
A Process Calculus of Atomic Commit

Laura Bocchi1 Lucian Wischik2

Department of Computer Science
University of Bologna

Italy

Abstract

This article points out a strong connection between process calculi and atomic commit. Pro-
cess calculus rendezvous is an abstract semantics for atomic commitment. An implementation
of process-calculus rendezvous is an atomic commit protocol. Thus, the traditional correctness
properties for atomic commit are entailed by a bisimulation proof of a calculus implementation.
Actually, traditional rendezvous as found in the pi calculus corresponds to just a special case of
atomic commit called a binary cohesion. If we take the general case of atomic commit, this induces
a richer form of calculus rendezvous similar to the join calculus [10]. As an extended example of
the analogy between calculus and atomic commit, we use the induced calculus to reformulate an
earlier 2PCP correctness result by Berger and Honda [1].

Keywords: synchronous rendezvous, pi calculus bisimulation, atomic commit protocol, 2PCP

1 Introduction

This article outlines a strong connection between process calculi and atomic
commit. Process calculi are models or languages for concurrent and dis-
tributed interactive systems. They also underpin emerging Web Service stan-
dards [7,8,11]. Process calculi work through synchronous rendezvous, where
one party (such as a web service) waits for data over a communication chan-
nel; another party (the client) sends data over the channel; once the data has
been exchanged, both parties continue. The canonical process calculus is the
pi calculus [12].

1
Email: bocchi@cs.unibo.it

2
Email: lu@wischik.com

Electronic Notes in Theoretical Computer Science 105 (2004) 119–132

1571-0661/$ – see front matter © 2004 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.05.003

mailto:bocchi@cs.unibo.it
mailto:lu@wischik.com
http://www.elsevier.com/locate/entcs

Transactions and calculi have met in recent years. First, process calculi
have been used to formalize protocols used in transactions such as two-phase
commit [1], compensation triggering [5,6], nesting [4] and consensus [13]. Sec-
ond, features from transactions have been added to process calculi: [3] adds
primitives for Atomicity, Isolation and Durability, and [5] adds a primitive for
compensational transactions.

This paper describes a more fundamental connection between process cal-
culi and transactions: the basic synchronous rendezvous mechanism itself is
already a special case of atomic commit. This means that an atomic commit
protocol constitutes an implementation of a process calculus, and an imple-
mentation of a process calculus constitutes a special case of an atomic commit
protocol – we remark that traditional synchronous rendezvous is just a special
case of atomic commit, ‘binary cohesor’. Moreover, the elegant concept of
bisimulation between a process calculus and its implementation entails the
ad-hoc collection of correctness properties that is normally given for atomic
commit.

All this gives rise to an appealing possibility. (1) Synchronous rendezvous
is a high level semantics for atomic commit, with a concise notation. (2)
Web service languages already borrow asynchronous rendezvous from process
calculi. (Asynchronous rendezvous is when the sender does not wait for its
message to be consumed). (3) Web service languages also talk about atomicity
of transactions. Putting these together, maybe we could create (4) a new web
service language which uses synchronous as well as asynchronous rendezvous.
Such a language would not need to mention atomicity (since atomicity would
be implicit in its rendezvous). It would also enjoy strong formal links with
process calculi.

As mentioned, traditional synchronous rendezvous from the pi calculus is a
special case of atomic commit. We will see that general atomic commit induces
a richer rendezvous mechanism, similar to the ‘join’ of the join calculus [10].
Moreover cohesive commitment – a general case of atomic commitment –
induces the standard choice operator in process calculi.

It is commonly said that synchronous rendezvous amounts to solving dis-
tributed consensus. This is not true: rendezvous is strictly easier. In par-
ticular, distributed consensus blocks if any of the participating parties have
crashed; a binary cohesion need not block, so long as two parties remain active.

The plan of the paper is as follows. Sections 1 and 2 present traditional ren-
dezvous, and then traditional atomic commit. The latter is presented in a
non-standard manner that reveals the correspondence. Section 3 gives a pro-
cess calculus with a richer form rendezvous, which corresponds to arbitrary

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132120

atomic commit. Section 4 revisits the two phase commit protocol of [1], re-
casting its correctness statement as a bisimulation with this richer process
calculus. In doing this we provide a formal link between the protocol and the
traditional correctness properties of atomic commit.

The chief original contribution of this paper is to reveal formally the link
between atomic commit and rendezvous.

2 Rendezvous

We give a brief summary of rendezvous, as used in the pi calculus. It assumes
the following setting. There are N distributed parties that execute their code.
A party may eventually arrive at a send command ux (indicating a wish to
send data x over channel u) whereupon it blocks. Or a party may arrive at
a receive command u(y) (a wish to receive formal parameter y over channel
u) whereupon it also blocks. If there is a sender and a receiver blocked on a
channel, they may eventually rendezvous – exchange data and unblock. The
rendezvous is strictly between two parties. Even if there were several parties
willing to receive on the channel, only one of them does so.

Definition 2.1 (Pi calculus) Assume a set N of names ranged over by
x, y, Write ũ for a sequence u1 . . . un. Pi calculus terms P are

P ::= 0
∣∣ ux.P

∣∣ u(x).P
∣∣ νx.P

∣∣ P |P.

The operators νx.P and u(x).P bind x. We identify programs up to alpha-
renaming of bound names and up to structural congruence ≡ as below, closed
under contexts:

P |0 ≡ 0 P |Q ≡ Q|P P |(Q|R) ≡ (P |Q)|R (structure)

νx.νy.P ≡ νy.νx.P νx.(P |Q) ≡ P |νx.Q if x �∈ fnP (scope)

The reaction relation →, also called ‘rendezvous’, is the smallest relation sat-
isfying u x̃.P | u(ỹ).Q → P |Q{ex/ey} and closed with respect to ≡ and contexts.
Observations P ↓ u are given by

u x̃.P ↓ u u(x̃).P ↓ u P |Q ↓ u if P ↓ u or Q ↓ u

νx.P ↓ u if P ↓ u and u �= x

A pi calculus rendezvous can be represented diagrammatically. In the follow-
ing, write ux.P |u(y).Q|R to refer generically to any state which has some

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132 121

complementary output ux.P and input u(y).Q, and R′ for a state with none.

ux.P |u(y).Q|R

P |Q{x/y}|R
��

R′

(1)

There is a standard technique in process calculi, bisimulation, for judging
whether two transition systems have the same interactive behaviour:

Definition 2.2 (Bisimulation) Let (P,→p, ↓p) and (Q,→q, ↓q) be two tran-
sition systems, each equipped with an observation relation. Let S ⊆ P×Q
relate their states. Write ⇒ for →∗ and ⇓ for ⇒↓. Then S is a bisimulation
if and only if whenever P S Q then

• P ⇓p u if and only if Q ⇓q u;

• P ⇒p P ′ implies Q ⇒q Q′ with P ′ S Q′;

• Q ⇒q Q′ implies P ⇒p P ′ with P ′ S Q′.

Two terms P ∈ P and Q ∈ Q are called bisimilar when there exists a bisim-

ulation between them. Write
·
≈ for the largest bisimulation.

For instance, taking P and Q both from the pi calculus, then A = ux | u(y).P
and B = ux | νu′.(u(y).u ′y|u′(y).P) are bisimilar, via S= {(A, B)} ∪ I.

3 Atomic Commit

We give a brief summary of atomic commitment. This summary is unconven-
tional: it has been structured to reveal the similarity with rendezvous.

A typical setting of atomic commit is in a distributed database system.
When a transaction is proposed, some distributed parts might be able or
unable to accept the transaction. The transaction can only be committed
only if everyone was able. Let us suppose N independent parties. Each of
them

• is either able or unable;

• when asked to vote on whether the transaction should go ahead, votes either
yes (if the party is able to accept the transaction) or no (if it is unable);

• reaches a decision that is either commit or abort, and terminates.

It is required that all distributed parties reach the same decision (commit or
abort). We call this the ‘collective decision.’ In order to achieve this unanimity
the parties engage in a protocol between themselves, sending their votes and
exchanging messages. It is necessary for the protocol to take into account the

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132122

possibility that some some messages are lost (communication failure) or some
parties crash (site failure).

Formally, for a protocol to be called an ‘atomic commit’ protocol it must
satisfy the following standard properties [2]:

AC1. All parties that reach a decision reach the same one.

AC2. A party cannot reverse its decision after it has reached one.

AC3. Commit can only be reached if all parties voted yes (ie. were able).

AC4. If all parties were able and there were no failures, the collective decision
will be to commit.

AC5. At any stage, if all failures are repaired, then all parties will eventually
reach a decision. (This is also referred to as weak-termination or liveness).

There are other properties which are implied by existing literature, and satis-
fied by existing protocols:

AC6. A party cannot change from able to unable, or vice versa.

AC7. If there are enough failures, the collective decision will be to abort.

Consider a protocol as a set of states with transitions → between them. A
transition might be the an emission of a message, or a simultaneous broadcast
and receipt (in the case of instantaneous communication), or a message-loss
event or site failure. We will partition all the possible states into the following
disjoint and exhaustive partitions. Write (x, y) for a state where x parties have
decided to commit and y have decided to abort. Write (x, y)a if all parties are
able, (x, y)u if some are unable. Let i, j range over 1 . . .N−1. The partitions
are:

• (0, 0)a – all able

• (0, 0)u – some unable

• (i, 0)

• (0, j)a – all able

• (0, j)u – some unable

• (N, 0)

• (0, N)a – all able

• (0, N)u – some unable

• (i, j), where i + j<N

• (i, j), where i + j=N .

Each of the properties imposes constraints on which inter-state transitions
are disallowed, or which must exist. For instance, AC4 means there exists

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132 123

a sequence (0, 0)a ⇒ (N, 0). AC2 means there is no sequence of transitions
(0, N) ⇒ (N, 0). The table below summarizes all the transitions, and an
explanation follows. By AC1, the two states (i, j) : i+j<N and (i, j) : i+j=N
are never reached; the have therefore been omitted from the table.

from\to (0, 0)a (0, 0)u (i, 0) (0, j)a (0, j)u (N, 0) (0, N)a (0, N)u

(0, 0)a id /\AC6 /\AC6 AC4 AC7 /\AC6

(0, 0)u /\AC6 id /\AC3 /\AC6 /\AC3a /\AC6a AC5a

(i, 0) /\AC2 /\AC3 id /\AC2 /\AC2 AC5b /\AC2b /\AC2b

(0, j)a /\AC2 /\AC6 /\AC2 id /\AC6 /\AC2c AC5c /\AC6c

(0, j)u /\AC6 /\AC2 /\AC2 /\AC6 id /\AC2d /\AC6d AC5d

(N, 0) /\AC2 /\AC2 /\AC2 /\AC2 /\AC2 id /\AC2 /\AC2

(0, N)a /\AC2 /\AC6 /\AC2 /\AC2 /\AC2 /\AC2 id /\AC6

(0, N)u /\AC6 /\AC2 /\AC2 /\AC2 /\AC6 /\AC2 /\AC6 id

To explain, the table shows whether some sequence of transitions ⇒ from a
state (row) to a state (column) is possible or not. For instance, a sequence from
(0, 0)a ⇒ (N, 0) is possible due to AC4. This does not mean that the sequence
will necessarily be taken; it merely means that it is possible, supposing lucky
nondeterministic choices and no failure. The table marks these possibilities in
bold, with the name of the rule which indicates that possibility. By definition,
every state admits the empty sequence of transitions back to itself, which is
denoted id. Where one of the properties rules out a transition, this is indicated
by a cross. We remark on the use of AC5 (weak-termination). One instance
of this, which we denote (a), is that from (0, 0)u it is possible to reach either
(N, 0) or (0, N)a or (0, N)u. It happens that (N, 0) is ruled out due to AC3
and (0, N)a is ruled out due to AC6. The only possibility left is (0, N)u.
The table has been annotated with superscripts a . . . d to show four separate
applications of AC5.

Some spaces in the table are left unspecified, such as for (0, 0)a ⇒ (i, 0).
Hence a protocol is allowed to include the transition, or allowed to omit it.

Definition 3.1 (Protocol) An atomic commit protocol is any transition sys-
tem (P,→, ↓) where P can be partitioned into the eight states listed above, and
where transition-sequences P ⇒ P ′ are allowed or disallowed as per the table
above.

Write P ↓ a in a state where all parties are able, P ↓ u in a state where

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132124

some are unable, P ↓ cmt in a state where one or more parties have decided
to commit, and P ↓ abt in a state where one or more have decided to abort.

In particular, the following is one possible atomic-commit protocol.

(0, 0)a

(N, 0)
��

(0, N)a
��

�
�

�
�

�
�

�
�

�
�

�
�

(0, 0)u

(0, N)u
��

(2)

This is an obvious diagram that corresponds to our intuition of what an atomic
commitment protocol is: it either succeeds, or it fails! One might think of it
as a high-level semantics for atomic commit. The following theorem justifies
this:

Theorem 3.2 (Correctness) A transition system (P,→, ↓) is an atomic-
commit protocol if and only if it is bisimilar to Diagram 2.

Proof. Straightforward table lookup.

There is one further refinement to make in Diagram 2. The intended
meaning of ‘abort’ is to return a party to the state it was before the attempted
commitment. It is thus able to entertain further commitments. This can be
represented by transitions (0, N)a → (0, 0)a and (0, N)u → (0, 0)u. With
these transitions the diagram degenerates, and AC7 is redundant:

(0, 0)a

(N, 0)
��

(0, 0)u

(3)

Remark that Diagrams 1 and 3 are basically the same.

4 General Rendezvous

The preceding section has taken bisimulation from the process calculi arena,
and applied it to atomic commit. In this section instead we take general
commitment and use it to induce a general rendezvous mechanism.

Use the following analogy. An atomic commitment is like a rendezvous.
When parties are able to commit, it is like having ux and u(y) in the calculus.
When a party decides to commit, it is like unblocking itself due to having
performed a rendezvous.

Atomic commit allows multiple parties to participate, whereas pi ren-
dezvous allows only two. This suggests to consider a different form of ren-

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132 125

dezvous which allows multiple parties, for instance

u a | v b | w c | u(x)∧v(y)∧w(z).P → P{abc/xyz}.

Write J for a join-pattern u1(x̃1).P1∧ . . . ∧un(x̃n).Pn.

There is a further generalization to make, based on the commit inside a
cohesor transaction. Cohesors are presented in BTP (see [9] for an overview)
and a similar concept is also in WS-Transactions [8]. Normally, atomic commit
requires that either all parties abort or they all commit. But a cohesor instead
requires that either all abort, or some pre-defined subset commit while the rest
abort. A cohesor has a list of acceptable subsets. As an example, consider a
holiday booking which involves flying to Venice and hiring a water-taxi or a
gondola. There are two acceptable subsets: (Plane ∧ Water-taxi) and (Plane
∧ Gondola). Cohesors induce a choice operator in the calculus. For example,
writing p() for the plane, w() for the water-taxi and g() for the gondola,

p .P | t .Q | p()∧w().T + p()∧g().G → P | Q | T.

p .P | g .Q | p()∧w().T + p()∧g().G → P | Q | G.

Definition 4.1 The general rendezvous calculus has terms P as for the pi
calculus (Definition 2.1) but with inputs u(x̃).P replaced by

P ::= . . .
∣∣ J1+ . . .+Jm.

Again we identify terms up to ≡. The reaction relation → is the smallest
satisfying the following and closed under contexts:

u 1x1.P1 | . . . | u nxn.Pn | J1+ . . .+Jm | R →
P1| . . . |Pn | Q1{x1/y1}| . . . |Qn{xn/yn} | R

if some Jj = u1(y1).Q1∧ . . . ∧un(yn).Qn.

Observations are as for the pi calculus but with

J1+ . . .+Jm ↓ u if some Ji contains u(x̃).P .

Any protocol for atomic or cohesive commitment must be bisimilar to a
simple rendezvous in this calculus.

Join patterns, and summation of join patterns, were invented in the join
calculus [10] of Fournet and Gonthier. But actually, there is an essential differ-
ence between the join calculus and our work. In the join calculus, senders have
no continuations (so there is just p instead of p .P). Moreover, all receivers for
a given name must be at the same physical location. These two constraints

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132126

mean that the rendezvous no longer needs any protocol; this allows a very
lightweight implementation of rendezvous. By contrast, our project is to use
rendezvous as a high-level model of commitment protocols.

5 To Express 2PCP

We illustrate our general rendezvous calculus by revisiting an earlier correct-
ness result due to Berger and Honda [1]. The intention of this section is to
show a practical example of our rendezvous calculus, by applying it to an
existing problem. This section therefore demands some familiarity with the
cited work. However, this section is not needed for the rest of the paper.

Berger and Honda implemented a two-phase commit protocol over their
formal model of lossy network (based on a modified asynchronous pi calculus).

Writing 2PCP for their protocol, they proved that 2PCP
·
≈ !abort⊕ !commit

in all contexts: to an outside observer, the protocol either commits or aborts.
Here the notation P ⊕Q is non-deterministic choice; it is shorthand for νc.(c |
c().P | c().Q). Note: this section does not stand along; it assumes the reader
is familiar with [1].

We now reformulate their correctness result. They considered a setting of
n parties, where each party non-deterministically choose to be able or unable.
Write AC for the high-level representation of this:

AC = u1()∧ . . . ∧un().KC | u1.K1⊕!una | . . . | un.Kn⊕!una.

Write [[AC]] for Berger and Honda’s implementation of AC into their formal
network model and protocol. Then the required correctness result is basically

AC
·
≈ [[AC]].

Even if all parties were able to react (through the right non-deterministic
choices), it is still possible that an instance of the protocol might lead to failure
(through message-loss). Applying Lemma 5.3 of [1] to Diagram 3 above, we
let each party attempt to recover from this kind of failure by retrying.

There is one subtlety. Two phase commit is a non-compositional protocol:
it has a fixed topology, in the sense that all the parties involved in the protocol
have already fixed to use each other as partners in their interaction, and no
one else. In the term AC, their fixed topology was identified by the names ũ.
We reflect the assumption of fixed topology by asserting that ũ ∩ fn K̃ = ∅,

and proving νũ.AC
·
≈ [[νũ.AC]].

The proof is largely similar to that given by Berger and Honda. So as
not to duplicate too much of their work, we fix upon a simpler setting. Fol-
lowing Lemma 5.2 of [1] we replace all timeouts with input-guarded choices:

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132 127

timer(u.P, Q) = νt.(t | u.P + t.Q). We ignore site failure (ie. crash/recovery).
Let the coordinator itself not vote. Given these simplifications, Berger and
Honda’s protocol is as follows. This is written in the low-level network cal-
culus of [1]; we do not repeat its definition here. In the following, we use
[[ui.Ki]] = Pi and [[u1()∧ . . . ∧un().KC]] = C, and we write PN for

∏
n∈N Pn.

[[AC]] = νd̃ẽ.
(
[C]euee | [P1⊕!una]d1

| . . . | [Pn⊕!una]dn

)
Pi = ui | P ′

i

P ′
i = timer(di[Ki, (diei)Pi], ei|P

′
i)

C = νc̃a.
(
Cwait

N | Ctrue | Cfalse
)

Cwait
i = timer(ui.ci, a)

Ctrue = c1().cn().(Strue
N | KC)

Cfalse = a().νd̃′ẽ′.(Sfalse
N | C{d′e′/de}

)
Strue

i = dileft | ei.S
true
i

Sfalse
i = diright〈d′

ie
′
i〉 | ei().S

false
i

Theorem 5.1 νũ.AC
·
≈ [[νũ.AC]].

Proof. Start with smaller lemmas, using the congruence of [1] Section 4.1.
(Write P n for n parallel copies of P .) The first lemma allows for a simplifi-
cation when success is inevitable; it corresponds to [1] Lemma 5.3. For any n
and m, we have

νde.
(
[d leftm | e.Strue] | [en | timer(d[K, (de)P], e|P ′)]d

)
≈ K. (4)

Proof: Denote the left hand side by (m, n). Construct S= {((m, n), K)}
for all m, n. The left hand side admits these internal transitions: either a
timeout yielding (m, n+1); or an interaction on e yielding (m+1, n−1); or a
message-loss on e giving (m, n−1), or a message-loss on d giving (m−1, n),
or an interaction on d yielding K | νde.(dleftm−1 | e.Strue | en). It admits no
external transitions except for those in K. Hence it is ≈ K.

For the next lemma, recall that the process proceeds in rounds. This
lemma allows the simplification that, when a next round has started, then the
previous round can be discarded.

νde.νd′e′.
(
dright〈d′e′〉m | e.Sfalse | C{d′e′/de}

| en | timer(d[K, (de)P], e|P ′)
) ≈ νde.(C|P). (5)

Proof: denote the left hand side by (m, n). This admits the same transitions as
for 4, but this time the final interaction on d yields νd′e′.(C{d′e′/de}|P{d′e′/de} |

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132128

νde.(dright〈d′e′〉 | e.Sfalse | en)). This is ≈ νd′e′.(C{d′e′/de}|P{d′e′/de} ≡ C|P .

The next lemma allows a convenient simplification: whether an inter-
nal channel ci has reacted with Ctrue or not, is immaterial. It is like [1]
Lemma 5.6.v.

νci.(ci | ci.P) ≈ P. (6)

Proof: trivial.

We now prove the case where every party has made a non-deterministic
choice to be able:

νd̃ẽ.
(
[C]euee | [P1]d1

| . . . | [Pn]dn

)
≈ KC |K1| . . . |Kn. (7)

This case corresponds to [1] Theorem 5.1.ii. After all the non-deterministic
choices have been made, we identify three phases:

(i) Vote-gathering. Characterise states in this phase by a set V ⊆ N of
parties where the vote ui : i ∈ V has not yet been sent, and a function
E : N �→ int such that there are E(i) copies of ei. Also a partition of N
into W , C, A such that there is still Cwait

i : i ∈ W and ci : i ∈ C and an
a for each element in A. States in this phase are

νd̃ẽc̃a.
(
[Cwait

W | Ctrue | Cfalse | cC | a|A|]euee | [P ′′
1]d1

| . . . | [P ′′
n]dn

)
.

where P ′′
i = un

i | e
E(i)
i | P ′

i and n = if i ∈ V then 1 else 0. By Equation 6,
any subsequent state where a ci has reacted with Ctrue is bisimilar to a
state in this phase.

(ii) All votes in favour. States in this phase are

νd̃ẽ.
(
[Strue

N | Kc | νa.Cfalse]euee | [P ′′
1]d1

| . . . | [P ′′
n]dn

)
.

where V = N and P ′′ is as above. By Equation 4, this is ≈ KC |K1| . . . |Kn.

(iii) Some votes against. States in this phase are

ν edee ed′ee′eca.
`
[Cwait

W | Ctrue | Sfalse | C{d
′e′/de} | cC | an]euee | [P ′′

1]d1
| . . . | [P ′′

n]dn

´
.

where W ⊆ N and for any n. By Equation 5, all these states are ≈ to
Equation 7.

To complete the proof of Equation 7, construct S=
·
≈ ∪{(Q, KC |K1| . . . |Kn)}

for all Q in any of the phases above. The only external transitions made by
any Q are those from phase 2, matched by some K. As for internal transitions,

the three phases are closed (up to
·
≈) under internal transitions.

The unable case (like 7 above, but where at least one of the parties made
a non-deterministic choice for !una) is similar; it corresponds to [1] Theo-
rem 5.1.i.

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132 129

The result follows from combining the able and unable cases.

6 Conclusions

We remark on compositionality. Traditional analysis of atomic commit pro-
tocols (eg. [1,4]) is not compositional: the analysis starts with a fixed set of
parties and no other parties are considered.

Our calculus from Section 4 is partly compositional in the sense that a
term u()∧v().P may be placed (‘composed’) in any context | u.Q | u.R | v.S,
and go on to rendezvous with whatever it finds. In effect, a program chooses
to make a transaction involving one u service and one v service, but it does
not specify which particular providers of the services.

It would also be interesting to consider a fully compositional rendezvous,
where the full set of participants in the protocol are not known by the initiator.
This corresponds to the web-service situation of nested transactions: eg. I
make a transaction with the ticket agent, and as part of this the ticket agent
makes a sub-transaction with the airline and its bank. We conjecture that
such full compositionality might be achieved through allowing joins also of
outputs, rather than just the joins of inputs that we find in join patterns:

agent()∧gondola().P | gondola.Q | agent∧airline()∧bank().R | airline.S | bank.T.

This term should admit a rendezvous of all parties simultaneously, giving
P |Q|R|S|T . We leave this for further work. (We remark that summation of in-
put and output together has traditionally been considered unimplementable [14]
on the grounds that certain rendezvous cannot be settled in bounded time. It
seems important to find how this unimplementability applies to nested trans-
actions.)

Further work

We are interested in applying the techniques of this paper to compensations.
Compensations are used for long-running transactions, where it is inappropri-
ate to keep all parties locked while the atomic-commit protocol proceeds. The
idea is that a party can optimistically assume that the transaction succeeded,
but then roll-back (‘compensate’) if this assumption proves false. A program
with compensations will typically yield intermediate states in which some par-
ties disagree about whether a decision should be taken; but any observer who
observes such disagreement will itself be rolled-back, so the disagreements
should not count as observable.

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132130

We start from the compensational pi calculus of [5]. This defines a compens-
ation-triggering mechanism, and also a sequencing operator (;). However it
does not provide primitives with which to program the rolling-back of events.
Such programmer roll-backs are the subject of ongoing research. In the mean-
time, we give a simpler example of atomic commit in the compensational pi
calculus – one which leverages both compensation-triggering and sequencing.
It uses contexts t(P, F, B, C). This context behaves as process P , but if it
reduces to an abort command then the compensation F is triggered; F stands
for failure-handler. The two terms B and C are used for nesting of transac-
tions, but are not needed here. (Again, we leave definition of the formalism
to [5].)

The low-level atomic commit implementation is

[[AC2]] = t
(
(
∏

i∈N (abort ⊕ done)); x, !una, B, C
)

where B = C = done. In the program, all N parties make a non-deterministic
choice to abort or proceed. These decisions are consolidated by the structural
rules abort|abort ≡ abort and done|P ≡ P into just a single abort;x or
done; x. From the first,

t(abort; x, !una, done, done) → !una.

From the second,

t(done; x, !una, B, C) →
·
≈ x.

Hence a match with a high-level semantics: let AC2 = νũ.(u1()∧ . . . ∧un().x |
u1⊕!una | . . . | un⊕!una). Then again

AC2
·
≈ [[AC2]].

References

[1] Berger, M. and K. Honda, The two-phase commitment protocol in an extended pi-calculus, in:
EXPRESS ’00, Electronic Notes in Theoretical Computer Science 39 (2000).
URL ftp://ftp.dcs.qmw.ac.uk/lfp/martinb/express00.ps.gz

[2] Bernstein, P. A., V. Hadzilacos and N. Goodman, “Concurrency Control and Recovery in
Database Systems,” Addison-Wesley, 1987.
URL http://research.microsoft.com/pubs/ccontrol/

[3] Black, A., V. Cremet, R. Guerraoui and M. Odersky, An equational theory for transactions,
in: G. Goose, J. Hartmanis and J. van Leeuwen, editors, FSTTCS 2003, Lecture Notes in
Computer Science 2914 (2003), pp. 38–49.
URL http://www.cse.ogi.edu/~black/publications/fsttcs221.pdf

[4] Bocchi, L., A calculus for long running transactions, in: FASE 2004, 2004, to appear.
URL http://www.cs.unibo.it/~bocchi/pubs.html

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132 131

ftp:// ftp.dcs.qmw.ac.uk/ lfp/ martinb/ express00.ps.gz
http:// research.microsoft.com/ pubs/ ccontrol/
http:// www.cse.ogi.edu/ ~black/ publications/ fsttcs221.pdf
http:// www.cs.unibo.it/ ~bocchi/ pubs.html

[5] Bocchi, L., C. Laneve and G. Zavattaro, A calculus for long running transactions, in: E. Najm,
U. Nestmann and P. Stevens, editors, FMOODS 2003, Lecture Notes in Computer Science
2884 (2003), pp. 124–138.
URL http://www.cs.unibo.it/~laneve/papers/biztalk.pdf

[6] Bruni, R., C. Laneve and U. Montanari, Orchestrating transactions in join calculus, in: L. Brim,
P. Jančar, M. Křetinský and A. Kučera, editors, CONCUR 2002, Lecture Notes in Computer
Science 2421 (2002), pp. 321–337.
URL http://www.cs.unibo.it/~laneve/papers/zsimpl.ps

[7] Business Process Management Initiative, Business process modelling notation (BPML),
website.
URL http://www.bpmi.org/

[8] Cabrera, F., G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey and S. Thatte, Web services
transactions, website.
URL http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/

[9] Dalal, S., S. Temel, M. Little, M. Potts and J. Webber, Coordinating business transactions on
the web, IEEE Internet Computing 7 (2003), pp. 30–39.
URL http://csdl.computer.org/comp/mags/ic/2003/01/w1030abs.htm

[10] Fournet, C. and G. Gonthier, The reflexive chemical abstract machine and the join-calculus,
in: Proceedings of POPL ’96, ACM (1996), pp. 372–385.
URL
http://research.microsoft.com/~fournet/papers/reflexive-cham-join-calculus.ps

[11] Microsoft, Biztalk server, website.
URL http://www.microsoft.com/biztalk/

[12] Milner, R., “Communicating and mobile systems: the Pi-calculus,” Cambridge University
Press, 1999.

[13] Nestmann, U., R. Fuzzati and M. Merro, Modeling consensus in process calculus, in: R. Amadio
and D. Lugiez, editors, CONCUR 2003, Lecture Notes in Computer Science 2761 (2003), pp.
400–414.
URL http://lamp.epfl.ch/~uwe/doc/nestmann.fuzzati.merro-concur03.pdf

[14] Palamidessi, C., Comparing the expressive power of the synchronous and the asynchronous pi-
calculus, in: POPL’97, ACM SIGPLAN/SIGACT (1997), pp. 256–265.
URL http://www.cse.psu.edu/~catuscia/papers/pi_calc/popl.ps

L. Bocchi, L. Wischik / Electronic Notes in Theoretical Computer Science 105 (2004) 119–132132

http:// www.cs.unibo.it/ ~laneve/ papers/ biztalk.pdf
http:// www.cs.unibo.it/ ~laneve/ papers/ zsimpl.ps
http:// www.bpmi.org/
http:// www-106.ibm.com/ developerworks/ webservices/ library/ ws-transpec/
http:// csdl.computer.org/ comp/ mags/ ic/ 2003/ 01/ w1030abs.htm
http:// research.microsoft.com/ ~fournet/ papers/ reflexive-cham-join-calculus.ps
http:// www.microsoft.com/ biztalk/
http:// lamp.epfl.ch/ ~uwe/ doc/ nestmann.fuzzati.merro-concur03.pdf
http:// www.cse.psu.edu/ ~catuscia/ papers/ pi_calc/ popl.ps

	Introduction
	Rendezvous
	Atomic Commit
	General Rendezvous
	To Express 2PCP
	Conclusions
	References

