
action space and construct a stochastic policy that balances
exploration and exploitation, and that can be smoothly pa-
rameterized to enable gradient-based learning.

We address all of these issues with a stochastic soft-max
policy. We parameterize each thread i with a real valued
weight θi, and then sample a complete priority ordering over
threads. This relaxes an exponentially large discrete action
space into a continuous policy space.

To explain our sampling algorithm, let T = {1, · · · , n}
be the set of all thread indices. We will define the ran-
dom variable tli as an indicator stating that thread i has
priority level l; let tl be the thread id that was assigned
priority level l, and let ti be the assigned priority level for
thread i. We first sample the highest-priority thread by sam-
pling from p(t1i ) = exp{θi}/

P
j∈S exp{θj}. This is a simple

multinomial over threads. We then sample the next-highest
priority thread by removing the first thread from the pool
of available threads and renormalizing the priorities. The
distribution over the second thread is then defined to be

p(t2i |t1) = exp{θi}/
X

k∈T −{t1}

exp{θk}.

We repeat this process |T | − 1 times, until we have sampled
a complete set of priorities. The overall policy distribution
π is therefore:

π(at|θ) = p(t1i )p(t
2
i |t1) · · · p(t|T |i |t

1, t2, · · · , t|T |−1).

The gradient needed in Eq. 1 is easily computed. Let pij be
the probability that thread i was selected to have priority j,
with the convention that pij = 0 if the thread has already
been selected to have a priority higher than j. Then the
gradient for parameter i is simply

∇θi log π(at|θ) = 1−
X
j

pij .

When enough samples are collected (or some other gradi-
ent convergence test passes), we take a step in the gradient
direction: θ = θ+α∇θη(θ), where α is a step-size parameter.

4. EXPERIMENTAL RESULTS
This section presents two experiments that a) demonstrate

that Smartlocks can address a variety of asymmetries in mul-
ticores and b) identify various application scenarios where
Smartlocks works well and a scenario where it cannot help
much. Then, this section presents a set of usage guidelines
for Smartlocks based on the experimental findings.

The first experiment evaluates a synthetic benchmark that
applies Smartlocks to dynamic asymmetries. It demonstrates

the performance and adaptivity of Smartlocks under dy-
namic and unexpected variation in core frequencies caused
by thermal throttling. The second experiment focuses on
intrinsic asymmetries in core performance resulting from
manufacturing variability. It is a study of what impact a
spin-lock’s scheduling policy can have on end-to-end appli-
cation performance on asymmetric multicores; SPLASH-2
and synthetic benchmarks are evaluated.

The results show a) that the lock acquisition scheduling
policy can have a significant impact on application perfor-
mance, b) that Smartlocks is able to learn good policies au-
tomatically, and c) that Smartlocks learns good policies fast
enough to execute them for the majority of the application
and significantly improve overall performance.

4.1 Thermal Throttling Experiment
This experiment applies Smartlocks to dynamic system

asymmetries. It evaluates the performance and adaptivity
of Smartlocks versus standard lock strategies in a thermal
throttling scenario where core clock frequencies vary dynam-
ically and unexpectedly. The section starts with a descrip-
tion of the experimental setup then presents results.

4.1.1 Experimental Setup
The experimental setup emulates an asymmetric multi-

core with six cores where core frequencies are drawn from
the set {3 GHz, 2 GHz}. The benchmark is synthetic, and
represents a simple work-pile programming model (without
work-stealing). The app uses pthreads for thread spawning
and Smartlocks within the work-pile data structure. The
app is compiled using gcc v.4.3.2. The benchmark uses 6
threads: one for the main thread, four for workers, and one
reserved for Smartlocks. The main thread generates work
while the workers pull work items from the queue and per-
form the work; each work item requires a constant number
of cycles to complete. On the asymmetric multicore, work-
ers will, in general, execute on cores running at different
speeds; thus, x cycles on one core may take more wall-clock
time to complete than on another core. In this experiment,
the reserved thread runs on a reserved core but it could al-
ternatively share a core with an application thread at the
cost of some adaptation latency.

This experiment models an asymmetric multicore but runs
on a homogeneous 8-core (dual quad core) Intel Xeon(r)
X5460 CPU with 8 GB of DRAM running Debian Linux
kernel version 2.6.26. In hardware, each core runs at its
native 3.17 GHz frequency. Linux system tools like cpufre-
qutils could be used to dynamically manipulate hardware
core frequencies, but our experiment instead models clock
frequency asymmetry using a simpler yet powerful software
method: adjusting the virtual performance of threads by
manipulating the reward signal supplied by the application
monitor. The experiment uses Application Heartbeats [2] as
the monitor and manipulates the number of heartbeats such
that at each point where threads would ordinarily issue 1
beat, they instead issue 2 or 3, depending on whether they
are emulating a 2 GHz or 3 GHz core.

The experiment simulates a throttling runtime environ-
ment and two thermal-throttling events that change core
speeds.4 No thread migration is assumed. Instead, the vir-

4We inject throttling events as opposed to recording nat-
ural events so we can determine a priori some illustrative
scheduling policies to compare Smartlocks against.
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Figure 6: Heartrate performance across thermal throttling
events (workload changes). Smartlocks significantly outper-
forms reactive and TAS spin-locks, achieving near optimal.

tual performance of each thread is adjusted by adjusting
heartbeats. The main thread always runs at 3 GHz. At any
given time, 1 worker runs at 3 GHz and the others run at
2 GHz. The thermal throttling events change which worker
is running fast. The events occur at time 1.4s and 2.7s, the
second event reversing the effect of the first.

4.1.2 Results
Figure 6 shows several things. First, it shows the perfor-

mance of the Smartlock against existing reactive spin-lock
techniques. The performance of any reactive lock imple-
mentation is upper-bounded by its best-performing internal
algorithm at any given time. The best algorithm for this ex-
periment is the write-biased readers-writer lock (described
in Section 2.2) so the reactive lock is implemented as that.5

The graph also compares Smartlocks against a baseline Test
and Set spin-lock. The number of cycles required to perform
each unit of work has been chosen so that the difference in
acquire and release overheads between lock algorithms is not
distracting but so that lock contention is high; what is im-
portant is the policy intrinsic to the lock algorithm (and
the adaptivity of the policy in the case of the Smartlocks).
As the figure shows, Smartlocks outperforms the reactive
lock and the baseline, implying that reactive locks are sub-
optimal for this and similar benchmark scenarios.

The second thing Figure 6 shows is the gap between reac-
tive lock performance and optimal performance. One lock
algorithm / policy that can outperform standard techniques
is the priority lock and prioritized access. The graph com-
pares reactive locks against two priority locks / hand-coded
priority settings (the curves labeled “PR 1” and “PR 2”).
Dividing the graph into three regions surrounding the throt-
tling events, PR 1 is optimal for the first and last region. Its
policy sets the main thread and worker 0 to a high priority
value and all other threads to a low priority value (e.g. high
= 2.0, low = 1.0). PR 2 is optimal for the middle region of
the graph; its policy sets the main thread and worker 3 to
a high priority value and all other threads to a low priority
value. In each region, a priority lock outperforms the re-
active lock, clearly demonstrating the gap between reactive
lock performance and optimal performance.

The final thing that Figure 6 illustrates is that Smart-
locks approaches optimal performance and adapts to the

5This is the highest performing algorithm for this problem
known to the authors to be used in a reactive lock.

two thermal throttling events. Within each region of the
graph, Smartlocks approaches the performance of the two
hand-coded priority lock policies. Performance dips after the
throttling events but improves quickly. During the perfor-
mance dips, Smartlocks’ policy is suboptimal but still better
than the reactive lock and Test and Set policies. The adapta-
tion time-scale is on the order of a few hundred milliseconds
and is expected to improve as we optimize Smartlocks.

Figure 7 shows the time-evolution of the Smartlock’s in-
ternal weights ℘i. Initially, threads all have the same weight,
implying equal probability of being selected as high-priority
threads. Between time 0 and the first event, Smartlocks
learns that the main thread and worker 0 should have higher
priority, and uses a policy similar to the hand-coded one. Af-
ter the first event, the Smartlock learns that the priority of
worker 0 should be decreased and the priority of worker 3
increased, similar to the second hand-coded one. After the
second event, Smartlock relearns the first workload policy.

4.2 Scheduling Policy Experiment
This experiment applies Smartlocks to intrinsic system

asymmetries in core performance: specifically, variation in
maximum core frequencies as a result of manufacturing vari-
ability. This experiment evaluates what impact a spin-lock’s
scheduling policy has on end-to-end application performance
on such a system. It benchmarks radiosity and raytrace
from SPLASH-2 and a synthetic benchmark called queuetp,
replacing key locks within their concurrent data structures
with Smartlocks whose policies are varied as part of the ex-
periment. The results show that the lock scheduling pol-
icy can significantly impact application performance even
on moderately asymmetric multicores like the system we
study.6 The results additionally demonstrate that Smart-
locks can learn good policies quickly and significantly im-
prove overall application performance. The next sections
detail the experimental setup and present the results.

4.2.1 Experimental Setup
The experiment uses pthreads versions of all applications,

replacing key pthreads mutexes with Smartlocks. The lock
scheduling policies within the Smartlocks are varied to a)
compare the performance of common policies, two custom
policies, and Smartlocks’ default adaptive policy, and to b)
estimate upper and lower bounds on benchmark execution
time. The common policies are taken from the policies in-
trinsic to two popular spin-locks: Test and Set (Random)
and Ticket locks (FIFO). The Random policy grants the lock
to a waiter at random while the FIFO policy grants locks to
waiters fairly in the order they arrive. The custom policies
are application-specific policies introduced where the com-
mon policies are not expected to be upper and lower bounds.

All benchmarks are run with 6 application threads (ex-
cluding the startup thread) and one thread reserved for
Smartlocks’ optimizing helper thread which runs on a spare
core as it would in future many-core computers. It could
alternatively share a core with an application thread via
hyperthreading or other SMT support (see Section 4.3.2).
Large inputs are used for all applications. The threads are
fixed to particular cores by setting affinity. The experiment
uses the Linux system tool cpufrequtils to configure an 8-
core Intel Xeon(r) X5460 system with 8GB of DRAM to
emulate an asymmetry multicore with heterogeneous, fixed

6We expect larger asymmetries will result in larger effects.
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Figure 7: Time evolution of the learned policy. Crossovers
between Worker 0 and 3 reflect throttling events.

clocks speeds of {3.17, 3.17, 2, 2, 2, 2, 2, 2} GHz. Debian
Linux kernel version 2.6.26 and gcc v.4.3.2 are used.

The following paragraphs describe the benchmarks, cus-
tom policies unique to them, and application-specific details
such as how a monitor (see Section 3.1) is integrated into
the application to drive the Smartlocks adaptive policy.

Radiosity.
The radiosity benchmark is a graphics application that

computes the equilibrium distribution of light in a scene.
Its parallelism employs distributed work queues with work
stealing. Work items are imbalanced because the amount
of work per item depends on the input scene. radiosity was
chosen to demonstrate a general scenario where Smartlocks
works well: in work queues where Smartlocks can be used
as the locking mechanism for work stealing. In this con-
text, varying the lock scheduling policy allows us to vary
the work-stealing heuristic. We have hand-coded good and
bad custom policies. The good policy a) optimizes cache lo-
cality by programming the Smartlock in each queue to prefer
the thread that owns the queue most highly then b) mini-
mizes spin idling on the fast cores by ordering the remaining
threads by how fast their cores are. The bad policy essen-
tially inverts the good policy. We run the benchmark with 6
worker threads: 2 on the fast cores, 4 on the slow cores. Ap-
plication Heartbeats is used as the application monitor, and
a unit of reward is credited for each work item completed.

Raytrace.
The raytrace benchmark is a graphics application that

renders a 3-d scene using the raytracing algorithm. It was
selected to illustrate a general scenario where Smartlocks
has little benefit. raytrace uses a distributed work queue
but differs from radiosity in that it has little work steal-
ing. The queues are preloaded with work, so for most of
the execution, a worker does not need to steal work and
lock contention is negligible. We run this benchmark with 6
worker threads (just like in radiosity) and replace the exist-
ing locking mechanism in each queue with a Smartlock. The
same custom policies are used. Heartbeats is used, again,
with reward credited for each work item completed.

Queuetp.
The queuetp synthetic benchmark (designed for this pa-

per) measures the throughput of a 2-stage software pipeline
that uses a concurrent pipeline queue built around a Smart-
lock. It is interesting because it suggests that Smartlocks can
be used in self-optimizing data structures for asymmetric
multicores to achieve good performance with minimal pro-

gramming and design effort. The first pipeline stage is 1 pro-
ducer thread; the second is 5 consumers. The stages are bal-
anced on a homogeneous multicore, but on an asymmetric
multicore, the benchmark demonstrates a) that asymmetry-
unaware software-pipelines can become imbalanced and b)
that Smartlocks is a natural mechanism for addressing such
imbalances. The producer runs at 3.17 GHz and all con-
sumers run at 2 GHz. No custom policies are used. The
application monitor is a custom monitor that credits reward
proportional to how close to balanced (half-full) the queue
is. The pipe queue implementation guards all operations
with a global Smartlock and is optimized for the moderate
parallelism typical of software pipelines.

4.2.2 Results
Figure 8 shows end-to-end execution time of radiosity, ray-

trace, and queuetp across the different lock scheduling poli-
cies. Execution time is normalized against the best perform-
ing policy (the lower bound), and the policies are ordered
from worst to best in each graph. Together, the upper and
lower bound policies capture the variation the application
experiences in execution time as a function of the policy.

In radiosity, the upper and lower bound policies are the
custom policies. Together, they show that a good schedul-
ing policy can improve performance by a significant 1.23x.
As expected, the Random policy performs about half-way
between the bounds. The results show that Smartlocks per-
forms within 2% of the lower bound, potentially improving
performance by 1.2x. In raytrace, the custom policies yield
the upper and lower bound on execution time again. Smart-
locks nearly achieves the lower abound, but raytrace does
not see much benefit from lock scheduling. In queuetp, the
upper bound policy is the Random policy, and the lower
bound policy is the FIFO policy. For queuetp, a substantial
3.3x improvement in application performance is achievable,
and Smartlocks gets within about 3% of it.

The results demonstrate that the Smartlocks machine learn-
ing approach to learning and adapting policies is able to a)
learn good policies and b) learn them quickly enough that a
good policy is used for the majority of execution for the ap-
plications studied. We expect performance improvements to
be greater on future machines with greater degrees of asym-
metry. Section 4.3 further analyzes these benchmarks and
the custom policies used in them to provide guidelines for
when Smartlocks works best versus less optimally.

4.3 Smartlocks Usage Guidelines
This section defines a set of usage guidelines for Smart-

locks based on our findings. We describe a) various use-cases
of locks in applications where we have experimentally shown
that Smartlocks significantly improves performance and b)
some expected limitations of Smartlocks. Then, we study
the Smartlocks helper thread architecture, demonstrating
common scenarios where either a) running an extra thread
for optimization does not introduce appreciable performance
overhead or b) the overhead can be outweighed by the per-
formance gains of lock scheduling.

4.3.1 Self-Optimizing Data Structures
The results in Section 4.2.2 suggest that spin-lock schedul-

ing policies may have some unobvious implications for lo-
cality and load balancing in multicore applications. They
demonstrate a scenario where Smartlocks’ adaptive policy
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Figure 8: Execution time (lower is better) versus lock scheduling policy. The policy can significantly impact execution time.
Smartlocks learns a policy that approaches the lower bound on execution time.

Table 2: Expected Utility of Smartlocks by Scenario
Application Scenario Expected Utility

Work queues Good

Pipeline queues Great

Graph / grid Neutral

Heap locking Good or Neutral

significantly improves performance by automatically learn-
ing policies (i.e. the custom policy in radiosity that op-
timizes for locality and minimizes the spin times of fast
cores and the FIFO policy in queuetp that improves queue
throughput by preventing the unexpectedly fast producer
from filling up the queue and starving consumers). Addi-
tionally, the raytrace results show a scenario where Smart-
locks is not able to improve performance much: when lock
contention is low. Together, these results help us to under-
stand when Smartlocks works well vs. less optimally.

Table 2 summarizes our findings from Section 4.2.2 and
additional expectations. We studied the SPLASH-2 and
PARSEC benchmark suites to see how locks were used and
found they are most often used in the concurrent data struc-
tures that coordinate the parallelism in the applications –
specifically, in those listed in the table. We have already
shown that Smartlocks can significantly improve software
pipeline queues and work queues. We expect negligible gains
on graph / grid and good gains on memory heaps.

In graph / grid data structures, there are often thousands
of nodes, each with a lock. We expect that the current opti-
mization engine architecture within Smartlock may not scale
to thousands of Smartlocks if asymmetries change rapidly.
The problem is that the optimization engine for each instan-
tiated lock executes in the same shared helper thread and
may not execute frequently enough to be responsive to rapid
changes. Because these applications have data-dependent
behavior, we do expect rapid changes. Scalability can be
mitigated by spawning multiple helper threads.

As for memory allocator heap locking, the impact of lock
acquisition scheduling will depend on whether or not the ap-
plication uses dynamic allocation or allocates upon initial-
ization then reuses memory. The problem with the latter
is that reusing memory avoids the allocator and thus makes
lock contention in the memory allocator heap low, providing
no opportunity for Smartlocks to make improvements.

4.3.2 Helper Thread Sensitivity Analysis
As explained in Section 3.2, the adaptation components

of each instantiated Smartlock run decoupled in a shared
helper thread. This section addresses the question of what
performance tradeoffs there are for running that helper thread

alongside applications. We discuss the overhead for each of
three common multicore scenarios: many-cores, multicores
with SMT, and multicores without SMT.

Many-Cores.
In many-cores, hundreds of cores are available for applica-

tions. Except for embarrassingly parallel applications, appli-
cations will eventually reach scalability limits on these ma-
chines where further parallelization (adding cores) no longer
improves performance.7 One way to continue to improve
performance is by utilizing spare cores to run optimization
threads. The Smartlocks helper thread is one example of
this class. Some many-core computers are available today:
i.e. the Tilera Tile-Gx(r) with up to 100 cores. Many-cores
chips from Intel and AMD are coming in the next few years.

Multicores With SMT.
In a multicore SMT machine, the Smartlocks helper thread

can run in the same core as an application thread and share
execution resources. The Smartlocks helper thread is the
ideal candidate for SMT because it is computation-heavy
and light on other resources. Applications should see nearly
the full performance gains of lock scheduling while hiding
the overhead of the helper thread. SMT multicores such as
Intel’s current x86 multicore are widely available today.

Multicores Without SMT.
Large-scale multicores with or without SMT are many-

cores and will thus benefit from Smartlocks. On small-scale
multicores without SMT, using Smartlocks can improve per-
formance if the performance gains of lock scheduling out-
weigh the performance tradeoffs of taking a thread away
from the application for parallelism; otherwise, Smartlocks
should not be used. The exact tradeoff to overcome is dif-
ferent for each application and depends on its scalability.

In Figure 9, we quantify the tradeoff of taking away a
core for SPLASH-2 applications. We compare 7 application
threads vs. 6 application threads and 1 Smartlock thread.
For reference, we also compare against 6 application threads.
We use the standard large inputs to the applications and run
on an 8-core Intel Xeon(r) x5460, each core at 3.17 GHz. Our
system runs Debian Linux kernel version 2.6.26, has 8GB of
DRAM, and all code is compiled with gcc v.4.3.2.8

For this scenario and our system, we find that lock schedul-
ing would need to lower execution time by {1.1x, 1.16x, 1x,
.93x, 1.28x} to benefit barnes, fmm, radiosity, raytrace, and

7This is a well-known consequence of Amdahl’s Law and/or
the increasing overheads of communication vs computation
as parallelism becomes more fine-grained.
8ocean requires 2n threads and volrend fails on our system.
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Figure 9: Normalized execution time of SPLASH-2 applica-
tions. 6 threads with an additional thread for Smartlocks
vs. 6 threads vs. 7 threads. The slowdown reflects by what
factor Smartlocks must improve performance for net benefit.

water, respectively.9 In Section 4.2.2, we demonstrated that
lock scheduling does indeed improve radiosity by up to 1.2x.
Thus, the max net improvement is nearly 1.2x even after
accounting for the extra thread. A future study will deter-
mine if Smartlocks can yield net improvement for the other
applications. Regardless, Smartlocks is expected to do well
on a) many-cores and b) multicores with SMT support.

5. CONCLUSION
Smartlocks is a novel self-aware spin-lock library designed

to remove some of the complexity of programming multi-
cores and asymmetric multicores. Smartlocks automatically
adapts itself at runtime to help applications meet their goals.

This paper introduces a novel adaptation strategy called
lock acquisition scheduling for asymmetric multicores and
demonstrates empirically that a) Smartlocks can be applied
to a variety of asymmetries in multicores, b) that Smartlocks
and lock acquisition scheduling can significantly outperform
existing lock strategies, and c) that the machine learning en-
gine at the heart of Smartlocks can learn good policies and
install them quickly enough to improve end-to-end perfor-
mance for the applications studied.

In the same way that atomic instructions act as build-
ing blocks to construct higher-level synchronization objects,
Smartlocks can serve as an adaptive building block in many
contexts such as operating systems, libraries, system soft-
ware, DB / webservers, managed runtimes, and program-
ming models. We have demonstrated that Smartlocks can
improve performance in the work queue programming model
by adapting the work-stealing heuristic. We expect that
Smartlocks can also be applied to thread interference and
load-balancing issues on multicores by giving applications a
share of resources and intelligently managing access. Smart-
locks between applications and DRAM ports could learn op-
timal partitionings of DRAM bandwidth, and Smartlocks
guarding disks could learn adaptive read/write policies.

Smartlocks are, of course, not a silver bullet, but they do
provide a foundation for researchers to further investigate
possible synergies between multicore programming and the
power of adaptation through machine learning.
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