
Sprint: A Middleware for High-Performance Transaction
Processing∗

Lásaro Camargos
State University of Campinas

University of Lugano

Fernando Pedone
University of Lugano

Marcin Wieloch
University of Lugano

ABSTRACT
Sprint is a middleware infrastructure for high performance
and high availability data management. It extends the func-
tionality of a standalone in-memory database (IMDB) server
to a cluster of commodity shared-nothing servers. Applica-
tions accessing an IMDB are typically limited by the mem-
ory capacity of the machine running the IMDB. Sprint par-
titions and replicates the database into segments and stores
them in several data servers. Applications are then lim-
ited by the aggregated memory of the machines in the clus-
ter. Transaction synchronization and commitment rely on
total-order multicast. Differently from previous approaches,
Sprint does not require accurate failure detection to ensure
strong consistency, allowing fast reaction to failures. Ex-
periments conducted on a cluster with 32 data servers using
TPC-C and a micro-benchmark showed that Sprint can pro-
vide very good performance and scalability.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed databases, Transaction pro-
cessing

General Terms
Design, Measurement, Performance, Experimentation

Keywords
Parallel databases, middleware, replication, partitioning

1. INTRODUCTION
High performance and high availability data management

systems have traditionally relied on specialized hardware,
proprietary software, or both. Even though powerful hard-
ware infrastructures, built out of commodity components,

∗The work presented in this paper has been partially funded
by the Hasler Foundation, Switzerland (project #1899), and
SNSF, Switzerland (project #200021-103556).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’07, March 21–23, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003 ...$5.00.

have become affordable in recent years, software remains an
obstacle to open, highly efficient, and fault-tolerant databases.

In this paper we describe Sprint, a data management
middleware targeting modern multi-tier environments, typ-
ical of web applications. Sprint orchestrates commodity in-
memory databases running in a cluster of shared-nothing
servers. Besides presenting Sprint’s architecture, we discuss
three issues we faced while designing it: (a) how to handle
distributed queries, (b) how to execute distributed transac-
tions while ensuring strong consistency (i.e., serializability),
and (c) how to perform distributed recovery.

Distributed query processing in Sprint differs from that
in traditional parallel database architectures in two aspects:
First, high-level client queries are not translated into lower-
level internal requests; instead, as a middleware solution, ex-
ternal SQL queries are decomposed into internal SQL queries,
according to the way the database is locally fragmented and
replicated. In some sense this approach resembles that of
multidatabase systems, except that the component databases
in Sprint have the same interface as the external interface,
presented to the clients. Second, Sprint was designed for
multi-tier architectures in which transactions are pre-defined
and parameterized before the execution. This has simplified
distributed query decomposition and merging.

Sprint distinguishes between physical servers, part of the
hardware infrastructure, and logical servers, the software
component of the system. These come in three flavors: edge
servers (ES), data servers (DS), and durability servers (XS).
A physical server can host any number of logical servers.
For example, a single DS only, both a DS and an XS, or
two different instances of a DS. Edge servers receive client
queries and execute them against the data servers. Data
servers run a local in-memory database (IMDB) and execute
transactions without accessing the disk. Durability servers
ensure transaction persistency and handle recovery.

IMDBs provide high throughput and low response time
by avoiding disk I/O. IMDBs have traditionally been used
by specific classes of applications (e.g., telecommunication).
Current performance requirements and cheaper semiconduc-
tor memories, however, have pushed them to more general
contexts (e.g., web servers [19], trading systems [31], con-
tent caches [13]). In most cases, applications are limited
by the memory capacity of the server running the IMDB.
Sprint partitions and replicates the database into segments
and stores them in the recovery of several data servers. Ap-
plications are limited by the aggregated memory capacity of
the servers in the cluster.

Data servers in Sprint never write to disk. Instead, at
commit time update transactions propagate their commit
votes (and possibly updates) to the transaction participants
using a persistent total-order multicast protocol implemented
by the durability servers. As a consequence, all disk writes
are performed by durability servers only, ensuring that dur-
ing normal execution periods disk access is strictly sequen-
tial. Durability servers are replicated for high availability. If
a durability server crashes, data servers do not have to wait
for its recovery to commit update transactions; normal oper-
ation continues as long as a majority of durability servers is
operational. Data servers are replicated for performance and
availability. When a data server crashes, another instance
of it is started on an operational physical server. The new
instance is ready to process transactions after it has fetched
the committed database state from a durability server.

Sprint distinguishes between two types of transactions:
local transactions access data stored on a single data server
only; global transactions access data on multiple servers.
Local transactions are preferred not only because they re-
duce the communication between servers and simplify pre-
and post-processing (e.g., no need to merge the results from
two data servers), but also because they do not cause dis-
tributed deadlocks. Although in theory there are many ways
to deal with distributed deadlocks, in practice they are usu-
ally solved using timeouts [11]. Choosing the right time-
outs for distributed deadlock detection, however, is difficult
and application specific. We solve the problem by ordering
global transactions and thus avoiding distributed deadlocks.

Finally, Sprint does not rely on perfect failure detection
to handle server crashes. Tolerating unreliable failure de-
tection means that the system remains consistent even if an
operational server is mistakenly suspected to have crashed,
another one is created to replace it, and both simultaneously
exist for a certain time. Since Sprint ensures serializability
even in such cases, failure detection can be very aggressive,
allowing prompt reaction to failures, even if at the expense
of false suspicions.

We have implemented a prototype of Sprint and con-
ducted experiments using MySQL 5 in “in-memory” mode
(i.e., no synchronous disk access) as the local data engine at
data servers. Experiments with TPC-C revealed that:

• When the database was large enough to fill the main
memory of 5 DSs, Sprint outperformed a standalone
server by simultaneously increasing the throughput and
reducing the response time by 6x.

• In a configuration with 32 DSs, Sprint processed 5.3x
more transactions per second than a standalone server
while running a database 30x bigger than the one fit-
ting in the main memory of the single server. If the
database on the single server doubles in size, grow-
ing beyond its main memory capacity, then Sprint can
process 11x as many transactions per second.

• The abort rates due to our distributed deadlock pre-
vention mechanism for configurations ranging from 1
to 32 DSs were quite low, aborting fewer than 2% of
TPC-C transactions.

• Terminating transactions using a total order multicast
proved to be 2.5x more efficient than using an atomic
commit protocol with similar reliability guarantees.

Experiments with a micro-benchmark allowed us to eval-
uate Sprint’s performance under a variety of workloads. Re-
sults demonstrated that:

• When the database was large enough to fill the main
memory of 8 DSs, Sprint had better throughput than
a standalone server for all possible combinations of
global/local and read-only/update transactions. In
some cases, the improvement in throughput was more
than 18x.

• When the database was small enough to fit in the main
memory of a standalone server, Sprint provided better
throughput than the single server in workloads domi-
nated by local transactions, both in cases in which 50%
of the transactions updated the database and when all
transactions only read the database.

• Experiments revealed that abort rates are highly de-
pendent on the percentage of global transactions in the
workload, up to 25% of aborts when all transactions
are global, and less sensitive to the operations in the
transactions. Workloads with 50% of global transac-
tions were subject to 13% of aborts.

The rest of the paper is structured as follows. Section 2
states assumptions and presents definitions used in the pa-
per. Section 3 overviews Sprint’s architecture. Section 4
details the transaction execution and termination protocol.
Section 5 discusses recovery. Section 6 describes our system
prototype. Section 7 presents experimental performance re-
sults. Section 8 reviews related work, and Section 9 con-
cludes the paper. Proofs of correctness are presented in the
Appendix.

2. BACKGROUND

2.1 Servers, communication and failures
Sprint runs in a cluster of shared-nothing servers. Physical

servers communicate by message passing only (i.e., there is
no shared memory). Logical servers can use both point-to-
point and total order multicast communication.

Total order multicast is defined by the multicast(g, m) and
deliver(m) primitives, where g is a set of destinations and m
is a message. It ensures that (a) if a server delivers message
m, all operational destination servers will also deliver m
(agreement), and (b) if two servers deliver messages m and
m′ they do so in the same order (total order) [12].

Physical servers can fail by crashing but do not behave
maliciously (i.e., no Byzantine failures). A server may re-
cover after a failure but loses all information stored in main
memory before the crash. Each server has access to a local
stable storage (i.e., disk) whose contents survive crashes.
The failure of a physical server implies the failure of all the
logical servers it hosts.

We do not make assumptions about the time it takes for
operations to be executed and messages to be delivered. The
system employs unreliable failure detection [4]: (a) failed
servers are eventually detected by operational servers, but
(b) an operational server may be mistakenly suspected to
have failed (e.g., if it is too slow).

2.2 Transactions and databases
A transaction is a sequence of SQL statements terminat-

ing with a commit or an abort statement. Each transaction
has a unique identifier. A transaction is called read-only if it
does not modify the database state, and update otherwise.

Sprint guarantees the traditional ACID properties [11]:
either all transaction’s changes to the state happen or none
happen (atomicity); a transaction is a correct transforma-
tion of the database state (consistency); every concurrent
execution is equivalent to a serial execution of the same
transactions using a single copy of the database (isolation
or one-copy serializability); and the effects of a transaction
survive database crashes (durability).

Transactions are scheduled at individual IMDBs accord-
ing to the two-phase locking rule [3].

3. SPRINT ARCHITECTURE
Figure 1 overviews the architecture of Sprint. Clients sub-

mit transactional requests to edge servers. Requests regard-
ing the same transaction should be submitted to the same
ES; new transactions can be started on different ESs. Edge
servers are started up and shut down according to load-
balancing and fault-tolerance requirements.

Database tables are partitioned over the DSs. An assign-
ment of the database to DSs and the mapping of DSs onto
physical servers is called a database configuration. Data
items can be replicated on multiple DSs to allow parallel
execution of read operations. This comes at the expense of
write operations, which should modify all replicas of a data
item. The database configuration changes when a DS fails
and a new instance of it is created on a different server.

The Query Decomposer receives SQL statements from the
clients and breaks them up into simpler sub-statements, ac-
cording to the current Database Configuration. The Dis-
patcher interacts with the data servers, using either point-
to-point or multicast communication, and ensures proper
synchronization of transactions. The Result Assembler merges
the results received from individual data servers and returns
the response to the client.

The Execution Manager receives SQL statements, sub-
mits them to the local In-Memory Database, collects the
results, and returns them to the corresponding edge server.
The Execution Manager also participates in the transaction
termination protocol: Update transactions are multicast to
the durability servers upon termination.

All permanent state is stored by the durability servers.
This includes both the database state and the database
configuration. The Log Manager implements stable stor-
age with a sequential On-Disk Log. Since all disk writes are
performed by the durability servers only, during most of the
execution disk access is strictly sequential. The Log Man-
ager informs the edge servers and the Execution Manager
about the state of terminating update transactions. Re-
building the state of a failed data server from the log is
performed by the Recovery Manager.

4. DATA MANAGEMENT IN SPRINT
In the absence of failures and failure suspicions, trans-

action execution in Sprint is very simple. For clarity, Sec-
tions 4.1 and 4.2 explain how the protocol works in such
cases. Section 4.3 discusses how failures and failure suspi-
cions are handled.

Query
Decomposer

Dispatcher

Edge Server (ES)

Client

Result
Assembler

Total-order
Multicast

Execution Manager

Total-order
Multicast

Log
Manager

Recovery
Manager

On-Disk
Log

Durability Server (XS) Data Server (DS)

new
DS

Database
Configuration

In-Memory
Database

Figure 1: Sprint architecture

4.1 Transaction execution
Edge servers keep two data structures, servers and status,

for each transaction they execute. The first one keeps track
of the data servers accessed by the transaction and the sec-
ond one stores the current type of the transaction: local or
global. These data structures exist only during the execu-
tion of the transaction and are garbage collected once it is
committed or aborted.

The execution of local transactions is straightforward: ev-
ery SQL statement received from the client is forwarded to
the corresponding DS for processing and the results are re-
turned to the client. If a transaction executes an opera-
tion mapped onto more than one DS or onto a DS different
than the one accessed by a previous operation, it becomes
global. When it becomes global, the transaction is multi-
cast to all DSs—in fact only the transaction id is multicast.
Each global transaction is multicast only once, when the ES
finds out that it is global; subsequent requests are sent to
the DSs using point-to-point communication (see Figure 2).

The multicast primitive induces a total order on global
transactions, used to synchronize their execution and avoid
distributed deadlocks. When a global transaction T is deliv-
ered by a DSk, the server assigns it a unique monotonically
increasing sequential number seqk(T). The Execution Man-
ager at DSk implements the following invariant. Hereafter
we say that two global transactions conflict if they access
data on the same DS and at least one of the transactions
updates the data; and that a DS receives a transaction T
when it first receives an operation for T .

• Execution order invariant. Let Ti and Tj be global
conflicting transactions. If Ti is received after Tj by
DSk, then seqk(Ti) > seqk(Tj).

Sequential numbers define the executing order of global
transactions. Intuitively, serializability is guaranteed by the
local scheduler at each DS and the fact that no two DSs or-
der the same transactions differently—we present a formal
correctness argument in the Appendix. Local deadlocks are

DS2DS1 DS3C ES

Total Order
Multicast

Local
Transaction

Global
Transaction

SQL
stmt

results

SQL
stmt

results

SQL
stmt

results

Figure 2: Transaction execution

resolved by the in-memory database executing the transac-
tions. Distributed deadlocks are resolved by avoiding cycles
in the scheduling of transactions.

Consider for example the execution in Figure 3. In step
(a) Ti and Tj execute locally on DSi and DSj , respectively.
In step (b), Tj requests a data item on DSi, is multicast
to DSi and DSj , and receives sequential number 1 at both
DSs. Tj becomes global now. In step (c), Ti requests access
to DSj , is multicast, and assigned sequential number 2 at
both DSs. To keep the algorithm’s invariant, Ti is aborted.
This happens first on DSi, which notifies the edge server
handling Ti so that other DSs involved in the transaction
abort it too. In step (d) Tj executes on both DSs.

The price to pay for simple and timeout-free deadlock
resolution is the abort of transactions that may not in fact
be deadlocked. In the example in Figure 3, assume that Ti’s
second request accesses a data item on DSl, l 6= j and j 6= i.
There is no deadlock involving Ti and Tj now. However, to
enforce the execution order invariant, DSi will still abort Ti.
In our experiments we observed that despite this simplified
mechanism, abort rates were low (see Section 7).

4.2 Transaction termination
Read-only transactions are committed with a message from

the ES to the DSs involved in the transaction. The trans-
action terminates when the ES receives an acknowledgment
from each DS.1 If a DS fails and cannot send the acknowl-
edgment, the ES will suspect it and abort the transaction.
Acknowledgments are needed to ensure correctness despite
DS failures. They are discussed in more detail in Section 5.

Termination of update transactions is more complex. Com-

1To see why acknowledgments are needed, assume that a
transaction finishes after a message is sent from the ES to
the DSs concerned. Let Ti be a read-only transaction, Tj an
update transaction, and X and Y data items in DSX and
DSY . Ti reads X from DSX , which then fails and is replaced
by DS′

X . Tj then updates X and Y in DS′
X and DSY , and

commits. Finally, Ti reads Y and commits. The execution
is not serializable: Ti sees X before Tj and Y after Tj .

mitting an update transaction involves the XSs to guarantee
that the committed state will survive server failures. Termi-
nation of update transactions is based on total order mul-
ticast. Figure 4 illustrates termination in the absence of
failures and suspicions. The ES handling the transaction
sends a prepare message to all DSs involved in the transac-
tion (message 1). Each DS multicasts its vote to the ES, the
participating DSs, and the XSs (messages 2a and 2b).

Although any total order multicast algorithm can be used
in Sprint, message 2b in Figure 4 zooms in on the execution
of the Paxos protocol, used in our prototype. Both mes-
sages exchanged among servers and the disk accesses done
by the XSs, which play the role of “acceptors” in Paxos par-
lance, are depicted. Figure 4 includes two optimizations to
the Paxos algorithm, as described in [17]: (a) XS1 acts as
the “coordinator” and has previously executed “Phase 1” of
Paxos, and (b) the replies from the acceptors are directly
sent to all “learners” (i.e., multicast destinations).

If a DS is willing to commit the transaction, it multicasts
together with its vote the update statements executed by
the transaction. Upon delivering a message from every par-
ticipating DS or an abort message, each destination server
can determine the outcome of the transaction: commit if all
DSs have voted to commit it, and abort otherwise. If the
outcome is commit, each DS locally commits the transaction
against its IMDB.

Terminating update transactions with a total order mul-
ticast serves two purposes: First, it provides a simple way
for data servers to render their state persistent (on the XSs).
Second, it avoids the shortcomings of more traditional atomic
commitment protocols (e.g., 2PC may block in the presence
of failures [3]; 3PC is quite complex and cannot tolerate false
failure suspicions [9]). Finally, notice that although concep-
tually each DS should execute a multicast with its vote, in
practice the coordinator (XS1 in Figure 4) can batch the
votes of several DSs and send them all together to the ac-
ceptors, reducing the number of messages and disk writes.

4.3 Termination under failure suspicions
Most of the complexity involved in terminating a trans-

action in case of suspicion of a participating DS stems from
the possibility of wrong suspicions, that is, the ES suspects
a DS that did not crash. Handling such cases is complex
because the suspected DS could have multicast its vote to
commit the transaction when the ES suspects it and acts ac-
cordingly (e.g., locally aborting the transaction and telling
the client). As a result, some servers may take the DS’s vote
into account to determine the outcome of the transaction,
while others may not, reaching an inconsistent decision.

Ensuring that all concerned servers reach the same out-
come when terminating an update transaction is done as
follows: If an ES suspects the failure of a DS during trans-
action termination, it multicasts an abort vote on behalf
of the DS. As before, a transaction can only commit if all
participating DSs vote to commit it. But now, the votes con-
sidered in the decision are the first ones delivered for each
DS. For unsuspected DSs, only one vote will be delivered;
for suspected DSs, there will be possibly multiple votes. In
any case, the total order multicast ensures that all destina-
tion servers deliver transaction votes in the same order, and
therefore reach the same decision. For simplicity, hereafter
we refer to the first vote delivered for a DS as simply the
DS’s vote for the transaction, irrespectively of its sender.

(a)

Ti
transactions

-
seq(T)

DSi

IMDB

in execution

Tj
transactions

-
seq(T)

DSj

IMDB

in execution

(b)

Tj Ti
transactions

1 -
seq(T)

DSi

IMDB

waiting

Tj
transactions

1
seq(T)

DSj

IMDB

(c)

Tj Ti
transactions

1 2
seq(T)

DSi

IMDB

Ti Tj
transactions

2 1
seq(T)

DSj

IMDB

(d)

Tj
transactions

1
seq(T)

DSi

IMDB

Tj
transactions

1
seq(T)

DSj

IMDB

deadlock detected

Figure 3: Deadlock resolution

2b

XS3XS2XS1DS2DS1ES

commit T

committed T

1
2a

local
commit

local
commit

T has been
committed

T has been
committed

T has been
committed

Figure 4: Terminating an update transaction

5. RECOVERING FROM FAILURES

5.1 Edge servers
If an ES fails during the execution of a transaction, the

DSs involved will eventually detect the failure and abort
the transaction. If the ES fails during the termination pro-
tocol, the transaction may end up committed or aborted,
depending on when the failure occurs: If the ES’s request
to terminate the transaction reaches all participating DSs,
these are willing to commit the transaction, and their votes
are delivered before any other votes for the transaction, then
the outcome will be commit.

A new instance of an ES can be promptly created on any
physical server. During bootstrap, the ES sends a message
to one of the XSs asking for the current database config-
uration. The ES will be ready to process requests once it
receives the database configuration.

5.2 Data servers

5.2.1 The basic idea
Sprint’s approach to recover a failed DS is to simply cre-

ate another instance of it on an operational physical server.
Since DSs run “pure” IMDBs (i.e., configured to avoid disk
accesses), there is no database image to be restored from the
local disk after a crash. As a consequence, a new copy of
the failed DS can be deployed on any physical server using
the state stored by the durability servers.

While this strategy simplifies recovery, care is needed to
avoid inconsistencies. For example, consider the following
execution. Transaction Ti reads data item di from DSi and
transaction Tj reads data item dj from DSj . Then, both
DSs fail and are replaced by new copies, DS′

i and DS′
j . Ti

requests to modify dj , stored on DS′
j , and Tj requests to

modify di, stored on DS′
i. Thus, both transactions become

global and are multicast. Neither DS knows about the past
reads, and so, Ti and Tj are not properly synchronized.
Moreover, since DS′

i has not received any operation from
Ti, Tj ’s sequence number is not checked against Ti’s, and
its write operation is locally executed. Similarly, DS′

j exe-
cutes Ti’s write operation. As a result, both Ti and Tj are
committed, violating serializability.

5.2.2 Avoiding inconsistencies due to recovery
Sprint avoids inconsistencies by ensuring that a transac-

tion can only commit if the DSs it accesses are not replaced
during its execution. We achieve this property by using in-
carnation numbers and incarnation number vectors to com-
pare the configuration of the system when a transaction
starts and when it tries to commit. Incarnation numbers
are unique identifiers of each instance of a DS; they can be
implemented by simply counting how many times a DS has
been replaced or “incarnated”. An incarnation number vec-
tor contains one incarnation number per DS in the system.

When a transaction starts, it is assigned the vector with
the most up to date incarnation numbers the ES has seen.
At the termination time, the incarnation number of each DS
involved in the transaction is compared against its vector to
check whether the transaction can commit. The revisited
condition for commit is as follows:

• Consistent termination invariant. A transaction T can
commit if for each DS participating in T

– DS’s vote is to commit T , and

– DS’s incarnation number matches its entry in the
transaction’s incarnation number vector.

In our prototype the database configuration is extended
with an incarnation number vector. When a transaction
starts, the ES hosting it assigns its current view of the vec-
tor to the transaction and, later, the vector assigned to the
transaction is sent along with the prepare message sent by
the ES as part of the procedure to terminate the transaction
(message 1 in Figure 4). Each DS can check locally if the
conditions to commit the transactions are met.

When an ES suspects the failure of a DS, it multicasts a
change-DS request to all servers together with the identity
of the physical server to host the new instance of the DS.
Upon delivering this request, all servers consistently increase
the incarnation number of the particular DS and update the
database configuration. Since vote messages, multicast by
the DS itself or by the ES on behalf of the suspected DS,
are ordered with respect to change-DS messages, all servers
reach the same outcome regarding a transaction.

Acknowledgment messages sent by the DSs as part of the
commit of a global read-only transaction return the current
DS’s incarnation number. To make sure that the transac-
tion has observed a consistent view of the database, the
incarnation numbers in the transaction’s vector should be
up to date. Acknowledgments allow edge servers to identify
possibly inconsistent states.

Figure 5 depicts the termination of transaction T when
one of the participating DSs, DS1, fails. After the failure, ES
eventually suspects DS1 and multicasts the message change-
DS1. Upon delivery of this message, the servers update the
incarnation number of DS1 and the database configuration.
Since T ’s incarnation vector cannot match the new state of
the system, both ES and DS2 will decide to abort T . The
physical server that will host the suspect DS also delivers
message change-DS1 and starts the recovery procedure, de-
scribed next.

Finally, notice that while sequential numbers are assigned
to transactions to avoid distributed deadlocks, incarnation
number vectors are assigned to transactions to ensure con-
sistent execution in the presence of DS recovery.

5.2.3 Rebuilding the state of failed DSs
In principle, the state of a failed DS can be recovered from

another DS if it is replicated. In any case, the database state
of a DS can be recovered from the logs kept by the XSs.
In this case, the new DS needs an initial database image
and the missing updates to be applied to the image. After
installing the initial database image, the log entries can be
locally replayed.

Sequential numbers locally assigned to global transactions
by the failed DS are not recovered by the new DS, which
simply resets its sequence number counter. If a DS receives a
request from a global transaction and it misses its sequential
number because the transaction was delivered before the DS
instance was created, the DS simply aborts the transaction.

Quickly recovering a failed DS is important for availabil-
ity. Transactions requesting a data item stored on the failed
DS cannot execute until the server is replaced. In our exper-
iments, recovering a failed DS running the TPC-C bench-

XS3XS2XS1DS2DS1ES

commit T

aborted T

suspect DS1

new
DS1

aborted T

change-DS1

update
database

config. update
database

config.

update
database

config.

update
database

config.

Recover
DS1

Figure 5: Recovery of a data server

mark can take a few minutes. If higher availability is re-
quired, then DSs should be replicated. Although read-only
transactions accessing a replicated data item will succeed
provided that at least one DS storing the item is opera-
tional, update transactions will fail since all replicas of the
item must be available in order for the transaction to be
committed.

To increase the availability of update transactions when
replication is used, a failed DS should be removed from the
database configuration. This is done by having the ES mul-
ticast a request to increase the incarnation number of the
suspected DS and exclude it from the current database con-
figuration.

5.3 Durability servers
Recovering an XS is straightforward. Once the server is

operational, it can take part in multicast instances—this fol-
lows directly from the Paxos protocol. Delivered messages
missed by the recovering XS can be retrieved from opera-
tional XSs. Besides implementing Paxos, XSs also play a
role in recovering failed DSs. In order to do it efficiently,
each XS periodically creates an image on disk of the cur-
rent database state. This state is built from the messages
delivered by the XSs, as part of the termination protocol of
update transactions.

6. IMPLEMENTATION
In the following we describe our system prototype. The

middleware is implemented in Java with one independent
multithreaded module per logical server. Point-to-point com-
munication uses TCP and UDP sockets; multicast relies on
a communication library built on top of UDP sockets and
IP multicast.

6.1 Edge servers
Clients submit pre-defined parameterized SQL statements

to ESs, which split them by looking up the Database Config-
uration directory. Each SQL statement type is decomposed
into “sub-SQL statements” to be sent to the concerned DSs.

The directory also contains a pointer to the post-processing
procedure used to merge the results returned by the DSs in
case of complex queries. Post-processing procedures should
be written by the application programmer or could be cho-
sen from a library of standard procedures.

The mapping of client statements onto data server state-
ments depends on the type of the SQL request and the way
the database is partitioned and replicated among the DSs.
For example, the directory in Figure 6 assumes that DSs
are numbered from 0 to N − 1 and tables “employee” and
“country” are hash partitioned on their primary keys (“em-
ployee.id” and “country.id” modulo N). Statement type 1 is
a simple lookup executed only by the DS storing the required
record. Statement type 2 is executed by all DSs. In both
cases the ESs have no post-processing to do; the results are
simply forwarded to the clients. Statement type 3 is a join
between two tables. The original statement is split into two
sub-statements. Procedure “f join(...)” merges the results
before returning them to the client. Both sub-statements
are sent to all DSs. Tables relatively small, such as “coun-
try”, could be stored entirely on one or more servers.

Optimizing the database partitioning and automatizing
the breaking up of complex queries accordingly has been the
theme of much research in parallel database systems (e.g.,
[16, 21, 35]). Some of these techniques could be integrated
into the edge server logic, but this is out of the scope of the
present work.

6.2 Data servers
Data servers receive and execute transactional requests.

Transactions are received by two threads, one for point-
to-point and the other for multicast communication, and
enqueued for execution. Threads from an execution pool
take requests from the queue and submit them to the local
database or to the XSs, in case of commit requests. As part
of a commit request, ESs send to each DS involved in the
transaction the identity of the participating DSs. This in-
formation is transmitted to XSs together with the updates
performed by the transaction. DSs can then know when
they have received the votes from all DSs involved in the
transaction.

6.3 Durability servers
Durability servers participate in the total order multicast

protocol and build images of the database stored by the DSs
to speed up their recovery. The multicast library consists
of a set of layers implementing Paxos [17]. The library is
tailored for LANs, making heavy use of IP multicast. Total
order multicast is implemented as a sequence of consensus
executions. In each instance, XSs can decide on a sequence
of multicast messages.

Durability servers build images of the database space us-
ing local on-disk databases. SQL statements of commit-
ted transactions are submitted to the local database asyn-
chronously. Although building this image prevents the ac-
cess to the disk of an XS from being strictly sequential, by
keeping this procedure on a minority of them, the sequen-
tial pattern is still kept in the critical path of transactions.
Ideally, the database image is directly extracted from the
database via some special API call. When not possible, it
can be extracted with a simple “SELECT *” query.

7. PERFORMANCE EVALUATION

7.1 Experimental setup
In all experiments we used a cluster of nodes from the

Emulab testbed [32]. Each node is equipped with a 64-bit
Xeon 3GHz, 2 GB RAM (although we had slightly less than
1 GB available in our experiments), and a 146GB HDD. We
performed experiments with up to 64 nodes, all connected
through the same network switch. The system ran Linux
Red Hat 9, and Java 1.5.

Data servers used MySQL in “in-memory mode”, mean-
ing that synchronous disk accesses were switched off during
the execution and the database of a single DS fitted in its
main memory. Under these conditions, servers cannot re-
cover from failures like on-disk databases do. Instead, when
a DS recovers from a crash, any local state written to disk
asynchronously by MySQL is discarded.

Durability servers used a local Berkeley DB Java Edition
to store information on disk. Berkeley DB does not keep a
database image on disk, but only a log. All access to disk
is strictly sequential. During the recovery experiments, XSs
also had MySQL to build the recovery of DSs images.

7.2 Multicast scalability
We initially evaluated the scalability of the total order

multicast protocol. Table 1 reports the average and the
maximum number of successfully multicast messages, i.e.,
delivered by all destinations, per second (mps). There are
2 ∗ f + 1 acceptors, which are also learners.

Receivers Message Resilience
(learners) Size f = 1 f = 3 f = 5

8 16 B 6476 (6851) 5190 (5446) —
16 16 B 6051 (6651) 4042 (4875) 3298 (3623)
32 16 B 5537 (5897) 4390 (4218) 3924 (4034)
8 1000 B 1182 (1663) 766 (1027) —
16 1000 B 1177 (1749) 801 (902) 434 (606)
32 1000 B 1170 (1588) 800 (943) 468 (595)
64 1000 B 1145 (1389) 791 (915) 447 (508)

Table 1: Performance of the multicast protocol

During the experiments, multiple threads constantly mul-
ticast messages to all receivers; there was no other traffic in
the network. As part of the protocol, acceptors log messages
on disk before delivering them (see Figure 4). In all cases,
messages were delivered within a few milliseconds.

The performance of our total order multicast primitive
is highly sensitive to the resilience, but not much to the
number of receivers. There is not much variation with the
number of receivers since our library is based on IP-multicast
and all nodes are connected to the same physical switch. For
the experiments in Sections 7.3 and 7.4 we used a multicast
using 3 acceptors.

Smaller messages lead to higher throughput since more of
them can be bundled into the payload of a single network
message. We ran experiments with 16-byte and 1000-byte
messages, corresponding respectively to the average size of
the micro-benchmark and the TPC-C transactions we used
in our experiments.

7.3 The TPC-C benchmark
For TPC-C, we range partitioned all but the Items table

according to the warehouse id. The Items table is only read,
and replicated on all data servers. With this partitioning,

SQL request (input) Data server Post-processingType sub-SQL request (output)

SELECT * FROM employee WHERE id=? id % N -1 SELECT * FROM employee WHERE id=?

UPDATE employee SET salary=salary*1.1
WHERE salary < ? 0..(N-1) -2 UPDATE employee SET salary=salary*1.1

WHERE salary < ?

SELECT * FROM employee, country
WHERE employee.country = country.id
AND employee.salary > ?

0..(N-1)
f_join(...)

3

COMMIT all concerned -4 COMMIT

...

SELECT * FROM country

SELECT * FROM employee WHERE
 salary > ?

0..(N-1)

Figure 6: Database Configuration directory

about 15% of the transactions were global, and 92% of them
updated the database. Each DS stored locally 5 TPC-C
warehouses. A warehouse in MySQL has around 100MB,
resulting in a database of approximately 500 MB per DS.
There were 6 to 8 ESs and 3 XSs, each one running on a
dedicated physical server.

7.3.1 The impact of a cluster of IMDBs
Figure 7 illustrates the advantages of placing the database

in the main memory of servers. It also shows compares
Sprint to a standalone MySQL database. Sprint has con-
stant response time for increasing database sizes, varying
from 500 MB to 15 GB in these experiments. We have iso-
lated the effects of parallelism by having a single client ex-
ecute transactions. As a consequence, throughput = 1 /
response time.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160

Re
sp

on
se

 ti
m

e
(m

se
c)

Number of warehouses

Standalone DB
Sprint

Figure 7: TPC-C with a single client

The response time of transactions executing in Sprint in-
creases slightly with the number of DSs since there are more
receivers in the multicast protocol. In our experiments, DSs
vary from 1 to 32. A configuration with 1 DS has response
time of about 45 msec, and a configuration with 32 DSs has
response time of 56.7 msec, corresponding to throughputs
of 22.2 tps and 17.6 tps, respectively. For 25 warehouses,
for example, Sprint improves both the throughput and the
response time of a standalone server by 6x.

When the database fits in the main memory of a stan-
dalone server, the overhead introduced by Sprint makes it
unattractive. However, this rapidly changes as the database
grows. If the standalone server had more main memory, the
curves in Figure 7 would cross at some point right of the
current crossing point, but the trend would be the same.

7.3.2 Throughput and response time
Figure 8 depicts the attained throughput in transactions

per second (tps). The system load was varied by varying
the number of clients. In most cases, 100 msec corresponds
to the maximum throughput.

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500

Re
sp

on
se

 ti
m

e
(m

se
c)

Throughput (tps)

1
2
4
8

16
32

8AC

Figure 8: Throughput and response time of TPC-C

Besides presenting configurations of Sprint with a varying
numbers of DSs, we also show the performance of the system
when transactions are terminated with Paxos Commit, an
atomic commit protocol [9] (“8AC” in the graph). Paxos
Commit has the same latency as Two-Phase Commit but is
non-blocking [9]. It allows data servers to contact durability
servers directly (see Figure 4), saving one communication
step when compared to total order multicast, where data
servers should contact the coordinator first. We show the
curve for 8 DSs only since this was the best performance
achieved.

Although Paxos Commit saves one communication step, it
introduces more messages in the network and does not allow

the coordinator to bundle several application messages into
a single proposal. As a result, in Sprint it proved to be less
efficient than terminating transactions with a total order
multicast.

Table 2 compares Sprint with a standalone database when
multiple clients submit transactions. The throughput is for
response times of 100 msecs. We also include the perfor-
mance of Sprint with Paxos Commit (“Sprint (AC)”).

In a configuration with 32 DSs, Sprint processed 5.3x more
transactions per second than a standalone server (i.e., 412
tps/77.5 tps) while running a database 30x bigger than the
one that would fit in the main memory of the single server
(i.e., 15.3GB/506MB). If the database on the single server
doubles in size (i.e., Sprint’s database is 15x bigger), then
the throughput becomes 11x that of the single server.

#WH #DS tps DB size
5 1 47 506 MB

10 2 65 994 MB
Sprint 20 4 110 1.9 GB

40 8 186 3.8 GB
80 16 289 7.6 GB

160 32 412 15.3 GB
Sprint (AC) 40 8 75 3.8 GB
Standalone 5 — 77.5 506 MB
Database 10 — 37.4 994 MB

Table 2: Sprint vs. standalone database (TPC-C)

7.3.3 Abort rates
We also evaluated the abort rates of TPC-C transactions.

The values depicted in Figure 9 were collected during the
same experiments as the ones shown in Figure 8.

The configuration for 1 DS represents the aborts induced
by the local database, mainly due to local deadlocks and
contention. Local aborts happen because in TPC-C many
transactions read and modify a small table with one entry
per warehouse. Since there are 5 warehouses per DS, with a
single DS, the contention in this table is high. As the number
of DS increases, the probability of real deadlocks decreases.
Our mechanism to prevent deadlocks aborts more transac-
tions than needed but with TPC-C the overall number of
aborts is quite low.

0.000

0.005

0.010

0.015

0.020

0.025

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Ab
or

t r
at

e

Number of clients

1
2
4
8

16
32

Figure 9: Abort rate of TPC-C transactions

7.3.4 Scalability
Figure 10 compares the throughput of Sprint to the through-

put of a standalone MySQL as the database grows. The
number of warehouses determines the size of the database,
as depicted in Table 2. In all points in the graph we se-
lected the number of clients that maximizes throughput.
When the database fits in the main memory of a single
server, then Sprint’s overhead makes it unattractive. Con-
figurations with 2 DSs or more can store a database bigger
than the main memory of the single server. In such cases,
Sprint has better performance than a standalone server.
High throughput is also due to the parallel execution of
transactions in multiple servers.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140 160
T

hr
ou

gh
pu

t (
tp

s)

Number of warehouses

Sprint
Standalone DB

Figure 10: Scalability of Sprint and standalone DB

7.3.5 Recovering from failures
To evaluate the time needed by data servers to recover

after a failure, we performed experiments with 28 TPC-C
clients running for maximum throughput in order to gener-
ate large logs, the worst scenario for recovery. Clients issued
transactions through 8 edge servers, and 8 data servers were
online. In these experiments the database images were cre-
ated every 10 minutes, what is roughly the time to increase
the size of the logs by 54 MB (i.e., approximately 6.75 MB
per DS). The recovery was started after 10 minutes of exe-
cution, right before the database images were created.

For this scenario the recovery takes, in average, 186 sec-
onds. Out of this time, 27 seconds were spent on getting
the database image from the on-disk database in the dura-
bility server, sending it through the network, and installing
it on the new data server. The remaining time, 159 seconds,
was spent receiving the log and applying the updates to the
database.

Although the size of the database image (≈ 500 MB) is
much larger than that of the log (≈ 6.75 MB), applying
the updates takes much longer than loading the image into
MySQL. This happens because while applying the updates
from the logs is performed by means of SQL statements,
loading an image into MySQL can bypass the JDBC inter-
face.

To maximize the effect of the recovery procedure on the
normal transaction processing, the experiments were per-
formed while one of the three durability servers was unavail-
able. However, no meaningful variation on the response time
of the operational data servers was verified within this pe-

riod, showing that the procedure was not disruptive to the
system.

How good is recovery in our worst-case analysis? “Five-
nines availability” implies about 5 minutes of downtime a
year at most. If the whole system became unavailable due
to a crash, that would mean in the average a little less than
two data server crashes a year if database images are cre-
ated in 10-minute intervals. In Sprint, however, if a data
server crashes, the database becomes only partially unavail-
able; transactions accessing operational servers can still be
executed.

7.4 Micro-benchmark
To evaluate Sprint’s performance under a variety of work-

loads, we conducted experiments using a micro-benchmark.
Our micro-benchmark has very simple transactions, con-
taining only two operations. In doing so, we stress com-
munication among servers and reduce local processing on
the IMDBs. By varying the ratios of local/global, and read-
only/update transactions, we had fine control over the amount
of communication induced by each workload.

The database used in the experiments was composed of a
single table hash partitioned according to the primary key.
Database rows had 100 bytes of application data. There
were three attributes in the table: two integers, “id” and
“value”, where id is the primary key, and a 92-character
string, “txt”. Read-only transactions were composed of two
requests of type: “SELECT value FROM table WHERE id=?”; the
id was randomly generated for each SQL statement. Update
transactions had a SELECT and an update request: “UPDATE
table SET value=? WHERE id=?”; both value and id were
randomly generated for each SQL statement.

7.4.1 Throughput versus workload
In the experiments that follow, each data server stored a

local database with approximately 300 MB of application
data (375 MB of physical data). We conducted experiments
with 8 DSs, leading to an overall database with 2.4 GB,
uniformly divided among data servers. As a reference, we
also performed experiments with a standalone MySQL.

The goal of these experiments was to determine the max-
imum sustainable throughput under different transaction
mixes. During the experiments, we made sure that there
were enough clients and edge servers to fully load the sys-
tem. Figure 11 shows the throughput of Sprint for response
times of at most 20 milliseconds.

Figure 11 fully characterizes the behavior of Sprint run-
ning the micro-benchmark with 8 DSs. Four points in the
graph deserve special attention: (a) all transactions are global
and update the database, (b) all transactions are global and
only read the database, (c) all transactions are local and
only read the database, and (d) all transactions are local
and update the database. Point (a) requires two multicasts:
one to synchronize and another one to terminate transac-
tions. Point (b) has better throughput than (a) because
there is a single multicast per transaction and no aborts to
ensure the execution order invariant (transactions only read
the database). Point (c) provides the best throughput; no
multicast is involved. Point (d) requires a single multicast
per transaction, to make it durable. As with (b), there are
no aborts due to the execution order invariant since trans-
actions are all local.

From point (a) to point (b), the throughput increases 4.5x,

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

tp
s)

Read-only transactions (%)

(a)

(b)

(c)

(d)

Local (100%-0%)
Mixed (75%-25%)
Mixed (50%-50%)

Global only

Figure 11: Micro-benchmark throughput

and from (a) to (d) it increases 3.6x. The advantage of (b)
over (d) is due to the use of two “streams” for multicast,
one for synchronizing global transactions and another for
terminating update transactions. Since the first is not used
to store transaction state, we disabled disk writes—all in-
formation was kept in main memory only.

Table 3 shows the ratio between Sprint’s throughput and
that of a standalone server using a 2.4 GB database. Not
surprising, performance of the former is always better than
the latter, since the database does not fit in the main mem-
ory of the single server. Interestingly, the ratio decreases
when we pass from update-only transactions to mixes with
50% of update transactions. This happens because although
the throughput increases in Sprint when more transactions
are read-only, the improvement is not as big as in a stan-
dalone database, and therefore the ratio is smaller. When
fewer transactions update the database, a bigger portion
of it can be cached in main memory, improving the perfor-
mance of the standalone server. In Sprint, the effect is not as
significant since the database is already all in main memory.

Local Read-only Transactions
Transactions 0% 50% 100%

0% 2.8x 2.0x 5.8x
50% 4.8x 4.0x 9.0x
75% 6.8x 5.3x 11.2x

100% 10.1x 8.9x 18.8x

Table 3: Throughput improvement w.r.t. single DB

Table 3 depicts in bold configurations in which Sprint run-
ning with 8 DSs is at least 8 times better than a standalone
database. In the best mix, when all transactions are local
and only read the database, Sprint has a throughput that is
more than 18 times that of a standalone database. Two fac-
tors account for this: higher parallelism (8 DSs as opposed
to a single one) and main memory execution only.

7.4.2 Abort rates
In the following, we consider abort rates under more strin-

gent conditions than TPC-C. Table 4 shows the effects of
several transaction mixes on the abort rate. The entries
in the table correspond to the experiments depicted in Fig-
ure 11. Aborts are highly dependent on the percentage of
global transactions in the workload, but not so much de-

pendent on the percentage of update transactions. When
all transactions are global and at least half of the them are
updates, about 25% of transactions are aborted due to our
deadlock avoidance mechanism. Notice that in TPC-C, 85%
of transactions are local and 92% are updates.

Local Read-only Transactions
Transactions 0% 50% 100%

0% 0.24471 0.25299 0.00016
50% 0.12098 0.13457 0.00008
75% 0.04762 0.05613 0.00003

100 % 0.00001 0.00001 0.00000

Table 4: Abort rate of micro-benchmark

We have also considered the effects of hot-spots on the
deadlock avoidance mechanism. To do so, we changed the
micro-benchmark so that one of the transaction operations
is forced to access at least one DS in the hot spot area, and
varied the size of this area. A hot-spot of size one means that
every transaction executes one operation on the designated
DS, and so on. The results depicted in Figure 12 are for
the worst case scenario, as shown in Table 4, that is, all
transactions are global and update the database.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0 1 2 3 4 5 6 7

Ab
or

t r
at

e

Hot-spot size

Figure 12: Abort rate with hotspots

When a single DS is in the hot-spot area, transactions are
mostly synchronized by a single data server, and fewer of
them abort. With two (or more) DSs in the hot-spot area,
local synchronization does not play the same role. Since
most transactions access the same DSs, the chances of con-
flicts increase, and so the aborts. As the number of DSs
in the hot-spot area increases, the probability of conflicts
decreases together with the aborts, as expected.

7.4.3 Scalability
In the experiments depicted in Figures 13 and 14 we eval-

uate Sprint’s throughput when the number of servers in-
creases from 2 to 32 and the database size is fixed to 500
MB of application data (626 MB of physical data). In all
configurations, the data is uniformly distributed among the
servers. In both graphs we also show the throughput of
our multicast primitive in messages per second (mps) and
of a standalone MySQL running databases with 250 MB
(physically 314 MB) and 500 MB, corresponding to cases in
which the database fits comfortably in the main memory of
the single server, and in which it does not. The through-
put of the multicast primitive represents a theoretical upper

bound on the number of transactions per second that could
be achieved in workloads with global or update transactions.

Figure 13 considers a mixed workload with 50% of update
transactions—in such cases, total order multicast is always
needed to terminate transactions. The reported throughput
(in tps) in all cases corresponds to a response time of at
most 20 msecs. When compared to MySQL with a 500-MB
database, Sprint provides about the same throughput when
all transactions are global, and higher throughput when at
least 50% of the transactions are local, with peak perfor-
mance 6.4x bigger than the standalone server when there
are 16 DSs. When compared to MySQL running a quite
small database of 250 MB, Sprint can perform better if the
workload is dominated by local transactions. In such cases,
however, the only advantage of Sprint with respect to a sin-
gle server is fault tolerance: Sprint can quickly recover from
the failure of any data server and continue operating with
the operational servers while the failed server recovers.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

tp
s/

m
ps

)

Number of data servers

250 MB

500 MB

Local only
Mixed (50%-50%)

Global only
Multicast

Standalone DB

Figure 13: Scalability of mixed load (50% update).

Figure 14 depicts the scalability of the system when all
transactions only perform read operations. If transactions
are all global, then none of Sprint configurations can process
as many transactions per second as a single MySQL server
with a database of 500 MB. When 50% of the transactions
are local, Sprint performs better for 8, 16 and 32 DSs; in the
largest configuration the throughput gets close to the the-
oretical maximum (i.e., multicast primitive). Finally, when
all transactions are local, Sprint scales linearly (notice that
the y-axis in the graph is in log scale). MySQL with a
database of 250 MB has a throughput near the theoreti-
cal maximum that Sprint could achieve. Its performance is
clearly much higher than Sprint’s, when multicast is needed.
If all transactions are local though, Sprint has a throughput
5x higher than MySQL.

8. RELATED WORK

8.1 On-disk database systems
Increasing the performance and the availability of on-disk

databases has been an active area of research for many years.
While commercial products (e.g., [20, 34]) have traditionally
favored failover based on storage systems shared among the

 1000

 10000

 100000

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

tp
s/

m
ps

)

Number of data servers

250 MB

500 MB

Local only
Mixed (50%-50%)

Global only
Multicast

Standalone DB

Figure 14: Scalability of read-only transactions.

cluster nodes (e.g., disk arrays), research prototypes have
targeted clusters of shared-nothing servers (e.g., [14]).

Gray et al. [10] showed that conventional replication algo-
rithms, typically based on distributed locking [3], can lead
to high abort rates as a consequence of concurrent accesses.
This result motivated much research on protocols based on
total-order broadcast, or a variant primitive, to synchronize
concurrent accesses and reduce the number of aborts [1, 2,
15, 22, 23, 24, 25, 27]. Some approaches have also considered
consistency criteria weaker than serializability. In particu-
lar, many recent works have focused on snapshot isolation
[5, 6, 18, 26, 29, 33].

Sprint “decouples” replication for availability from repli-
cation for performance. Data servers can be replicated for
performance only: if a data item is often read and rarely up-
dated, then increasing the number of in-memory replicas of
the item will allow more parallel reads; if the item is rarely
read but often modified, then performance is improved by
reducing its number of in-memory replicas. Data availabil-
ity is ensured (by the durability servers) even if only a single
data server stores the item. Durability servers are used by
update transactions at commit time only, and thus, do not
interfere with the database synchronization protocol.

How does Sprint compare to on-disk database replication
approaches? Middleware-based database replication pro-
tocols are mainly for fault tolerance. Depending on the
workload and the replication level, usually full replication,
throughput can also be improved when replicas are added
to the system. Scalability of fully replicated databases,
however, is limited to read-intensive workloads. Sprint, on
the contrary, can be configured for performance under both
read- and write-intensive workloads by judiciously partition-
ing and replicating the data.

8.2 In-memory database systems
IMDBs were introduced in the early 80’s [8] and success-

fully used in real contexts (e.g., telecommunication indus-
try). To cope with failures, some existing implementations
use a primary-backup technique in which the primary prop-
agates system-level information (e.g., database pages) to the
backups [7]. Backups monitor the primary and if they sus-
pect it has crashed, some backup takes over. A different

approach is proposed in [36] where virtual-memory-mapped
communication is used to achieve fast failover by mirroring
the primary’s memory on the backups.

Some contemporary systems have considered IMDBs in
clustered environments. MySQL Cluster [28] replicates and
fragments the database space among server clusters to en-
hance performance and availability. To ensure good perfor-
mance of update transactions as well, the approach makes
use of deferred disk writes. This means that updates are
written to disk after the transaction has committed. Trans-
action atomicity is ensured by synchronizing the servers’
disk writes, but some failure patterns may violate the dura-
bility property. An alternative approach to keeping a par-
titioned database consistent while relaxing durability is dis-
cussed in [30].

The work in [13] consists in interposing an IMDB between
applications and on-disk databases as a content cache. The
database is partitioned across individual servers in such a
way that queries can be executed in a single database with-
out data transmission or synchronization with other servers.
Sprint could benefit from such a partitioning scheme in order
to reduce the number of global transactions.

9. FINAL REMARKS
Sprint’s distributed data management protocol was de-

signed to stress processors, main memories, and the network,
while sparing disk. No restrictive assumptions are made
about the failure model (e.g., no server must be always up)
and failure detection. When disk access is unavoidable, it
is done sequentially. The execution model is very simple,
favoring local transactions. An implicit assumption of the
approach is that by carefully partitioning a database, many
transactions can be made local, maximizing performance.

Performance experiments have demonstrated that for a
large range of workloads, Sprint can extend the functional-
ity of a single-server IMDB to a cluster of such servers. It
shows that middleware architectures can be also employed to
design highly efficient and fault-tolerant data management
systems even when the database is not fully replicated. We
hope it will open up new directions in research on high per-
formance and high availability middleware-based database
protocols.

Acknowledgments
We would like to thank Prof. Bettina Kemme and the
anonymous reviewers for their suggestions to improve the
presentation of this work, and Apple Computer Interna-
tional and Emulab for the hardware infrastructure, which
allowed us to develop, fine tune, and evaluate Sprint.

10. REFERENCES
[1] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi.

Exploiting atomic broadcast in replicated databases.
In Proceedings of EuroPar (EuroPar’97), Passau
(Germany), 1997.

[2] Y. Amir and C. Tutu. From total order to database
replication. In International Conference on Distributed
Computing Systems (ICDCS), July 2002.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[4] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, 1996.

[5] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent:
Uniting durability with transaction ordering for
high-performance scalable database replication. In
Proceedings of EuroSys, 2006.

[6] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database
replication using generalized snapshot isolation. In
Symposium on Reliable Distributed Systems
(SRDS’2005), Orlando, USA, 2005.

[7] FirstSQL Inc. The FirstSQL/J in-memory database
system. http://www.firstsql.com.

[8] H. Garcia-Molina and K. Salem. Main memory
database systems: An overview. IEEE Transactions on
Knowledge and Data Engineering, 4(6):509–516, 1992.

[9] J. Gray and L. Lamport. Consensus on transaction
commit. ACM Trans. Database Syst., 31(1):133–160,
2006.

[10] J. N. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proceedings of
the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal (Canada), 1996.

[11] J. N. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[12] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts
and related problems. In Distributed Systems,
chapter 5. Addison-Wesley, 2nd edition, 1993.

[13] M. Ji. Affinity-based management of main memory
database clusters. ACM Transactions on Internet
Technology (TOIT), 2(4):307–339, 2002.

[14] B. Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-r, a new way to implement
database replication. In Proceedings of 26th
International Conference on Very Large Data Bases
(VLDB’2000), Cairo, Egypt, 2000.

[15] B. Kemme and G. Alonso. A new approach ro
developing and implementing eager database
replication protocols. ACM Transactions on Database
Systems (TODS), 25(3), September 2000.

[16] D. Kossmann. The state of the art in distributed query
processing. ACM Comput. Surv., 32(4):422–469, 2000.

[17] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
1998.

[18] Y. Lin, B. Kemme, M. Patino-Martinez, and
R. Jimenez-Peris. Middleware based data replication
providing snapshot isolation. In International
Conference on Management of Data (SIGMOD),
Baltimore, Maryland, USA, 2005.

[19] D. Morse. In-memory database web server. Dedicated
Systems Magazine, (4):12–14, 2000.

[20] Oracle parallel server for windows NT clusters. Online
White Paper.

[21] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1999.

[22] M. Patino-Mart́ınez, R. Jiménez-Peris, B. Kemme,
and G. Alonso. Scalable replication in database
clusters. In Disctributed Computing (DISC), 2000.

[23] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme,
and G. Alonso. Consistent database replication at the

middleware level. ACM Transactions on Computer
Systems, 23(4):375–423, 2005.

[24] F. Pedone and S. Frølund. Pronto: A fast failover
protocol for off-the-shelf commercial databases. In
Proceedings of 19th IEEE Symposium on Reliable
Distributed Systems (SRDS’2000), Nürnberg,
Germany, 2000.

[25] F. Pedone, R. Guerraoui, and A. Schiper. Transaction
reordering in replicated databases. In Proceedings of
the 16th IEEE Symposium on Reliable Distributed
Systems, Durham (USA), 1997.

[26] C. Plattner and G. Alonso. Ganymed: scalable
replication for transactional web applications. In
Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware, pages
155–174, 2004.

[27] L. Rodrigues, H. Miranda, R. Almeida, J. Martins,
and P. Vicente. Strong replication in the globdata
middleware. In Workshop on Dependable
Middleware-Based Systems, 2002.

[28] M. Ronström and L. Thalmann. Mysql cluster
architecture overview. MySQL Technical White Paper,
2004.

[29] R. Schenkel, G. Weikum, N. Weissenberg, and X. Wu.
Federated transaction management with snapshot
isolation. In Selected papers from the Eight
International Workshop on Foundations of Models and
Languages for Data and Objects, Transactions and
Database Dynamics, pages 1–25, 2000.

[30] R. Schmidt and F. Pedone. Consistent main-memory
database federations under deferred disk writes. In
Symposium on Reliable Distributed Systems
(SRDS’2005), Orlando, USA, 2005.

[31] T. Shetler. In-memory databases: The catalyst behind
real-time trading systems.
http://www.timesten.com/library/.

[32] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In Proc. of the
Fifth Symposium on Operating Systems Design and
Implementation, pages 255–270, Boston, MA, 2002.
USENIX Association.

[33] S. Wu and B. Kemme. Postgres-r(si): Combining
replica control with concurrency control based on
snapshot isolation. In Proceedings of the International
Conference of Data Engineering, 2005.

[34] Informix extended parallel server 8.3. Online
White-Paper.

[35] C. Yu and W. Meng. Principles of Database Query
Processing for Advanced Applications. Morgan
Kaufmann, San Francisco, 1998.

[36] Y. Zhou, P. Chen, and K. Li. Fast cluster failover
using virtual memory-mapped communication.
Technical Report TR-591-99, Princeton University,
1999.

APPENDIX
In the following we prove two properties of the algorithm:
(a) Sprint’s data management protocol ensures strong con-
sistency, that is, all executions are one-copy serializable, and
(b) Sprint detects and solves distributed deadlocks.

We initially introduce a simple formalism. A history h
over a set of transactions T = {T1, T2, ..., Tn} is a partial
order ≺ where (a) h contains the operations of each trans-
action in T ; (b) for each Ti ∈ T , and all operations Oi and
O′

i in Ti: if Oi precedes O′
i in Ti, then Oi ≺ O′

i in h; and
(c) if Ti reads X from Tj , then Wj(Xj) ≺ Ri(Xj) in h [3],
where Ri(Xj) (resp., Wi(Xi)) is a read (write) operation
performed by Ti over data item Xj (Xi).

Proposition 1. Sprint’s data management ensures one-
copy serializability.

Proof: We show that every history h produced by Sprint
has an acyclic multi-version serialization graph (MVSG).
From [3], if MV SG(h) is acyclic, then h is view equiva-
lent to some serial execution of the same transactions using
a single-copy database. MVSG is a directed graph with the
nodes representing committed transactions and edges repre-
senting dependencies between them. There are three types
of directed edges in MVSG: (a) read-from edges, (b) version-
order edges type I, and (c) version-order edges type II.

From the algorithm, the commit order of transactions in-
duces a version order on every data item: If � is an order
relation on the versions, and Ti and Tj update X, then we
have commit(Ti) < commit(Tj) ⇔ Xi � Xj . To show that
MV SG(h) has no cycles, we prove that for every edge Ti →
Tj in MV SG(h), we have commit(Ti) < commit(Tj). The
proof continues by considering each edge type in MV SG(h).

1. Read-from edge – If Tj reads data item Xi from Ti (i.e.,
Rj(Xi)), then Ti → Tj ∈ MV SG(h).
We have to show that commit(Ti) < commit(Tj). This
follows from the fact that since Ti is an update trans-
action, it executes in isolation. Other transactions can
only read Xi after Ti has committed.

2. Version-order edge type I. If both Ti and Tj write X
such that Xi � Xj , then Ti → Tj ∈ MV SG(h). Since
the commit order induces the version order, we have
that Xi � Xj ⇔ commit(Ti) < commit(Tj).

3. Version-order edge type II. If Ti reads Xk from Tk,
and both Tk and Tj write X such that Xk � Xj ,
then Ti → Tj ∈ MV SG(h). We have to show that
commit(Ti) < commit(Tj). Assume that Ti reads Xk

from data server DS. Since Tj is an update transac-
tion, it can only commit if it modifies all data servers
storing a copy of X. Consider first an execution with-
out failures. Since Ti reads Tk’s updates, it access DS
after Tk’s commit and before any other update trans-
action. Therefore, Tj will be blocked at DS waiting for
Ti to finish and release the lock DS. It follows that
commit(Ti) < commit(Tj). Consider now the case in
which Ti reads Xk at DS, this one fails, another in-
stance of it, say DS′, is created, and Tj updates DS′.
Since Ti commits, before failing, DS must have voted
to commit Ti. This vote is totally ordered with the mes-
sage m that informed about the replacement of DS by
DS′. Had DS’s vote been delivered after m, Ti would
have been aborted. Therefore, DS’s vote must have

been delivered before m, and Ti was committed before
Tj accessed DS′. Hence, commit(Ti) < commit(Tj).2

Proposition 2. If a transaction is involved in a deadlock
then it is aborted.

Proof: From the multiple-readers single-writer policy, dead-
locks involving local transactions cannot happen. We show
that deadlocks involving global transactions are avoided.
From the algorithm invariant (see Section 4.1), a global
transaction with a lower sequential number never waits for a
conflicting global transaction with a higher sequential num-
ber. Thus, it remains to be proved that for any pair of trans-
actions Ti and Tj , if seq(Ti) < seq(Tj) at data server DSk,
then seq(Ti) < seq(Tj) at data server DSl. In the absence
of failures this trivially follows from the total order property
of total order multicast and the way sequential numbers are
assigned by the algorithm. Consider now that DSl assigns a
sequential number to Ti, fails, and upon recovering assigns
a smaller sequential number to Tj . This can only happen if
the message informing that Ti became global is received by
DSl before this one fails. Thus, the new instance of DSl,
after the failure, will not have a sequential number for Ti.
Upon receiving the first request for Ti, DSl will abort Ti.2

