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Abstract

We introduce the first binary search tree algorithm designed for
speculative executions. Prior to this work, tree structures were
mainly designed for their pessimistic (non-speculative) accesses to
have a bounded complexity. Researchers tried to evaluate transac-
tional memory using such tree structures whose prominent example
is the red-black tree library developed by Oracle Labs that is part of
multiple benchmark distributions. Although well-engineered, such
structures remain badly suited for speculative accesses, whose step
complexity might raise dramatically with contention.

We show that our speculation-friendly tree outperforms the ex-
isting transaction-based version of the AVL and the red-black trees.
Its key novelty stems from the decoupling of update operations:
they are split into one transaction that modifies the abstraction state
and multiple ones that restructure its tree implementation in the
background. In particular, the speculation-friendly tree is shown
correct, reusable and it speeds up a transaction-based travel reser-
vation application by up to 3.5×.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; E.1 [Data Structures]: Trees; D.2.13 [Software
Engineering]: Reusable Software—Reusable libraries

General Terms Algorithms, Languages, Performance

Keywords Background Rebalancing, Optimistic Concurrency,
Transactional Memory

1. Introduction

The multicore era is changing the way we write concurrent pro-
grams. In such context, concurrent data structures are becoming a
bottleneck building block of a wide variety of concurrent applica-
tions. Generally, they rely on invariants [32] which prevent them
from scaling with multiple cores: a tree must typically remain suf-
ficiently balanced at any point of the concurrent execution.

New programming constructs like transactions [20, 33] promise
to exploit the concurrency inherent to multicore architectures. Most
transactions build upon optimistic synchronization, where a se-
quence of shared accesses is executed speculatively and might
abort. They simplify concurrent programming for two reasons.
First, the programmer only needs to delimit regions of sequential
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Figure 1. A balanced search tree whose complexity, in terms of
the amount of accessed elements, is (left) proportional to h in a
pessimistic execution and (right) proportional to the number of
restarts in an optimistic execution

code into transactions or to replace critical sections by transactions
to obtain a safe concurrent program. Second, the resulting transac-
tional program is reusable by any programmer, hence a program-
mer composing operations from a transactional library into another
transaction is guaranteed to obtain new deadlock-free operations
that execute atomically. By contrast, pessimistic synchronization,
where each access to some location x blocks further accesses to x,
is harder to program with [30, 31] and hampers reusability [16, 18].

Yet it is unclear how one can adapt a data structure to access
it efficiently through transactions. As a drawback of the simplicity
of using transactions, the existing transactional programs spanning
from low level libraries to topmost applications directly derive from
sequential or pessimistically synchronized programs. The impacts
of optimistic synchronization on the execution is simply ignored.

To illustrate the difference between optimistic and pessimistic
synchronizations consider the example of Figure 1 depicting their
step complexity when traversing a tree of height h from its root
to a leaf node. On the left, steps are executed pessimistically,
potentially spinning before being able to acquire a lock, on the
path converging towards the leaf node. On the right, steps are
executed optimistically and some of them may abort and restart,
depending on concurrent thread steps. The pessimistic execution of
each thread is guaranteed to execute O(h) steps, yet the optimistic
one may need to execute Ω(hr) steps, where r is the number of
restarts. Note that r depends on the probability of conflicts with
concurrent transactions that depends, in turn, on the transaction
length and h. Although it is clear that a transaction must be aborted
before violating the abstraction implemented by this tree, e.g.,
inserting k successfully in a set where k already exists, it is unclear
whether a transaction must be aborted before slightly unbalancing
the tree implementation to strictly preserve the balance invariant.
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We introduce a speculation-friendly tree as a tree that transiently
breaks its balance structural invariant without hampering the ab-
straction consistency in order to speed up transaction-based ac-
cesses. Here are our contributions.

• We propose a speculation-friendly binary search tree data struc-
ture implementing an associative array and a set abstractions
and decoupling the operations that modify the abstraction (we
call these abstract transactions) from operations that modify
the tree structure itself but not the abstraction (we call these
structural transactions). An abstract transaction either inserts
or deletes an element from the abstraction and in certain cases
the insertion might also modify the tree structure. Some struc-
tural transactions rebalance the tree by executing a distributed
rotation mechanism: each of these transactions executes a lo-
cal rotation involving only a constant number of neighboring
nodes. Some other structural transactions unlink and free a node
that was logically deleted by a former abstract transaction.

• We prove the correctness (i.e., linearizability) of our tree and we
compare its performance against existing transaction-based ver-
sions of an AVL tree and a red-black tree, widely used to eval-
uate transactions [7, 11, 13, 14, 19, 21, 34]. The speculation-
friendly tree improves by up to 1.6× the performance of the
AVL tree on the micro-benchmark and by up to 3.5× the perfor-
mance of the built-in red-black tree on a travel reservation ap-
plication, already well-engineered for transactions. Finally, our
speculation-friendly tree performs similarly to a non-rotating
tree but remains robust in face of non-uniform workloads.

• We illustrate (i) the portability of our speculation-friendly
tree by evaluating it on two different Transactional Memories
(TMs), TinySTM [14] and E -STM [15] and with different con-
figuration settings, hence outlining that our performance bene-
fit is independent from the transactional algorithm it uses; and
(ii) its reusability by composing straightforwardly the remove
and insert into a new move operation. In addition, we compare
the benefit of relaxing data structures into speculation-friendly
ones against the benefit of only relaxing transactions, by eval-
uating elastic transactions. It shows that, for a particular data
structure, refactoring its algorithm is preferable to refactoring
the underlying transaction algorithm.

The paper is organized as follows. In Section 2 we describe the
problem related to the use of transactions in existing balanced trees.
In Section 3 we present our speculation-friendly binary search tree.
In Section 4 we evaluate our tree experimentally and illustrate its
portability and reusability. In Section 5 we describe the related
work and Section 6 concludes.

2. The Problem with Balanced Trees

In this section, we focus our attention on the structural invariant of
existing tree libraries, namely the balance, and enlighten the impact
of their restructuring, namely the rebalancing, on contention.

Trees provide logarithmic access time complexity given that
they are balanced, meaning that among all downward paths from
the root to a leaf, the length of the shortest path is not far apart
the length of the longest path. Upon tree update, if their difference
exceeds a given threshold, the structural invariant is broken and a
rebalancing is triggered to restructure accordingly. This threshold
depends on the considered algorithm: AVL trees [1] do not toler-
ate the longest length to exceed the shortest by 2 whereas red-black
trees [4] tolerate the longest to be twice the shortest, thus restructur-
ing less frequently. Yet in both cases the restructuring is triggered
immediately when the threshold is reached to hide the imbalance
from further operations.

Generally, one takes an existing tree algorithm and encapsulates
all its accesses within transactions to obtain a concurrent tree whose
accesses are guaranteed atomic (i.e., linearizable), however, the
obtained concurrent transactions likely conflict (i.e., one accesses
the same location another is modifying), resulting in the need to
abort one of these transactions which leads to a significant waste of
efforts. This is in part due to the fact that encapsulating an update
operation (i.e., an insert or a remove operation) into a transaction
boils down to encapsulating four phases in the same transaction:

1. the modification of the abstraction,

2. the corresponding structural adaptation,

3. a check to detect whether the threshold is reached and

4. the potential rebalancing.

A transaction-based red-black tree An example is the transaction-
based binary search tree developed by Oracle Labs (formerly Sun
Microsystems) and other researchers to extensively evaluate trans-
actional memories [7, 11, 13, 14, 19, 21, 34] . This library relies
on the classical red-black tree algorithm that bounds the step com-
plexity of pessimistic insert/delete/contains. It has been slightly
optimized for transactions by removing sentinel nodes to reduce
false-conflicts, and we are aware of two benchmark-suite distribu-
tions that integrate it, STAMP [7] and synchrobench1.

Each of its update transactions encapsulate all the four phases
given above even though phase (1) could be decoupled from phases
(3) and (4) if transient violations of the balance invariant were toler-
ated. Such a decoupling is appealing given that phase (4) is subject
to conflicts. In fact, the algorithm balances the tree by executing ro-
tations starting from the position where a node is inserted or deleted
and possibly going all the way up to the root. As depicted in Fig-
ure 2(a) and (b), a rotation consists of replacing the node where the
rotation occurs by the child and adding this replaced node to one
of its subtrees. A node cannot be accessed concurrently by an ab-
stract transaction and a rotation, otherwise the abstract transaction
might miss the node it targets while being rotated downward. Sim-
ilarly, rotations cannot access common nodes as one rotation may
unbalance the others.

Moreover, the red-black tree does not allow any abstract trans-
action to access a node that is concurrently being deleted from the
abstraction because phases (1) and (2) are tightly coupled within
the same transaction. If this was allowed the abstract transaction
might end up on the node that is no longer part of the tree. Fortu-
nately, if the modification operation is a deletion then phase (1) can
be decoupled from the structural modification of phase (2) by mark-
ing the targeted node as logically deleted in phase (1) effectively
removing it from the set abstraction prior to unlinking it physi-
cally in phase (2). This improvement is important as it lets a con-
current abstract transaction travel through the node concurrently
being logically deleted in phase (1) without conflicting. Making
things worse, without decoupling these four phases, having to abort
within phase (4) would typically require the three previous phases
to restart as well. Finally without decoupling only contains oper-
ations are guaranteed not to conflict with each other. With decou-
pling, insert/delete/contains do not conflict with each other unless
they terminate on the same node as described in Section 3.

To conclude, for the transactions to preserve the atomicity and
invariants of such a tree algorithm, they typically have to keep track
of a large read set and write set, i.e., the sets of accessed mem-
ory locations that are protected by a transaction. Possessing large
read/write sets increases the probability of conflicts and thus re-
duces concurrency. This is especially problematic in trees because
the distribution of nodes in the read/write set is skewed so that the

1 http://lpd.epfl.ch/gramoli/php/synchrobench.php
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Figure 2. The classical rotation modifies node j in the tree and forces a concurrent traversal at this node to backtrack; the new rotation left
j unmodified, adds j′ and postpones the physical deletion of j

probability of the node being in the set is much higher for nodes
near the root and the root is guaranteed to be in the read set.

Illustration To briefly illustrate the effect of tightly coupling up-
date operations on the step complexity of classical transactional
balanced trees we have counted the maximal number of reads
necessary to complete typical insert/remove/contains operations.
Note that this number includes the reads executed by the transaction
each time it aborts in addition to the read set size of the transaction
obtained at commit time.

Update 0% 10% 20% 30% 40% 50%

AVL tree 29 415 711 1008 1981 2081

Oracle red-black tree 31 573 965 1108 1484 1545

Speculation-friendly tree 29 75 123 120 144 180

Table 1. Maximum number of transactional reads per operation on

three 212-sized balanced search trees as the update ratio increases

We evaluated the aforementioned red-black tree, an AVL tree,
and our speculation-friendly tree on a 48-core machine using the

same transactional memory (TM) algorithm2. The expectation of

the tree sizes is fixed to 212 during the experiments by performing
an insert and a remove with the same probability. Table 1 depicts
the maximum number of transactional reads per operation observed
among 48 concurrent threads as we increase the update ratio, i.e.,
the proportion of insert/remove operations over contains opera-
tions.

For all three trees, the transactional read complexity of an oper-
ation increases with the update ratio due to the additional aborted
efforts induced by the contention. Althought the red-black and the
AVL trees objective is to keep the complexity of pessimistic ac-
cesses O(log2 n) (proportional to 12 in this case), where n is the
tree size, the read complexity of optimistic accesses grows signif-
icantly (14× more at 10% update than at 0%, where there are no
aborts) as the contention increases. As described in the sequel, the
speculation-friendly tree succeeds in limiting the step complexity
raise (2.6× more at 10% update) of data structure accesses when
compared against the transactional versions of state-of-the-art tree
algorithms. An optimization further reducing the number of trans-
actional reads between 2 (for 10% updates) and 18 (for 50% up-
dates) is presented in Section 3.3.

3. The Speculation-Friendly Binary Search Tree

We introduce the speculation-friendly binary search tree by de-
scribing its implementation of an associative array abstraction,

2 TinySTM-CTL, i.e., with lazy acquirement [14].

mapping a key to a value. In short, the tree speeds up the access
transactions by decoupling two conflict-prone operations: the node
deletion and the tree rotation. Although these two techniques have
been used for decades in the context of data management [12, 25],
our algorithm novelty lies in applying their combination to reduce
transaction aborts. We first depict, in Algorithm 1, the pseudocode
that looks like sequential code encapsulated within transactions be-
fore presenting, in Algorithm 2, more complex optimizations.

3.1 Decoupling the tree rotation

The motivation for rotation decoupling stems from two separate ob-
servations: (i) a rotation is tied to the modification that triggers it,
hence the process modifying the tree is also responsible for ensur-
ing that its modification does not break the balance invariant and
(ii) a rotation affects different parts of the tree, hence an isolated
conflict can abort the rotation performed at multiple nodes. In re-
sponse to these two issues we introduce a dedicated rotator thread
to complete the modifying transactions faster and we distribute the
rotation in multiple (node-)local transactions. Note that our rotat-
ing thread is similar to the collector thread proposed by Dijkstra et
al. [12] to garbage collect stale nodes.

This decoupling allows the read set of the insert/delete oper-
ations to only contain the path from the root to the node(s) being
modified and the write set to only contain the nodes that need to
be modified in order to ensure the abstraction modification (i.e.,
the nodes at the bottom of the search path), thus reducing conflicts
significantly. Let us consider a specific example. If rotations are
performed within the insert/delete operations then each rotation
increases the read and write set sizes. Take an insert operation that
triggers a right rotation such as the one depicted in Figures 2(a)-
2(b). Before the rotation the read set for the nodes p, j, i is {p.ℓ, j.r},
where ℓ and r represent the left and right pointers, and the write set
is /0. Now with the rotation the read set becomes {p.ℓ, i.r, j.ℓ, j.r}
and the write set becomes {p.ℓ, i.r, j.ℓ} as denoted in the figure by
dashed arrows. Due to p.ℓ being modified, any concurrent transac-
tion that traverses any part of this section of the tree (including all
nodes i, j, and subtrees A, B, C, D) will have a read/write conflict
with this transaction. In the worst case an insert/delete operation
triggers rotations all the way up to the root resulting in conflicts
with all concurrent transactions.

Rotation As previously described, rotations are not required to
ensure the atomicity of the insert/delete/contains operations so
it is not necessary to perform rotations in the same transaction
as the insert or delete. Instead we dedicate a separate thread that
continuously checks for unbalances and rotates accordingly within
its own node-local transactions.

More specifically, neither do the insert/delete operations com-
prise any rotation, nor do the rotations execute on a large block of
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Algorithm 1 A Portable Speculation-Friendly Binary Search Tree

1: State of node n:
2: node a record with fields:

3: k ∈ N, the node key

4: v ∈ N, the node value

5: ℓ,r ∈ N, left/right child pointers, initially ⊥
6: left-h,right-h ∈ N, local height of left/right

7: child, initially 0

8: local-h ∈ N, expected local height, initially 1

9: del ∈ {true, false}, indicate whether

10: logically deleted, initially false

11: State of process p:
12: root, shared pointer to root

13: find(k)p:
14: next← root

15: while true do

16: curr← next

17: val← curr.k

18: if val = k then break

19: if val > k then next← read(curr.r)
20: else next← read(curr.ℓ)

21: if next =⊥ then break

22: return curr

23: contains(k)p:
24: transaction {
25: result← true

26: curr← find(k)
27: if curr.k 6= k then result← false

28: else if read(curr.del) then result← false

29: } // current transaction tries to commit
30: return result

31: insert(k,v)p:
32: transaction {
33: result← true

34: curr← find(k)
35: if curr.k = k then

36: if read(curr.del) then write(curr.del, false)
37: else result← false

38: else // allocate a new node
39: new.k← k

40: new.v← v

41: if curr.k > k then write(curr.r,new)
42: else write(curr.ℓ,new)

43: } // current transaction tries to commit
44: return result

45: right rotate(parent, left-child)p:
46: transaction {
47: if left-child then n← read(parent.ℓ)
48: else n← read(parent.r)

49: if n =⊥ then return false

50: ℓ← read(n.ℓ)
51: if ℓ=⊥ then return false

52: ℓr← read(ℓ.r)
53: write(n.ℓ, ℓr)
54: write(ℓ.r,n)
55: if left-child then write(parent.ℓ, ℓ)
56: else write(parent.r, ℓ)

57: update-balance-values()
58: } // current transaction tries to commit
59: return true

60: delete(k)p:
61: transaction {
62: result← true

63: curr← find(k)
64: if curr.k 6= k then

65: result← false

66: else

67: if read(curr.del) then result← false

68: else write(curr.del,true)

69: } // current transaction tries to commit
70: return result

71: remove(parent, left-child)p:
72: transaction {
73: if left-child then

74: n← read(parent.ℓ)
75: else

76: n← read(parent.r)

77: if n =⊥ or ¬read(n.del) then return false

78: if (child← read(n.ℓ)) 6=⊥ then

79: if (child← read(n.r)) 6=⊥ then return false

80: if left-child then

81: write(parent.ℓ,child)
82: else

83: write(parent.r,child)

84: update-balance-values()
85: } // current transaction tries to commit
86: return true

nodes. Hence, local rotations that occur near the root can still cause
a large amount of conflicts, but rotations performed further down
the tree are less subject to conflict. If local rotations are performed
in a single transaction block then even the rotations that occur fur-
ther down the tree will be part of a likely conflicting transaction,
so instead each local rotation is performed as a single transaction.
Keeping the insert/delete/contains and rotate/remove operations
as small as possible allows more operations to execute at the same
time without conflicts, increasing concurrency.

Performing local rotations rather than global ones has other ben-
efits. If rotations are performed as blocks then, due to concurrent
insert/delete operations, not all of the rotations may still be valid
once the transaction commits. Each concurrent insert/delete oper-
ation might require a certain set of rotations to balance the tree, but
because the operations are happening concurrently the appropriate
rotations to balance the tree are constantly changing and since each
operation only has a partial view of the tree it might not know what
the appropriate rotations are. With local rotations, each time a ro-
tation is performed it uses the most up-to-date local information
avoiding repeating rotations at the same location.

The actual code for the rotation is straightforward. Each rotation
is performed just as it would be performed in a sequential binary
tree (see Figure 2(a)-2(b)), but within a transaction.

Deciding when to perform a rotation is done based on local
balance information omitted from the pseudocode. This technique
was introduced in [5] and works as follows. left-h (resp. right-h)
is a node-local variable to keep track of the estimated height of
the left (resp. right) subtree. local-h (also a node-local variable)
is always 1 larger than the maximum value of left-h and right-h.
If the difference between left-h and right-h is greater than 1 then
a rotation is triggered. After the rotation these values are updated
as indicated by a dedicated function (line 57). Since these values
are local to the node the estimated heights of the subtrees might

not always be accurate. The propagate operation (described in the
next paragraph) is used to update the estimated heights. Using the
propagate operation and local rotations, the tree is guaranteed to be
eventually perfectly balanced as in [5, 6].

Propagation The rotating thread executes continuously a depth-
first traversal to propagate the balance information. Although it
might propagate an outdated height information due to concur-
rency, the tree gets eventually balanced. The only requirement is
that a node knows when it has an empty subtree (i.e., when node.ℓ
is⊥, node.left-h must be 0). This requirement is guaranteed since a
new node is always added to the tree with left-h and right-h set to 0
and these values are updated when a node is removed or a rotation
takes place. Each propagate operation is performed as a sequence of
distributed transactions each acting on a single node. Such a trans-
action first travels to the left and right child nodes, checking their
local-h values and using these values to update left-h, right-h, and
local-h of the parent node. As no abstract transactions access these
three values, they never conflict with propagate operations (unless
the transactional memory used is inherently prone to false-sharing).

Limitations Unfortunately, spreading rotations and modifications
into distinct transactions still does not allow insert/delete/contains
operations that are being performed on separate keys to execute
concurrently. Consider a delete operation that deletes a node at
the root. In order to remove this node a successor is taken from
the bottom of the tree so that it becomes the new root. This now
creates a point of contention at the root and where the successor was
removed. Every concurrent transaction that accesses the tree will
have a read/write conflict with this transaction. Below we discuss
how to address this issue.
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3.2 Decoupling the node deletion

The speculation-friendly binary search tree exploits logical deletion
to further reduce the amount of transaction conflicts. This two-
phase deletion technique has been previously used for memory
management like in [25], for example, to reduce locking in database
indexes. Each node has a deleted flag, initialized to false when the
node is inserted into the tree. First, the delete phase consists of
removing the given key k from the abstraction—it logically deletes
a node by setting a deleted flag to true (line 68). Second, the
remove phase physically deletes the node from the tree to prevent
it from growing too large. Each of these are performed as a separate
transaction and the rotating thread is also responsible for garbage
collecting nodes (cf. Section 3.4).

The deletion decoupling reduces conflicts by two means. First,
it spreads out the two deletion phases in two separate transactions,
hence reducing the size of the delete transaction. Second, deleting
logically node i simply consists in setting the deleted flag to true
(line 68), thus avoiding conflicts with concurrent abstract transac-
tions that have traversed i.

Find The find operation is a helper function called implicitly by
other functions within a transaction, thus it is never called explicitly
by the application programmer. This operation looks for a given
key k by parsing the tree similarly to a sequential code. At each
node it goes right if the key of the node is larger than k (line 19),
otherwise it goes left (line 20). Starting from the root it continues
until it either finds a node with k (line 18) or until it reaches a leaf
(line 21) returning the node (line 22). Notice that if it reaches a leaf,
it has performed a transactional read on the child pointer of this leaf
(lines 19–20), ensuring that some other concurrent transaction will
not insert a node with key k.

Contains The contains operation first executes the find starting
from the root, this returns a node (line 26). If the key of the node
returned is equal to the key being searched for, then it performs a
transactional read of the deleted flag (line 28). If the flag is false
the operation returns true, otherwise it returns false. If the key of
the returned node is not equal to the key being searched for then a
node with the key being searched for is not in the tree and false is
returned (lines 27 and 30).

Insertion The insert(k,v) operation uses the find procedure that
returns a node (line 34). If a node is found with the same key as
the one being searched for then the deleted flag is checked using a
transactional read (line 36). If the flag is false then the tree already
contains k and false is returned (lines 37 and 44). If the flag is
true then the flag is updated to false (line 36) and true is returned.
Otherwise if the key of the node returned is not equal to k then
a new node is allocated and added as the appropriate child of the
node returned by the find operation (lines 38-42). Notice that only
in this final case does the operation modify the structure of the tree.

Logical deletion The delete uses also the find procedure in order
to locate the node to be deleted (line 63). A transactional read is
then performed on the deleted flag (line 67). If deleted is true then
the operation returns false (lines 67 and 70), if deleted is false it
is set to true (line 68) and the operation returns true. If the find
procedure does not return a node with the same key as the one being
searched for then false is returned (line 65 and 70). Notice that this
operation never modifies the tree structure.

Consequently, the insert/delete/contains operations can only
conflict with each other in two cases.

1. Two insert/delete/contains operations are being performed
concurrently on some key k and a node with key k exists in
the tree. Here (if at least one of the operations is an insert or
delete) there will be a read/write conflict on the node’s deleted

flag. Note that there will be no conflict with any other concur-
rent operation that is being done on a different key.

2. An insert that is being performed for some key k where no node
with key k exists in the tree. Here the insert operation will add
a new node to the tree, and will have a read/write conflict with
any operation that had read the pointer when it was ⊥ (before it
was changed to point to the new node).

Physical removal Removing a node that has no children is as sim-
ple as unlinking the node from its parent (lines 81–83). Removing
a node that has 1 child is done by just unlinking it from its parent,
then linking its parent to its child (also lines 81–83). Each of these
removal procedures is a very small transaction, only performing a
single transactional write. This transaction conflicts only with con-
current transactions that read the link from the parent before it is
changed.

Upon removal of a node i with two children, the node in the
tree with the immediately larger key than i’s must be found at the
bottom of the tree. This performs reads on all the way to the leaf
and a write at the parent of i, creating a conflict with any operation
that has traversed this node. Fortunately, in practice such removals
are not necessary. In fact only nodes with no more than one child
are removed from the tree (if the node has two children, the remove
operation returns without doing anything, cf. line 79). It turns out
that removing nodes with no more than one children is enough to
keep the tree from growing so large that it affects performance.

The removal operation is performed by the maintenance thread.
While it is traversing the tree performing rotation and propogate
operations it also checks for logically deleted nodes to be removed.

Limitations The traversal phase of most functions is prone to
false-conflicts, as it comprises read operations that do not actually
need to return values from the same snapshot. Specifically, by the
time a traversal transaction reaches a leaf, the value it read at the
root likely no longer matters, thus a conflict with a concurrent
root update could simply be ignored. Nevertheless, the standard
TM interface forces all transactions to adopt the same strongest
semantics prone to false-conflicts [16]. In the next paragraphs we
discuss how to extend the basic TM interface to cope with such
false-conflicts.

3.3 Optional improvements

In previous sections, we have described a speculation-friendly tree
that fulfills the standard TM interface [22] for the sake of portability
across a large body of research work on TM. Now, we propose to
further reduce aborts related to the rotation and the find operation
at the cost of an additional lightweight read operation, uread, that
breaks this interface. This optimization is thus usable only in TM
systems providing additional explicit calls and do not aim at replac-
ing but complementing the previous algorithm to preserve its porta-
bility. This optimization complementing Algorithm 1 is depicted in
Algorithm 2, it does not affect the existing contains/insert/delete
operations besides speeding up their internal find operation. Here
the left rotation is not the perfect symmetry of the right rotation
when it removes an element. We defer these subtleties to the tech-
nical report [9].

Lightweight reads The key idea is to avoid validating superfluous
read accesses when an operation traverses the tree structure. This
idea has been exploited by elastic transactions that use a bounded
buffer instead of a read set to validate only immediately preceding
reads, thus implementing a form of hand-over-hand locking trans-
action for search structure [15]. We could have used different exten-
sions to implement these optimizations. DSTM [21] proposes early
release to force a transaction stop keeping track of a read set entry.
Alternatively, the current distribution of TinySTM [14] comprises
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Algorithm 2 Optimizations to the Speculation-Friendly Binary Search Tree

1: State of node n:
2: node the same record with an extra field:

3: rem ∈ {true, false} indicate whether

4: physically deleted, initially false

5: remove(parent, left-child)p:
6: transaction {
7: if read(parent.rem) then return false

8: if left-child then

9: n← read(parent.ℓ)
10: else

11: n← read(parent.r)

12: if n =⊥ or ¬read(n.deleted) then return false

13: if (child← read(n.ℓ)) 6=⊥ then

14: if read(n.r) 6=⊥ then return false

15: else

16: child← read(n.r)

17: if left-child then

18: write(parent.ℓ,child)
19: else

20: write(parent.r,child)

21: write(n.ℓ,parent)
22: write(n.r,parent)
23: write(n.rem,true)
24: update-balance-values()
25: } // current transaction tries to commit
26: return true

27: find(k)p:
28: curr← root

29: next← root

30: rem← true

31: while true do

32: while true do

33: parent← curr

34: curr← next

35: val← curr.k

36: if val = k then

37: if ¬(rem← read(curr.rem)) then break

38: if val > k then next← uread(curr.r)
39: else next← uread(curr.ℓ)

40: if next =⊥ then

41: if ¬(rem← read(curr.rem)) then

42: if val > k then next← read(curr.r)
43: else next← read(curr.ℓ)

44: if next =⊥ then break

45: else

46: if val≤ k then next← uread(curr.r)
47: else next← uread(curr.ℓ)

48: if curr.k > parent.k then tmp← read(parent.r)
49: else tmp← read(parent.ℓ)

50: if curr = tmp then

51: break

52: else

53: next← curr

54: curr← parent

55: return curr

56: right rotate(parent, left-child)p:
57: transaction {
58: if read(parent.rem) then

59: return false

60: if left-child then

61: n← read(parent.ℓ)
62: else

63: n← read(parent.r)

64: if n =⊥ then

65: return false

66: ℓ← read(n.ℓ)
67: if ℓ=⊥ then

68: return false

69: ℓr← read(ℓ.r)
70: r← read(n.r)
71: // allocate a new node
72: new.k← n.k

73: new.ℓ← ℓr

74: new.r← r

75: write(ℓ.r,new)
76: write(n.rem,true)
77: if left-child then

78: write(parent.ℓ, ℓ)
79: else

80: write(parent.r, ℓ)

81: update-balance-values()
82: } // current transaction tries to commit
83: return true

unit loads that do not record anything in the read set. While we
could have used any of these approaches to increase concurrency
we have chosen the unit loads of TinySTM, hence the name uread.
This uread returns the most recent value written to memory by a
committed transaction by potentially spin-waiting on the location
until it stops being concurrently modified.

A first interesting result, is that the read/write set sizes can
be kept at a size of O(k) instead of the O(k logn) obtained with
the previous tree algorithm, where k is the number of nested
contains/insert/delete operations nested in a transaction. The rea-
soning behind this is as follow: Upon success, a contains only
needs to ensure that the node it found is still in the tree when the
transaction commits, and can ignore the state of other nodes it had
traversed. Upon failure, it only needs to ensure that the node i it is
looking for is not in the tree when the transaction commits, this re-
quires to check whether the pointer from the parent that would point
to i is⊥ (i.e., this pointer should be in the read set of the transaction
and its value is ⊥). In a similar vein, insert and delete only need
to validate the position in the tree where they aimed at inserting or
deleting. Therefore, contains/insert/delete only increases the size
of the read/write set by a constant instead of a logarithmic amount.

It is worth mentioning that ureads have a further advantage
over normal reads other than making conflicts less likely: Clas-
sical reads are more expensive to perform than unit reads. This is
because in addition to needing to store a list keeping track of the
reads done so far, an opaque TM that uses invisible reads needs to

perform validation of the read set with a worst case cost of O(s2),
where s is the size of the read set, whereas a TM that uses visible
reads performs a modification to shared memory for each read.

Rotation Rotations remain conflict-prone in Algorithm 1 as they
incur a conflict when crossing the region of the tree traversed
by a contains/insert/delete operation. If ureads are used in the
contains/insert/delete operations then rotations will only conflict
with these operations if they finish at one of the two nodes that
are rotated by rotation operation (for example in Figure 2(a) this

would be the node i or j). A rotation at the root will only conflict
with a contains/insert/delete that finished at (or at the rotated child
of) the root, any operations that travel further down the tree will not
conflict.

Figure 2(c) displays the result of the new rotation that is slightly
different than the previous one. Instead of modifying j directly, j
is unlinked from its parent (effectively removing it from the tree,
lines 78–80) and a new node j′ is created (line 71), taking j’s place
in the tree (lines 78–80). During the rotation j has a removed flag
that is set to true (line 76), letting concurrent operations know
that j is no longer in the tree but its deallocation is postponed.
Now consider a concurrent operation that is traversing the tree
and is preempted on j during the rotation. If a normal rotation is
performed the concurrent operation will either have to backtrack or
the transaction would have to abort (as the node it is searching for
might be in the subtree A). Using the new rotation, the preempted
operation will still have a path to A.

Find, contains and delete The interesting point for the find op-
eration is that the search continues until it finds a node with the
removed flag set to false (line 37 and 41). Once the leaf or a node
with the same key as the one being searched for is reached, a trans-
actional read is performed on the removed flag to ensure that the
node is not removed from the tree (by some other operation) at
least until the transaction commits. If removed is true then the op-
eration continues traversing the tree, otherwise the correct node has
been found. Next, if the node is a leaf, a transactional read must be
performed on the appropriate child pointer to ensure this node re-
mains a leaf throughout the transaction (lines 42–43). If this read
does not return ⊥ then the operation continues traversing the tree.
Otherwise the operation then leaves the nested while loop (lines 37
and 44), but the find operation does not return yet.

One additional transactional read must be performed to ensure
safety. This is the read of the parent’s pointer to the node about
to be returned (lines 48–49). If this read does not return the same
node as found previously, the find operation continues parsing the
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tree starting from the parent (lines 53–54). Otherwise the process
leaves the while loop (line 51) and the node is returned (line 55).

The advantage of this updated find operation is that ureads are
used to traverse the tree, it only uses transactional reads to ensure
atomicity when it reaches what is suspected to be the last node
it has to traverse. The original algorithm exclusively uses trans-
actional reads to traverse the tree and because of this, modifica-
tions to the structure of the tree that occur along the traversed path
cause conflicts, which do not occur in the updated algorithm. The
contains/insert/delete operations themselves are identical in both
algorithms.

Removal The remove operation requires some modification to
ensure safety when using ureads during the traversal phase. Nor-
mally if a contains/insert/delete operation is preempted on a node
that is removed then that operation will have to backtrack or abort
the transaction. This can be avoided as follows. When a node is
removed, its left and right child pointers are set to point to its previ-
ous parent (lines 21–22). This provides a preempted operation with
a path back to the tree. The removed node also has its removed
flag set to true (line 23) letting preempted operations know it is
no longer in the tree (the node is left to be freed later by garbage
collection).

3.4 Garbage collection

As explained previously, there is always a single rotator thread that
continuously executes a recursive depth first traversal. It updates
the local, left and right heights of each node and performs a rota-
tion or removal if necessary. Nodes that are successfully removed
are then added to a garbage collection list. Each application thread
maintains a boolean indicating a pending operation and a counter
indicating the number of completed operations. Before starting a
traversal, the rotator thread sets a pointer to what is currently the
end of the garbage collection list and copies all booleans and coun-
ters. After a traversal, if for every thread its counter has increased
or if its boolean is false then the nodes up to the previously stored
end pointer can be safely freed. Experimentally, we found that the
size of the list was never larger than a small fraction of the size
of the tree but theoretically we expect the total space required to
remain linear in the tree size.

3.5 Correctness

THEOREM 1. The insert, contains and delete operations of Algo-
rithm 1 with optimizations from Algorithm 2 are linearizable.

By lack of space, the proof of Theorem 1 has been deferred
to the companion technical report [9]. In short, the key argument
lies in showing that the tree remains routable at any time despite
concurrent modifications.

4. Experimental Evaluation

We experimented our library by integrating it in (i) a micro-
benchmark of the synchrobench suite to get a precise understand-
ing of the performance causes and in (ii) the tree-based vacation
reservation system of the STAMP suite and whose runs sometimes
exceed half an hour. The machine used for our experiments is a four
AMD Opteron 12-core Processor 6172 at 2.1 Ghz with 32 GB of
RAM running Linux 2.6.32, thus comprising 48 cores in total.

4.1 Testbed choices

We evaluate our tree against well-engineered tree algorithms espe-
cially dedicated to transactional workloads. The red-black tree is
a mature implementation developed and improved by expert pro-
grammers from Oracle Labs and others to show good performance
of TM in numerous papers [7, 11, 13, 14, 19, 21, 34]. The observed
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Figure 3. Comparing the AVL tree (AVLtree), the red-black
tree (RBtree), the no-restructuring tree (NRtree) against the
speculation-friendly tree (SFtree) on an integer set micro-
benchmark with from 5% (top) to 20% updates (bottom) under
normal (left) and biased (right) workloads

performance is generally scalable when contention is low, most of
integer set benchmarks on which they are tested consider the ratio
of attempted updates instead of effective updates. To avoid the mis-
leading (attempted) update ratios that capture the number of calls to
potentially updating operations, we consider the effective update ra-
tios of synchrobench counting only modifications and ignoring the
operations that fail (e.g., remove may fail in finding its parameter
value thus failing in modifying the data structure).

The AVL tree we evaluate (as well as the aforementioned red-
black tree) is part of STAMP [7]. As mentioned before one of the
main refactoring of this red-black tree implementation is to avoid
the use of sentinel nodes that would produce false-conflicts within
transactions. This improvement could be considered a first-step to-
wards obtaining a speculation-friendly binary search tree, however,
the modification-restructuring, which remains tightly coupled, pre-
vents scalability to high levels of parallelism.

To evaluate performance we ran the micro-benchmark and the
vacation application with 1, 2, 4, 8, 16, 24, 32, 40, 48 application
threads. For the micro-benchmark, we averaged the data over three
runs of 10 seconds each. For the vacation application, we averaged
the data over three runs as well but we used the recommended
default settings and some runs exceeded half an hour because of the
amount of transactions used. We carefully verified that the variance
was sufficiently low for the result to be meaningful.

4.2 Biased workloads and the effect of restructuring

In this section, we evaluate the performance of our speculation-
friendly tree on an integer set micro-benchmark providing remove,
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Figure 4. The speculation-friendly library running with (left) an-
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brary in a different configuration (TinySTM-ETL, i.e., with eager
acquirement)

insert, and contains operations, similarly to the benchmark used
to evaluate state-of-the-art TM algorithms [10, 14, 15]. We imple-
mented two set libraries that we added to the synchrobench distri-
bution: our non-optimized speculation-friendly tree and a baseline
tree that is similar but never rebalances the structure whatever mod-
ifications occur. Figure 3 depicts the performance obtained from
four different binary search trees: the red-black tree (RBtree), our
speculation-friendly tree without optimizations (SFtree), the no-
restructuring tree (NRtree) and the AVL tree (AVLtree).

The performance is expressed as the number of operations exe-
cuted per microsecond. The update ratio varies between 5% and

20%. As we obtained similar results with 210, 212 and 214 ele-
ments, we only report the results obtained from an initialized set

of 212 elements. The biased workload consists of inserting (resp.
deleting) random values skewed towards high (resp. low) numbers

in the value range: the values always taken from a range of 214 are
skewed with a fixed probability by incrementing (resp. decrement-
ing) with an integer uniformly taken within [0..9].

On both the normal (uniformly distributed) and biased work-
loads, the speculation-friendly tree scales well up to 32/40 threads.
The no-restructuring tree performance drops to a linear shape un-
der the biased workload as expected: as it does not rebalance, the
complexity increases with the length of the longest path from the
root to a leaf that, in turn, increases with the number of performed
updates. In contrast, the speculation-friendly tree can only be un-
balanced during a transient period of time which is too short to
affect the performance even under biased workloads.

The speculation-friendly tree improves both the red-black tree
and the AVL tree performance by up to 1.5× and 1.6×, respec-
tively. The speculation-friendly tree is less prone to contention than
AVL and red-black trees, which both share similar performance
penalties due to contention.

4.3 Portability to other TM algorithms

The speculation-friendly tree is an inherently efficient data struc-
ture that is portable to any TM systems. It fulfills the TM inter-
face standardized in [22] and thus does not require the presence
of explicit escape mechanisms like early release [21] or snap [8]
to avoid extra TM bookkeeping (our uread optimization being op-
tional). Nor does it require high-level conflict detection, like open
nesting [2, 26, 27] or transactional boosting [19]. Such improve-
ments rely on explicit calls or user-defined abstract locks, and are
not supported by existing TM compilers [22] which limits their
portability. To make sure that the obtained results are not biased
by the underlying TM algorithm, we evaluated the trees on top of

E -STM [15], another TM library (on a 216 sized tree where E -STM
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proved efficient), and on top of a different TM design from the one
used so far: with eager acquirement.

The obtained results, depicted in Figure 4 look similar to
the ones obtained with TinySTM-CTL (Figure 3) in that the
speculation-friendly tree executes faster than other trees for all
TM settings. This suggests that the improvement of speculation-
friendly tree is potentially independent from the TM system used.
A more detailed comparison of the improvement obtained using
elastic transactions on red-black trees against the improvement of
replacing the red-black tree by the speculation-friendly tree is de-
picted in Figure 5(a). It shows that the elastic improvements (15%
on average) is lower than the speculation-friendly tree one (22% on
average, be it optimized or not).

4.4 Reusability for specific application needs

We illustrate the reusability of the speculation-friendly tree by com-
posing remove and insert from the existing interface to obtain a
new atomic and deadlock-free move operation. Reusability is ap-
pealing to simplify concurrent programming by making it modular:
a programmer can reuse a library without having to understand its
synchronization internals. While reusability of sequential programs
is straightforward, concurrent programs can generally be reused
only if the programmer understands how each element is protected.
For example, reusing a library can lead to deadlocks if shared data
are locked in a different order than what is recommended by the
library. Additionally, a lock-striping library may not conflict with a
concurrent program that locks locations independently even though
they protect common locations, thus leading to inconsistencies.

Figure 5(b) indicates the performance on workloads compris-
ing 90% of read-only operations (including contains and failed
updates) and 10% move/insert/delete effective update operations
(among which from 1% to 10% are move operations). The perfor-
mance decreases as more move operations execute, because a move
protects more elements in the data structure than a simple insert or
delete operation and during a longer period of time.

4.5 The vacation travel reservation application

We experiment our optimized library tree with a travel reservation
application from the STAMP suite [7], called vacation. This appli-
cation is suitable for evaluating concurrent binary search tree as it
represents a database with four tables implemented as tree-based
directories (cars, rooms, flights, and customers) accessed concur-
rently by client transactions.

Figure 6 depicts the execution time of the STAMP vacation
application building on the Oracle red-black tree library (by de-
fault), our optimized speculation-friendly tree, and the baseline no-
restructuring tree. We added the speedup obtained with each of
these tree libraries over the performance of bare sequential code of
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Figure 6. The speedup (over single-threaded sequential) and the
corresponding duration of the vacation application built upon the
red-black tree (RBtree), the optimized speculation-friendly tree
(Opt SFtree) and the no-restructuring tree (NRtree) on (left) high
contention and (right) low contention workloads, and with (top)
the default number of transaction, (middle) 8× more transactions
and (bottom) 16× more transactions

vacation without synchronization. (A concurrent tree library out-
performs the sequential tree when its speedup exceeds 1.) The cho-
sen workloads are the two default configurations (“low contention”
and “high contention”) taken from the STAMP release, with the de-
fault number of transactions, 8× more transactions than by default
and 16× more, to increase the duration and the contention of the
benchmark without using more threads than cores.

Vacation executes always faster on top of our speculation-
friendly tree than on top of its built-in Oracle red-black tree. For
example, the speculation-friendly tree improves performance by up
to 1.3× with the default number of transactions and to 3.5× with
16×more transactions. The reason of this is twofold: (i) In contrast
with the speculation-friendly tree, if an operation on the red-black
tree traverses a location that is being deleted then this operation
and the deletion conflict. (ii) Even though the Oracle red-black tree
tolerates that the longest path from the root to a leaf can be twice
as long as the shortest one, it triggers the rotation immediately af-
ter this threshold is reached. By contrast, our speculation-friendly
tree keeps checking the unbalance to potentially rotate in the back-
ground. In particular, we observed on 8 threads in the high con-
tention settings that the red-black tree vacation triggered around
130,000 rotations whereas the speculation-friendly vacation trig-
gered only 50,000 rotations.

Finally, we observe that vacation presents similarly good per-
formance on top of the no-restructuring tree library. In rare cases,
the speculation-friendly tree outperforms the no-restructuring tree
probably because the no-restructuring tree does not physically re-
move nodes from the tree, thus leading to a larger tree than the
abstraction. Overall, their performance is comparable. With 16×
the default number of transactions, the contention gets higher and
rotations are more costly.

5. Related Work

Aside from the optimistic synchronization context, various relaxed
balanced trees have been proposed. The idea of decoupling the
update and the rebalancing was originally proposed by Guibas and
Sedgewick [17] and was applied to AVL trees by Kessels [23],
and Nurmi, Soisalon-Soininen and Wood [29], and to red-black
trees by Nurmi and Soisalon-Soininen [28]. Manber and Ladner
propose a lock-based tree whose rebalancing is the task of separate
maintenance threads running with a low priority [24]. Bougé et
al. [5] propose to lock a constant number of nodes within local
rotations. The combination of local rotations executed by different
threads self-stabilizes to a tree where no nodes are marked for
removal. The main objective of these techniques is still to keep the
tree depth low enough for the lock-based operations to be efficient.
Such solutions do not apply to speculative operations due to aborts.

Ballard [3] proposes a relaxed red-black tree insertion well-
suited for transactions. When an insertion unbalances the red-black
tree it marks the inserted node rather than rebalancing the tree
immediately. Another transaction encountering the marked node
must rebalance the tree before restarting. The relaxed insertion was
shown generally more efficient than the original insertion when run
with DSTM [21] on 4 cores. Even though the solution limits the
waste of effort per aborting rotation, it increases the number of
restarts per rotation. By contrast, our local rotation does not require
the rotating transaction to restart, hence benefiting both insertions
and removals.

Bronson et al. [6] introduce an efficient object-oriented binary
search tree. The algorithm uses underlying time-based TM prin-
ciples to achieve good performance, however, its operations can-
not be encapsulated within transactions. For example, a key opti-
mization of this tree distinguishes whether a modification at some
node i grows or shrinks the subtree rooted in i. A conflict involv-
ing a growth could be ignored as no descendant are removed and
a search preempted at node i will safely resume in the resulting
subtree. Such an optimization is not possible using TMs that track
conflicts between read/write accesses to the shared memory. This
implementation choice results in higher performance by avoiding
the TM overhead, but limits reusability due to the lack of book-
keeping. For example, a programmer willing to implement a size
operation would need to explicitly clone the data structure to dis-
able the growth optimization. Therefore, the programmer of a con-
current application that builds upon this binary search tree library
must be aware of the synchronization internals of this library (in-
cluding the growth optimization) to reuse it.

Felber, Gramoli and Guerraoui [15] specify the elastic transac-
tional model that ignores false conflicts but guarantees reusability.
In the companion technical report, the red-black tree library from
Oracle Labs was shown executing efficiently on top of an imple-
mentation of the elastic transaction model, E -STM. The implemen-
tation idea consists of encapsulating the (i) operations that locate a
position in the red-black tree (like insert, contains, delete) into an
elastic transaction to increase concurrency and (ii) other operations,
like size, into a regular transaction. This approach is orthogonal to
ours as it aims at improving the performance of the underlying TM,
independently from the data structure, by introducing relaxed trans-
actions. Hence, although elastic transactions can cut themselves
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upon conflict detection, the resulting E -STM, still suffers from con-
gestion and wasted work when applied to non-speculation-friendly
data structures. The results presented in Section 4.3 confirm that the
elastic speedup is even higher when the tree is speculation-friendly.

6. Conclusion

Transaction-based data structures are becoming a bottleneck in
multicore programming, playing the role of synchronization tool-
boxes a programmer can rely on to write a concurrent application
easily. This work is the first to show that speculative executions re-
quire the design of new data structures. The underlying challenge
is to decrease the inherent contention by relaxing the invariants of
the structure while preserving the invariants of the abstraction.

In contrast with the traditional pessimistic synchronization, the
optimistic synchronization allows the programmer to directly ob-
serve the impact of contention as part of the step complexity
because conflicts potentially lead to subsequent speculative re-
executions. We have illustrated, using a binary search tree, how one
can exploit this information to design a speculation-friendly data
structure. The next challenge is to adapt this technique to a large
body of data structures to derive a speculation-friendly library.

Source Code

The code of the speculation-friendly binary search tree is available
at http://lpd.epfl.ch/gramoli/php/synchrobench.php.
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