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Abstract. Soft constraints extend classical constraints to represent multiple con-
sistency levels, and thus provide a way to express preferencesndagz and
uncertainty. While there are many soft constraint solving algorithms) eig
tributed ones, by now there seems to be no concurrent programnaimgork
where soft constraints can be handled. In this paper we show how tb&-cla
cal concurrent constraint (cc) programming framework can weitk soft con-
straints, and we also propose an extension of cc languages which eaoftis
constraints to prune and direct the search for a solution. We believe ibaieth
programming paradigm, called soft cc (scc), can be very usefulanymveb-
related scenarios. In fact, the language level allows web agents tosexpesr
interaction and negotiation protocols, and also to post their requests in terms
of preferences, and the underlying soft constraint solver can £rayjegement
among the agents even if their requests are incompatible.

1 Introduction

The concurrent constraint (cc) language [Sar93] is a vergrésting computational
framework able to merge together constraint solving anccaoency. The main idea
is to choose &onstraint systerand use constraints to model communication and syn-
chronization among concurrent agents.

Until now, constraints in cc werecrisp in the sense that only a
yes/not answer could be defned. Recently the classical idkacrsp
constraint has been shown to be too weak to represent reab- pro
lems and a big effort has been done toward the use of soft redmst
[FW92,BFBW92,DFP93,Rut94,FL93,SFV95,BMR97,BF8D,BMR01,Bis01].

Many real-life situations are, in fact, easily described gonstraints able to state
the necessary requirements of the problems. However, lyssiadh requirements are
not hard, and could be more faithfully represented as peefsgs, which should prefer-
ably be satisfed but not necessarily. In real life, we arenofteallenged with over-
constrained problems, which do not have any solution, aiscalso leads to the use of
preferences or in general of soft constraints rather thassatal constraints.



Generally speaking, a soft constraint is just a classicabtraint plus a way to
associate, either to the entire constraint or to each assghof its variables, a certain
element, which is usually interpreted as a level of prefeesar importance. Such levels
are usually ordered, and the order recects the idea that ®wels bre better than others.
Moreover, one has also to say, via suitable combinationatpes, how to obtain the
level of preference of a global solution from the preferenicethe constraints.

Many formalisms have been developed to describe one or nesees of soft con-
straints. For instance consider the Fuzzy CSPs [DFP934Rutthere the crisp con-
straints are extended with a level of preference repredénte real number between 0
and 1, or the probabilistic CSPs [FL93], where the probghbit be in the real problem
is assigned to each constraint. Some other examples areattial ESPs [FW92] or
the hierarchical CSPs [BFBW92] where a preference is asgdigmeach constraint, in
order to also solve overconstrained problems.

We think that many network-related problem could be represse and solved by
using soft constraints. Moreover, the possibility to useoactirrent language on top
of a soft constraint system, could lead to the birth of newqwols with an embedded
constraint satisfaction and optimization framework.

In particular, the constraints could be related to a quaidibe minimized but they
could also satisfy policy requirements given for performor administrative reasons.
This leads to change the idea of QoS in routing and to speedrtraint-basedouting
[AMA *99,Cla89,JS00,CF00]. Constraints are in fact able to sgmtein a declarative
fashion the needs and the requirements of agents integamtar the web.

The features of soft constraints could also be useful inesgmting routing prob-
lems where an imprecise state information is given [CN98prédver, since QoS is
only a specif£c application of a more general notion of Setvagel Agreement (SLA),
many applications could be enhanced by using such a frankevesran example con-
sider E-commerce: here we are always looking for estallgshin agreement between
a merchant, a client and possibly a bank. Also, all auctiageld transactions need
an agreement protocol. Moreover, also security protocalyais have shown to be
enhanced by using security levels instead of a simple natfaecure/insecure level
[BBO1]. All these considerations advocate for the need ajfaconstraint framework
where optimal answers are extracted.

In the paper, we use one of the frameworks able to deal with gmistraints
[BMR95,BMR97]. The framework is based on a semiring streestilhat is equipped
with the operations needed to combine the constraints présehe problem and to
choose the best solutions. According to the choice of tharsegnthis framework is
able to model all the specifc soft constraint notions meeticebove. We compare the
semiring-based framework with constraint systeém$a Saraswat” and then we show
how use it inside the cc framework.

The next step is the extension of the syntax and operati@mahstics of the lan-
guage to deal with the semiring levels. Here, the main ngweitth respect to cc is that
tell and ask agents are equipped with a preference (or densig threshold which is
used to prune the search.



2 Background

2.1 Concurrent Constraint Programming

The concurrent constraint (cc) programming paradigm [$hc®ncerns the behavior
of a set of concurrent agents with a shared store, which isipinotion of constraints.
Each computation step possibly adds new constraints tottine. sThus information
is monotonically added to the store until all agents havdvexdb The £nal store is a
reEnement of the initial one and it is the result of the comjta The concurrent
agents do not communicate with each other, but only with lerexl store, by either
checking if it entails a given constrairagkoperation) or adding a new constraint to it
(tell operation).

Constraint SystemsA constraint is a relation among a specifed set of variableat T
is, a constraint gives some information on the set of possiblues which these vari-
ables may assume. Such information is usually not compilete s constraint may be
satisfed by several assignments of values of the variableofitrast to the situation
that we have when we consider a valuation, which tells us tite possible assign-
ment for a variable). Therefore it is natural to describestraint systems as systems of
partial information [Sar93].

The basic ingredients of a constraint system de£ned follgwhie information sys-
tems idea are a s& of primitive constraintsor tokens each expressing some partial
information, and an entailment relatierde£ned ol (D) x D (or its extension de£ned
onJ(D) x 0 (D))* satisfying:

1. uk Pforall P € u (rezexivity) and
2. ifukv, andvt z thenut z (transitivity).

As an example of entailment relation consideras the set of equations over the inte-
gers; thert- includes the paif{x = 3,x =y},y = 3), which means that the constraint
y = 3 is entailed by the constraints= 3 andx = y. GivenX € 0(D), let X be the set
X closed under entailment. Then, a constraint in an inforomasiystem( (D), ) is
simply an element dfl (D) (that is, a set of tokens).

As itis well known,({J (D), C) is a complete algebraic lattice, the compactness of
gives us algebraicity df (D), with least elemertrue= {P | 0+ P}, greatest elemei
(which we will mnemonically denotéalse), glbs (denoted by) given by the closure
of the intersection and lubs (denoted Iby given by the closure of the union. The lub
of chains is, however, just the union of the members in théncléle usea, b, c,d ande

to stand for elements af (D); ¢ > d meansc - d.

The hiding operator: Cylindric Algebrasln order to treat the hiding operator of the
language, a general notion of existential quantifer is thtoed which is formalized
in terms of cylindric algebras. This leads to the conceptydindric constraint system
over an infnite set of variabl&s such that for each variablec V, 3 :0(D) — 0(D)

is an operation satisfying:

1 The extension is s.tiF viff ut P for everyP e v.



— uk3su

— ut vimplies(3xu) - (3xv)
— Fx(ulIgv) = (Fxu) U (Fxv),
— xdyu~ Jy3ku

Procedure calls. In order to model parameter passirtiagonal elementsre added
to the primitive constraints. We assume that, %oy ranging inV, O (D) contains a
constraintdyy which satis£es the following axioms.

— Oyx =true,
- |f 275 X,ythendxy - Elz(dle-' dzy),
— if X y thendyy L 3x(clidxy) - C.

Note that the in the previous de£nition we assume the caitirtdithe domain forx,
y andz greater than 1. Note also thatHfmodels the equality theory, then the elements
dxy can be thought of as the formulas-y.

The languageThe syntax of a cc program is show in Tabld”ls the class of programs,

F is the class of sequences of procedure declarations (osed3A is the class of
agentsg ranges over constraints, ards a tuple of variables. Each procedure is defEned
(at most) once, thus nondeterminism is expressed via-thembinator only. We also
assume that, ip(x) :: A,vars(A) C x, wherevarg(A) is the set of all variables occurring
free in agentA. In a programP = F.A, A is the initial agent, to be executed in the
context of the set of declaratios This corresponds to the language considered in
[Sar93], which allows only guarded nondeterminism. In ofdebetter understand the

Table 1.cc syntax

P:=FA
Fi=pKX) :A|lFF

A ::=success fail |tell(c) — A|E | AJA| 3xA | p(x)
E:=askc) - A|E+E

extension of the language that we will introduce later, etemind here (at least) the
meaning of the tell and ask agents. The other constructsaaily @nderstandable.

— agent ‘askc) — A" checks whether constraitis entailed by the current store
and then, if so, behaves like agehtlf c is inconsistent with the current store, it
fails, and otherwise it suspends, urttiis either entailed by the current store or is
inconsistent with it;

— agent tell(c) — A” adds constraint to the current store and then, if the resulting
store is consistent, behaves likeotherwise it fails.

A formal treatment of the operational semantics of cc progecan be found in
[Sar93,BP91].



2.2 Soft Constraints

Several formalization of the concept sbft constraintsare currently available. In the
following, we refer to the one based on c-semirings [BMR%30R], which can be
shown to generalize and express many of the others.

A soft constraint may be seen as a constraint where eachiratans of its vari-
ables has an associated value from a partially ordered sehwhn be interpreted as
a set of preference values. Combining constraints will thave to take into account
such additional values, and thus the formalism has alsodeige suitable operations
for combination &) and comparison+) of tuples of values and constraints. This is
why this formalization is based on the concept of c-semjrimggich is just a set plus
two operations.

C-semirings.A semiring is a tuplgA, +, x,0,1) such that:

— Aisasetand,1c A,

— + is commutative, associative afds its unit element;

— x is associative, distributes over, 1 is its unit element and is its absorbing
element.

A c-semiringis a semiring(A, +, x,0,1) such that+ is idempotent] is its absorbing
element andk is commutative. Let us consider the relatigg over A such thata <sb
iff a+b=D. Then itis possible to prove that (see [BMR97]):

— <gis a partial order;

— -+ andx are monotone OKg;

— Ois its minimum andL its maximum;

— (A, <g) is a complete lattice and, for a@lb € A, a+ b =Iub(a,b).

Moreover, if x is idempotent, then+ distribute overx; (A, <s) is a complete distribu-
tive lattice andx its glb. Informally, the relatior<s gives us a way to compare semiring
values and constraints. In fact, when we haves b, we will say that is better than a
In the following, when the semiring will be clear from the text,a <sb will be often
indicated bya < b.

Problems. Given a semirinds= (A, +, x,0,1), a £nite seD (the domain of the vari-
ables) and an ordered set of variablesiconstraintis a pair(def, con) whereconC V
anddef : DI°®V — A Therefore, a constraint specifes a set of variables (the ione
con), and assigns to each tuple of values of these variablesareet of the semiring.
Consider two constraints; = (defy,con) andc; = (def,con), with [con = k. Then
c1 Cscy if for all k-tuplest, de fi(t) <sde#h(t). The relationCs s a partial order.

A soft constraint problenis a pair(C,con whereconC V andC is a set of con-
straints:con is the set of variables of interest for the constraint Getvhich how-
ever may concern also variables notdéon Note that a classical CSP is a SCSP
where the chosen c-semiring &;sp= ({ falsetrue}, Vv, A, falsetrue). Fuzzy CSPs
[Sch92] can instead be modeled in the SCSP framework by aigdise c-semiring
Srcsp= ([0, 1],max min, 0,1). Many other “soft” CSPs (Probabilistic, weighted, ...)



can be modeled by using a suitable semiring structSpg,y = ([0, 1], max x,0,1),
SNeight: <fR, min, +,0, —‘,—00>, . )

Figure 1 shows a fuzzy CSP. Variables are inside circlesstcaints are represented
by undirected (unary, binary orary) arcs, and semiring values are written to the right
of the corresponding tuples. The variables of interest (fhtte seton) are represented
with a double circle. Here we assume that the donfanf the variables contains only
elementsrandb.

<a>-->0.9 <a> > 0.9

D\<b> ->0.1 <b>70.5/D

cl <a,a>-->0.8 c3
<a, b>-->0.2

©) Sw o ©

<b, b> >0 c2

Fig. 1. A fuzzy CSP

Combining and projecting soft constraint$siven two constraintg; = (def;,con)
and c; = (def,,conp), their combination ¢ ® ¢, is the constraintdef,con) defned
by con= com U corp anddef(t) = defy(t |S3n) x def,(t |E3h), wheret | denotes
the tuple of values over the variablesYn obtained by projecting tuple from X to
Y. In words, combining two constraints means building a nemstmint involving all
the variables of the original ones, and which associateac¢h &ple of domain values
for such variables a semiring element which is obtained bitiptying the elements
associated by the original constraints to the approprisiéuples.

Given a constraint = (def,con) and a subset of V, the projection of ¢ over
I, written c |} is the constraint(def’,corl) where corf = conn | and def (t') =
St /t1|°°20n:t’def<t)' Informally, projecting means eliminating some variabl&his is
done%y associating to each tuple over the remaining vasasemiring element which
is the sum of the elements associated by the original canstoaall the extensions of
this tuple over the eliminated variables. In short, combarais performed via the mul-
tiplicative operation of the semiring, and projection \li@ tadditive one.

Solutions. The solutionof an SCSP probler® = (C,con) is the constrainBol(P) =
(®C) Jcon That is, we combine all constraints, and then project dvensariables in
con In this way we get the constraint ovesnwhich is “induced” by the entire SCSP.

For example, the solution of the fuzzy CSP of Figure 1 asses@msemiring element
to every domain value of variable Such an element is obtained by £rst combining alll
the constraints together. For instance, for the typl@) (that is,x =y = a), we have to
compute the minimum between9(which is the value assigned xa= a in constraint
¢1), 0.8 (which is the value assigned (o= a,y = a) in ¢z) and Q9 (which is the value
for y=ain c3). Hence, the resulting value for this tuple i80We can do the same
work for tuple (a,b) — 0.2, (b,a) — 0 and(b,b) — 0. The obtained tuples are then
projected over variablg, obtaining the solutioa) — 0.8 and(b) — O.

Sometimes it may be useful to £nd only a semiring value reptasg the least
upper bound among the values yielded by the solutions. Bhimlied thebest level



of consistencyf an SCSP probler® and it is defned byleve(P) = Sol(P) {¢ (for
instance, the fuzzy CSP of Figure 1 has best level of comsigt@8). We also say that:
P is a-consistent ibleve(P) = a; P is consistent iff there exists > 0 such thatP is
a-consistentP is inconsistent if it is not consistent.

3 Concurrent Constraint Programming over Soft Constraints

Given a semiringS= (A, +, x,0,1) and an ordered set of variabl&sover a £nite
domainD, we will now show how soft constraints with a suitable paippgrators form
a semiring, and then, we evidentiate the properties neededp soft constraints over
constraint system'a la Saraswat”.

We start by giving the de£nition of the carrier set of the sergir

De£nition 1 (functional constraints).We deEn€ = (V — D) — A
as the set of all possible constraints that can be built gtgrfrom S, D and V.

A generic function describing the assignment of domain elesito variables will be
denoted in the following by, : V — D. Thus a constraint is a function which, given an
assignment) of the variables, returns a value of the semiring.

Note that in thigunctionalformulation, each constraint is a function and not a pair
representing the variable involved and its de£nition. Sudhnation involves all the
variables inV, but it depends on the assignment of only a £nite subset of.tki¢an
call this subset theupportof the constraint. For computational reasons we requirk eac
support to be £nite.

De£nition 2 (constraint support). Consider a constraint € €. We de£ne his support
as supfic) = {veV |3n,dy,dz.cn[v~ di] # cn[v~ dy]}, where

d ifv=Vv,
nv otherwise

anﬂV={

Note thatcn|v ~» di] meanscn’ wheren’ is n modifed with the association~» d;
(that is the operatdr] has precedence over application).

Deg£nition 3 (functional mapping). Given any soft constraintdef,{v1,...,vn}) €
C, we can defne its corresponding functiore € as a[vi ~ di]...[vh ~ dn] =
def(ds,...,dn). Clearly supfc) C {v1,...,Vn}.

De£nition 4 (Combination and Sum).Given the se€, we can de£ne the combination
and sum function®,$ : € x € — € as follows:

(c1®C2)N =cC1n XsCaN
(c1®C2)n = c1n +sc2n.
Notice that function® has the same meaning of the already defpeaperator (see

Section 2.2) while functiom models a sort of disjunction (similar to that introduced in
[BCGROO].



By using thebs operator we can easily extend the partial orderoverC by de£n-
ingci C ¢ < C1PsCr = Co.

We can also de£ne a unary operator that will be useful to repteke unit elements
of the two operations> and®. To do that, we need the de£nition of constant functions
over a given set of variables.

De£nition 5 (constant function).We de£ne functioa as the function that returns the
semiring value a for all assignments that is,an = a. We will usually writea simply
as a.

Itis easy to verify that each constant has an empty supporéxample of constants
that will be useful later ar® and1 that represent respectively the constraint associating
0 and1 to all the assignment of domain values.

Theorem 1 (Higher order semiring). The structure §= (C,®, ®,0, 1) where

— C:(V — D) — Ais the set of all the possible constraints that can be btalttsg
from S, D and V as de£ned in De£nition 1,

— ® and® are the functions de£ned in De£nition 4, and

— 0and1 are constant functions de£ned following De£nition 5,

is a c-semiring.

The next step is to look for a notion of token and of entailmretation. We de£ne as
tokens the functional constraints@and we introduce a relatignthat is an entailment
relation when the multiplicative operator of the semirisgdempotent.

De£nition 6 (- relation). Consider the high order semiring carrier sétand the par-
tial order C. We de£ne the relationC O (C) x € s.t. for each G= O (€) and ce C, we
have C-c <— ®CCLCc.

The next theorem shows that when the multiplicative operatdhe semiring is
idempotent, thé- relation satis£es all the properties needed by an entailment

Theorem 2 ( with idempotent x is an entailment relation). Consider the higher
order semiring carrier se€ and the partial order—. Consider also the relatiofr of
Deg£nition 6. Then, if the multiplicative operation of the s&my is idempotentt- is an
entailment relation.

Note that in this setting the notion of token (constraint) af set of tokens (set of
constraints) closed under entailment is used indiffeyemti fact, given a set of con-
straint functionsC,, its closure w.r.t. the entailment is a et that contains all the
constraints greater tha® C,. This set is univocally representable by the constraint
function® C;.

The de£nition of the entailment operateron top of the higher order semiring
S =(C,®,®,0,1) and of theC relation leads to the notion @bft constraint systenit
is also important to notice that in [Sar93,dBGMP97] theyiml¢éhe constraint system
to be acomplete algebraidattice. Here we do not ask for this algebricity since the
algebricity of the structure strictly depends on the properties of the semiring.



Non-idempotenk. If the constraint system is de£ned on top of a non-idempoteit m
tiplicative operator, we cannot obtaintarelation satisfying all the properties of an
entailment. Nevertheless, we can givdenotationalsemantics to the constraint store,
as described in Section 4, using the operations of the higiger semiring.

To treat the hiding operator of the language, a general natiexistential quantifer
has to be introduced by using notions similar to those useglindric algebras. Note
however that cylindric algebras are £rst of all boolean algebThis could be possible
in our framework only when the operator is idempotent.

De£nition 7 (hiding). Consider a set of variables V with domain D and the corre-
sponding soft constraint systefnWe de£ne for each«V the hiding function

(3xe)n = dgbcn [X~ di].

Notice thatx does not belong to the support8yfc.
To model parameter passing we need instead to deEne whahdiagements are.

De£nition 8 (diagonal elements)Consider an ordered set of variables V and the cor-
responding soft constraint systéinLet us de£ne for eachyxec V a constraint gy € C
s.t., dyn[x~a,y~ bl =1if a=b and gyn[x~ a,y~ b] = 0 if a # b. Notice that
supHdky) = {x,y}

4  Soft Concurrent Constraint Programming

The next step in our work is now to extend the syntax of theuauigg in order to directly
handle the cut level. This means that the syntax and sersanftibe tell and ask agents
have to be enriched with a threshold to specify when askitgdhts have to fail, succeed
or suspend.

Given a soft constraint syste(, D,V) and the corresponding structutethe syn-
tax of agents in soft concurrent constrastic programming is given in Table 2. We

Table 2.scc syntax

P:=FA

Fi=pX):A|FF

A::=stop|tell(c) =2 A|E | AJA| 3IX.A| p(X)
E: =askc) -2A|E+E

present here a structural operational semantics for sggrames, in the SOS style, which
consists of defning the semantic of the programming langbsigmecifying a set of
con£gurationd”, which de£ne the states during execution, a relatioa I' x I which
describes thdransition relation between the conf£gurations, and aTetf terminal
con£gurations.



The set of con£gurations represent the evolutions of thetagem the modif£ca-
tions in the constraint store.

De£nition 9 (conf£gurations).The set of con£gurations for a soft cc system is the set

I ={(A0)} U{(success)} whereo € C. The set of terminal conf£gurations is the set
T = {(succesz) } and the transition rule for the scc language are defned ind&bl

Table 3. Transition rules for scc

(stopo) — (successo) (Stop)
(o®c) lot a
(Valued-tell)
(tell(c) =@ A,0) — (A,o®C)
okcolpga

(Valued-ask)
(ask'c) -2 A 0) — (A 0)

(A,0) — (A}, 0") (A1,0) — (successy’)
(A1|Az,0) — (A]|A2,0") (A1]|Az,0) — (Ag,0")
(A2||Aq,0) — (Ao||A,0") (A2||A1,0) — (Ag,0")
(E1,0) — (A,0')

(E1+Ep,0) — (A1,0')

(E2+E1,0) — (A1,0')
(Aly/x],0) — (N, 0')
(IA,0) — (A, d’)
(p(y),0) — (Aly/x],0) whenp(x) :: A (Procedure call)

(Parallelism)

(Nondeterminism)

with y fresh (Hidden variables)

Here is a brief description of the most complex rules:

Valued-tell The valued-tell rule checks for ttee-consistency of the SCSP de£ned by
the storeoUc. The rule can be applied only if the stoseJ c is b-consistent with
b £ a. In this case the agent evolves to the new agenter the store ® c.

Valued-ask The semantics of the valued-ask is extended in a way sinailauiat we
have done for the valued-tell action. This means that toyati@ rule we need
to check if the storey entails the constraint and also if the store is “consistent
enough” w.r.t. the threshold set by the programmer.

Nondeterminism and parallelism The composition operators and|| are not modi-
£ed w.r.t. the classical ones: a parallel agent will succkalithe agents succeeds;
a nondeterministic rule chooses any agent whose guardesigce

Hidden variables The semantics of the existential quantifer is similar to et

scribed in [Sar93] by using the notion bEshnesf the new variable added to
the store.



Observables.Given the transition system as de£ned in the previous seatiemow
de£ne what we want to observe of the program behaviours desidoy the transitions.
To do this we de£ne for each agexthe set of constraints

8a= {0 lvar(a)| (A1) =" (succesm)}

that collects the results of the successful computatioaistite agent can perform. The
computed store is projected over the variables of the agénto discard anyfresh
variable introduced in the store by tHeoperator.

The observabl&, could be reEned by considering, instead of the set of suadessf
computations starting fronfA, 1), only a subset of them. One could be interested in
considering for example only tHeestcomputations: in this case, all the computations
leading to a store worse than one already collected aregdisted. With a pessimistic
view, the representative subset could instead collecthallviorst computations (that
is, all the computations better than others are disregdrdi@aially, also a set contain-
ing both the best and the worst computations could be coregid&hese options are
reminiscent of Hoare, Smith and Egli-Milner powerdomaiespectively.

Let us also notice that different cut levels in the ask anidojgérations could lead
to a different £nal setSa. In fact, it can be proved that if the thresholds of the ask and
tell operations of the program are not worse than a givewe can be sure to £nd in
the £nal store only solutions not worse tharThis observation can be useful when we
are looking just for the best stores reachable from an Irgtien agent. In fact, we can
move the cut up and down (in a way similar to a binary searcH)@erform a branch
and bound exploration of the search tree in order to £nd thediitaless sets.

In this paper we only consider a semantics that collectsesscstates. We plan to
extend the operational semantics to collect also failirdjlaimging computations.

5 A simple example

In the following we will show the behaviour of some of the milef our transition
system. We consider in this example a soft constraint syst@mthe fuzzy semiring.
Consider the constraints

1 ifx<10
0 otherwise

= ;y andc/(x) = {

Let's now evaluate the following agent in the empty starstaye 1:
(tell(c) —%* askc') =8 stop1).

By applying theValued-tellrule we need to checkl ® c) |p# 0.4. Sincel®c=c
andc llp= 1, the agent can perform the step, and it reaches the &iak’) —%8
stopc). Now we need to check (by following the rule ®hlued-askif ¢t ¢’ and
¢ lp# 0.8. While the second relation easily holds, the £rst one doesaldt(in fact,
for x =11 andy = 10 we have’(x) = 0 andc(x,y) = 0.5). If instead we consider the
constraint

C"(X )— ;
Y= 1% IX—Y|



in place ofc/, then the conditior - ¢” easily holds and the ageask¢”) —%8 stopcan
perform its last step, reaching tepandsuccesstatesi{stopc®c’) — (succesT®
c’).

6 A Possible Application

We consider in this section a network problem, involving ex$grocesses running on
distinct locations and sharing some variables, over whiely heed to synchronize.

Each process is connected to a set of variables, shared thién processes, and
it can perform several moves. Each of such moves involve®peing an action over
some or all the variables connected to the process. An aotiena variable consists
of giving a certain value to that variable. A special valudléi’ models the fact that a
process does not perfom any action over a variable. Eaclegsdias also the possibility
of not moving at all: in this case, all its variables are gitiea idle value.

The desired behavior of a network of such processes is thaan move of the
entire network:

1. processes sharing a variable perform the same actioritpver
2. as few processes as possible remain idle.

To describe a network of processes with these features, &s@ruSCSP where each
variable models a shared variable, and each constraintlsad#ocess and connects
the variables corresponding to the shared variables opttoaess. The domain of each
variable in this SCSP is the set of all possible actionsyiticlg the idle one. Each way
of satisfying a constraint is therefore a tuple of actioret th process can perform on
the corresponding shared variables.

In this scenario, softness can be introduces both in the oenand in the con-
straints. In particular, since we prefer to have as many ngprocesses as possible,
we can associate a penalty to both the idle element in theidspend to tuples contain-
ing the idle action in the constraints. As for the other damalements and constraint
tuples, we can assign them suitable preference values telrhod much we like that
action or that process move.

For example, we can use the semirfBg- ([—,0],max +,—o,0), where 0 is the
best preference level (or, said dually, the weakest penalty is the worst level, and
preferences (or penalties) are combined by summing theworing to this semiring,
we can assign value to the idle action or move, and suitable other preferencelsev
to the other values and moves. Figure 2 gives the details aftaop a network and it
shows eigth processes (thatds,. . ., cg) sharing a total of six variables. In this example,
we assume that processgs ¢, andcs are located on sita, processess andcg are
located on sitdy, andc, is located on sit&€. Processes; andcg are located on sitd.
Sitee connects this part of the network to the rest. Thereforeekample, variablezy,

Y4 andzy are shared between processes located in distinct locations

As desired, £nding the best solution for the SCSP repreggtitecurrent state of
the process network means £nding a move for all the processkdtsat they perform
the same action on the shared variables and there is a minimoumber of idle pro-
cesses. However, since the problem is inherently distihut does not make sense,



Fig. 2. The SCSP describing part of a process network.

and it might not even be possible, to centralize all the imfaiion and give it to a single
soft constraint solver.

On the contrary, it may be more reasonable to use severatgpftraint solvers,
one for each network location, which will take care of hanglonly the constraints
present in that location. Then, the interaction betweergsses in different locations,
and the necessary agreement to solve the entire problefrhemihodelled via the scc
framework, where each agent will represent the behaviothh@processes in one loca-
tion.

More precisely, each scc agent (and underlying soft constsalver) will be in
charge of receiving the necessary information from the roéigents (via suitable asks)
and using it to achieve the synchronization of the processiéslocation. For this pro-
tocol to work, that is, for obtaining a global optimal soariwithout a centralization of
the work, the SCSP describing the network of processes haavim a tree-like shape,
where each node of the tree contains all the processes imtidncand the agents have
to communicate from the bottom of the tree to its root [BMR9@]our example, the
tree structure we will use is the one shown in Figure 3(a).cWhilso shows the di-
rection of the child-parent relation links (via arrows)gtkre 3(b) describes instead the
partition of the SCSP over the four involved locations. Th&ygconnections represent
the synchronization to be assured between distinct lagsitiNotice that, w.r.t. Figure
2, we have duplicated the variables representing variahlased between distinct loca-
tions, because of our desire to £rst perform a local work aed tb communicate the
results to the other locations.

The scc agents (one for each location plus the parallel ceitipo of all of them)
are therefore de£ned as follows:



(& A pos- (b) The SCSP partitioned over the four loca-
sible tree tions.

structure for

our network.

Fig. 3. The ordered process network.

Aq : Fy, (tell(ci(Xa; Ua) A C2(Ua, Ya) A C3(Xa, Ya)) — tell(endy = true) — stop)
Ay : Jy, (tell(cs(Yb, Vb) A Cs(Zo, Vb)) — tell(end, =true) — stop

Ac : Fwe(tell(ca(Xe, We, Z2)) — tell(end; = true) — stop)

Aq : askend, =trueA end, =trueA end =trueA end; = true) —

tell(c7(Xd, Ya) A Cs(Xds Yd, Zd) AXa =Xd = Xc AYa=VYd = Yo A Zp =24 = Z)
— tell(endy =true) — stop

AAa| Ao Ac|Ag

AgentsAg,Apy,Ac andAqy represent the processes running respectively in the totati
a, b, candd. Note that, at each ask or tell, the underlying soft constisolver will only
check (for consistency or entailment) a part of the currehb$ constraints: those local
to one location. Due to the tree structure chosen for thisngt@, where agenta,, Ay,
and A; correspond to leaf locations, only agek shows all the actions of a generic
process: £rst it needs to collect the results computed sepaby the other agents (via
the ask); then it performs its own constraint solving (viee#)tand £nally it can set
its end rag, that will be used by a parent agent (in this casagblet corresponding to
locatione, which we have not modelled here).



7 Conclusions and Future Work

We have shown that cc languages can deal with soft congraifdreover, we have
extended their syntax to use soft constraints also to diedtprune the search process
at the language level. We believe that such a new programparagigm could be very
useful for web and internet programming.

In fact, in several network-related areas, constraints @ready been used
[BBO1,AMAT99,Cla89,JS00,CF00]. The soft constraint framework hasattvantage
over the classical one of selecting a “best” solution alsmvierconstrained or undercon-
strained systems. Moreover, the need to express preferemceto search for optimal
solutions shows that soft constraints can improve the ntiodedf web interaction sce-
narios.
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