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Abstract. Concurrency control for Transactional Memory (TM) is in-
vestigated as a means for improving resource usage by adjusting dy-
namically the number of threads concurrently executing transactions.
The proposed control system takes as feedback the measured Trans-

action Commit Rate to adjust the concurrency. Through an extensive
evaluation, a new Concurrency Control Algorithm (CCA), called P-only
Concurrency Control (PoCC), is shown to perform better than our other
four proposed CCAs for a synthetic benchmark, and the STAMP and
Lee-TM benchmarks.

1 Introduction

Explicit concurrent programming using fine-grain locks is known to be challeng-
ing for developing robust and correct applications. However, the need to simplify
concurrent programming has become a priority with the prospect of concurrent
programming becoming mainstream to take advantage of multi-core processors.
Transactional Memory (TM) [1, 2] is a new concurrent programming paradigm
that aims to ease the complexity of concurrent programming, yet still offer per-
formance and scalability competitive with fine-grain locking.

TM requires developers to mark code blocks that access shared data struc-
tures as transactions. A runtime layer manages transactions’ concurrent data
accesses. Conflicts between any two transactions occur when one attempts to
modify data previously modified or read by another active transaction. This
conflict for shared data is resolved by a contention management policy [3] that
decides to abort one transaction, and let the other continue. A transaction com-

mits if it executes its code block without being aborted, making globally visible
its modifications to shared data.

The motivation for this work is the observation that TM applications ex-
hibit fluctuating amounts of exploitable parallelism, i.e. the maximum number
of transactions that can be committed concurrently, without any aborts, varies
over time. We hypothesize that dynamically adjusting the number of transac-
tions allowed to execute concurrently in response to the fluctuating exploitable
parallelism should improve resource usage when exploitable parallelism is low,



and improve execution time when it is high. Transaction Commit Rate (TCR),
the percentage of committed transactions out of all executed transactions in a
sample period, is investigated as a suitable application-independent measure of
exploitable parallelism.

The only previous work is our own proposal of four Concurrency Control
Algorithms (CCAs) [4]. This paper evaluates a new CCA, called P-only Con-

currency Controller (PoCC), against the previously proposed CCAs using a
synthetic benchmark and the STAMP and Lee-TM benchmarks. The new CCA
is called P-only Concurrency Controller (PoCC). The evaluation explores the
effect of the CCAs on the benchmarks’ execution time, resource usage, wasted
work, aborts per commit (APC), and responsiveness to changes in TCR. The re-
sults show PoCC gives similar or better performance, is more responsive to TCR
changes, and more robust to noise in TCR changes, than the previous CCAs.

Section 2 introduces PoCC, and compares it to the other four CCAs. Section
3 details the experimental platform used in the evaluation, and Section 4 presents
the results. Finally, Section 5 summarizes the paper.

2 P-only Concurrency Control

Using control theory terminology, the control objective is to maintain the process

variable TCR at a set point desirable value, in spite of unmeasured disturbance

from fluctuating exploitable parallelism. The controller output is to modify the
number of transactions executing concurrently in response to changes in TCR.
For the purposes of this paper, the number of transactions executed concurrently
is controlled by enabling or disabling threads that execute transactions. PoCC
is based on a P-only controller [5] and operates as a loop:

1. If currentTime − lastSampleTime < samplePeriod, goto Step 1;
2. If numTransactions < minTransactions, goto Step 1;
3. TCR ← numCommits / numTransactions × 100;
4. ∆TCR ← TCR − setPoint ;
5. If (numCurrentThreads= 1) & (TCR > setPoint);

(a) then ∆threads ← 1;
(b) else ∆threads ← ∆TCR × numCurrentThreads / 100

(rounded to the closest integer);
6. newThreads← numCurrentThreads + ∆threads;
7. Adjust minThreads ≤ newThreads ≤ maxThreads ;
8. numCurrentThreads← newThreads;
9. Set lastSampleTime← currentTime, go to Step 1;

where the parameters are:

– samplePeriod is the sample period (tunable);
– minTransactions is the minimum number of transactions required in a sam-

ple (tunable);
– setPoint is the set point value (tunable);



– minThreads is the minimum number of threads, for this paper one; and
– maxThreads is the maximum number of threads, for this paper the maximum

number of processors, or cores, available.

The setPoint determines how conservative PoCC is towards resource usage
efficiency. A high setPoint, e.g. 90%, is quick to reduce threads when TCR de-
creases, but slow to adapt to a sudden large increase in TCR, and vice versa.
The evaluation in Section 4 shows that maintaining a fairly high setPoint of 70%
does not result in performance degradation.

PoCC calculates ∆threads using the relative gain formula described in Step
5, which allows setPoint to be a value, rather than a range. The other four CCAs
(see [4] for their description) use a range of 50-80% to calculate ∆threads with
an absolute gain formula, and, thus, a small ∆TCR leads for certain to a modified
numCurrentThreads. In addition over large thread counts, the range produces
a coarse-grain control. In contrast, PoCC, using the relative gain formula (Step
5), allows ∆threads to be zero at low thread counts in response to small ∆TCR,
and allows also fine-grain control at large thread counts.

Compared with the other four CCAs, PoCC adds a new parameter, minTrans-

actions, that acts as a filter against noisy TCR profiles such as in Figure 6. Such
noisy samples may occur due to the average transaction execution time being
longer than the samplePeriod. Few transactions execute every samplePeriod, and
thus their outcomes (abort/commit) heavily bias TCR. The other CCAs, lacking
PoCC’s filter, absorbed noise by using a large samplePeriod, which is a trade-off
with responsiveness, as shown in Section 4.4. However, this may mean that sam-

plePeriod needs to be re-tuned for each new application to avoid either slow or
noisy responses. In PoCC, samplePeriod is determined based on the overhead of
executing the control loop. This reduces the application dependence, and makes
PoCC suitable for general use.

3 Experimental Platform

3.1 Concurrency Control Parameters

PoCC is implemented in DSTM2, a state-of-the-art Java-based software TM
implementation [6]. PoCC’s parameters are: setPoint is 70%, minTransactions

is 100. Experimental evaluation found PoCC took on average 2ms to execute its
loop, thus samplePeriod is set to 1 second to make its overhead negligible.

The other four CCAs (see [4] for more details) are also evaluated, and ab-
breviated as SA (SimpleAdjust), EI (ExponentialInterval), EA (ExponentialAd-
just), and EC (ExponentialCombined). Their configuration is left to their default
values.

3.2 Software & Hardware Platform

All popular contention managers [7–9] have been used, but only results for the
Priority contention manager are presented, as it gives the best execution times



when executing without concurrency control. The Priority manager prioritizes
transactions by start time, aborting younger transactions on conflict. The plat-
form used for the evaluation is a 4x dual core (8 core) AMD Opteron 2.4GHz
system with 16GB RAM, openSUSE 10.1, and Java 1.6 64-bit using the pa-
rameters -Xms1024m -Xmx14000m. As the system has a maximum of 8 cores, all
benchmarks are executed using 1, 2, 4, and 8 initial threads (except for the syn-
thetic benchmark, see below). We use the term initial threads as concurrency
controlled execution may dynamically change at runtime the number of threads
(between 1 and 8).

3.3 Benchmarks

One synthetic and seven real, complex benchmark configurations are used. The
synthetic benchmark and each complex benchmark configuration is executed
five times, and the results averaged. The synthetic benchmark, StepChange,
oscillates the TCR from 80% to 20% in steps of 20% every 20 seconds (as seen in
Figure 6), and executes for a fixed 300 seconds. StepChange needs to be executed
with the maximum 8 threads to allow its TCR oscillation to have impact, as it
operates by controlling the number of threads executing committed or aborted
transactions.

Configuration Name Application Configuration

StepChange StepChange max tcr:80, min tcr:20, time:300,
step size:20, step period:20,

Genome Genome gene length:16384,
segment length:64,
num segments:4194304

KMeansL KMeans low contention clusters:40, threshold:0.00001,
input file:random10000 12

KMeansH KMeans high contention clusters:20, threshold:0.00001,
input file:random10000 12

VacL Vacation low contention relations:65536,
percent of relations queried:90,
queries per transaction:4,
number of transactions:4194304

VacH Vacation high contention relations:65536,
percent of relations queried:10,
queries per transaction:8,
number of transactions:4194304

Lee-TM-ter Lee low contention early release:true, file:mainboard
Lee-TM-t Lee high contention early release:false, file:mainboard

Table 1. Benchmark configuration parameters used in the evaluation.

The complex benchmarks used are Lee’s routing algorithm [10], and the
STAMP [11] benchmarks Genome, KMeans, and Vacation, from STAMP version



0.9.5, all ported to execute under DSTM2. All benchmarks, with the exception
of Genome, are executed with high and low data contention configurations, as
shown in Table 1. Lee’s routing algorithm uses early release [3] for its low data
contention configuration, which releases unnecessary data from a transaction’s
read set to reduce false conflicts. This requires application-specific knowledge to
determine which data is unnecessary, and manual annotation of the code. The
input parameters for the benchmarks are those recommended by their respective
providers.

4 Performance Evaluation

In control theory, a controller’s performance is primarily measured as its effec-
tiveness to reduce variance in its output. This section evaluates the effectiveness
of the five CCAs at reducing variance in execution time, resource usage, wasted

work and aborts per commit. Hereafter, static execution refers to execution with
a fixed number of threads, and dynamic execution refers to execution under any
CCA.

4.1 Execution Time

For each benchmark, the CCAs should: a) improve execution time over static
execution using an initial number of threads that under-exploits the exploitable
parallelism, and b) reduce variance in execution time with different numbers
of initial threads. Both points are validated in Figure 1. Genome, Lee-TM-ter,
and VacH show clear examples of the CCAs improving execution time when the
initial number of threads under-exploits the available exploitable parallelism,
and reducing variance in execution time irrespective of the initial number of
threads. There is little difference in execution time between the CCAs, but only
PoCC consistently performs well, whereas SA, EI, EA, and EC all show poor
execution times in some benchmark configurations.

Figure 2 presents the execution time standard deviation for each benchmark
to compare the effectiveness of the CCAs at reducing execution time variance.
The results show PoCC is the best on average, reducing standard deviation by
31% over the next best, EC. Furthermore, averaging speedup of each CCA over
static execution for each benchmark configuration, PoCC is second-best with an
average speedup of 1.26, and EC is best with a slightly improved speedup of
1.27. Averaging speedup of each CCA over best-case static execution for each
benchmark, PoCC is joint-best with EC with an average slowdown of 5%, while
EI, EA, and SA suffer an average slowdown of 6%, 7%, and 10%, respectively.

4.2 Resource Usage

Resource usage is calculated by summing, for all samples, the sample duration
multiplied by the number of threads executing during the sample. For each
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Fig. 1. Execution times for complex benchmarks. StepChange benchmark data is omit-
ted as it executes for a fixed 300 seconds. Less is better.
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Fig. 2. Execution time std deviation over
all initial threads. Less is better.
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Fig. 3. Resource efficiency vs. static exe-
cution at 8 initial threads. More is better.

benchmark, the CCAs should improve resource usage over static execution using
an initial number of threads that over-exploits the exploitable parallelism.

We choose to compare resource usage at 8 initial threads for two reasons: 1)
applications that scale past 8 threads should show little resource usage improve-
ment, and 2) applications that do not scale past 8 threads should get maximum
resource usage saving at 8 threads with dynamic execution, and thus allow direct
comparison between the CCAs. Figure 3 presents the resource usage improve-
ment for each CCA, and shows PoCC is the best on average, improving resource
savings by 24% over the next best, EC.

4.3 Transaction Execution Metrics

Two transaction execution metrics are presented: wasted work and aborts per

commit (APC). Wasted work is the proportion of execution time spent in ex-
ecuting transactions that eventually aborted, and APC is the ratio of aborted
transactions to committed transactions. Both metrics are a measure of wasted
execution, and are thus of interest since concurrency control attempts to reduce
variance in TCR, which should result in reduced variance in these metrics.
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Fig. 4. Wasted work standard deviations
for the benchmarks. Less is better.
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Figure 4 presents wasted work standard deviations. PoCC significantly re-
duces variability in wasted work: on average its standard deviation is 88% lower
than the next best CCA, which is EC. Figure 5 presents APC, and again PoCC
reduces variability: on average its APC standard devation is 26% lower than the
next best CCA, which is EC. Furthermore, PoCC reduces average wasted work
by 16% over the next best CCA, which is EC, and reduces average APC by 11%
over the next best CCA, which is also EC.

4.4 Controller Responsiveness

Controller response is usually measured by three metrics: 1) response rate: how
fast the number of threads rises when TCR changes, 2) settle rate: how quickly
the number of threads stops oscillating following the response, and 3) overshoot :
maximum number of threads above the settled value number of threads.

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250

T
C

R
 (

%
)

Time

StepChange - Static

8 threads

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140  160  180  200

T
C

R
 (

%
)

Time

Lee-TM-ter - Static

2 threads
4 threads
8 threads

Fig. 6. TCR profiles of StepChange and Lee-TM-ter.

The responsiveness analysis is restricted to StepChange and Lee-TM-ter.
Both exhibit TCR profiles that stress the CCAs as shown sampled at 1 sec-
ond intervals in Figure 6. StepChange changes TCR by large amounts at fixed
intervals, and Lee-TM-ter has a wildly oscillating TCR due to a fast sample rate.

Figure 7 presents the CCAs’ response graphs. PoCC shows good response to
both benchmarks: it responds to StepChange quickly due to the 1 second sample
rate, but is also robust to noise in Lee-TM-ter due to the minTransactions filter.
It has no overshoot or settle rate.

The other four CCAs have a slow sample rate, which gives them no overshoot
or settle rate, makes them robust to noise in Lee-TM-ter, but respond poorly
in StepChange. This is the trade-off for these four CCAs; responsiveness vs.
robustness, as mentioned in Section 2.

5 Conclusion

This work has presented a new concurrency control algorithm, called PoCC, and
evaluated it against a synthetic benchmark and several complex benchmarks. An
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all CCAs.



extensive evaluation with several complex benchmarks showed PoCC maintains
average execution time similar to the best CCA, has the least performance deficit
vs. best-case fixed-thread execution, and improves over the other four CCAs
by at least 24% average resource usage, 16% average wasted work, and 11%
average APC. PoCC improves over the other four CCAs standard deviation by
at least 31% in execution time, 24% in resource usage, 88% in wasted work, and
26% in APC. Thus PoCC matches or improves in all benchmark performance
metrics analyzed, and improves controller performance by significantly reducing
variability in the benchmark performance metrics.

Finally, an analysis of all the CCAs’ response characteristics shows PoCC to
be more responsive to, and more robust to noise in, changes in TCR. This is due
to the new features in PoCC allowing fine-grain response to changes in TCR,
and allowing the sample period to be application-independent.
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