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ABSTRACT
There has been a flurry of recent work on the design of high
performance software and hybrid hardware/software trans-
actional memories (STMs and HyTMs). This paper reex-
amines the design decisions behind several of these state-
of-the-art algorithms, adopting some ideas, rejecting others,
all in an attempt to make STMs faster.

The results of our evaluation led us to the design of a
transactional locking (TL) algorithm which we believe to be
the simplest, most flexible, and best performing STM/HyTM
to date. It combines seamlessly with hardware transactions
and with any system’s memory life-cycle, making it an ideal
candidate for multi-language deployment today, long before
hardware transactional support becomes commonly avail-
able.

Most important of all however were the results we derived
from a comprehensive comparison of the performance of non-
blocking, lock-based, and Hybrid STM algorithms versus
fine-grained hand-crafted ones. Contrary to our intuitions,
concurrent code generated in a mechanical fashion using our
TL algorithm and several other STMs, scaled better than
the hand-crafted fine-grained lock-based and lock-free data
structures, even though their throughput was lower. We
found that it was the lower latency of the hand-crafted data
structures that made them faster than STMs, and not better
contention management or optimizations based on the pro-
grammer’s understanding of the particulars of the structure.
This holds great promise for future mechanical generation
of concurrent code using hardware transactional support.

1. INTRODUCTION
A goal of current multiprocessor software design is to in-

troduce parallelism into software applications by allowing
operations that do not conflict in accessing memory to pro-
ceed concurrently. The key tool in designing concurrent
data structures has been the use of locks. Unfortunately,
course grained locking is easy to program with, but pro-
vides very poor performance because of limited parallelism.

.

Fine-grained lock-based concurrent data structures perform
exceptionally well, but designing them has long been rec-
ognized as a difficult task better left to experts. If concur-
rent programming is to become ubiquitous, researchers agree
that one must develop alternative approaches that simplify
code design and verification. This paper is interested in
“mechanical” methods for transforming sequential code or
course-grained lock-based code into concurrent code. By
mechanical we mean that the transformation, whether done
by hand, by a preprocessor, or by a compiler, does not re-
quire any program specific information (such as the pro-
grammer’s understanding of the data flow relationships).
Moreover, we wish to focus on techniques that can be de-
ployed to deliver reasonable performance across a wide range
of systems today, yet combine easily with specialized hard-
ware support as it becomes available.

1.1 Transactional Programming
The transactional memory programming paradigm [19] is

gaining momentum as the approach of choice for replac-
ing locks in concurrent programming. Combining sequences
of concurrent operations into atomic transactions seems to
promise a great reduction in the complexity of both pro-
gramming and verification, by making parts of the code
appear to be sequential without the need to program fine-
grained locks. Transactions will hopefully remove from the
programmer the burden of figuring out the interaction among
concurrent operations that happen to conflict when access-
ing the same locations in memory. Transactions that do
not conflict in accessing memory will run uninterrupted in
parallel, and those that do will be aborted and retried with-
out the programmer having to worry about issues such as
deadlock. There are currently proposals for hardware im-
plementations of transactional memory (HTM) [3, 11, 19,
30], purely software based ones, i.e. software transactional
memories (STM) [9, 13, 16, 18, 22, 23, 27, 31, 32, 33, 34],
and hybrid schemes (HyTM) that combine hardware and
software [4, 21, 27].1

The dominant trend among transactional memory designs
seems to be that the transactions provided to the program-
mer, in either hardware or software, should be “large scale”,
that is, unbounded, and dynamic. Unbounded means that
there is no limit on the number of locations accessed by the
transaction. Dynamic (as opposed to static) means that the
set of locations accessed by the transaction is not known in
advance and is determined during its execution.

Providing large scale transactions in hardware tends to

1A broad survey of prior art can be found in [13, 22, 29].



introduce large degrees of complexity into the design [19,
30, 3, 11]. Providing them efficiently in software is a diffi-
cult task, and there seem to be numerous design parameters
and approaches in the literature [9, 13, 16, 18, 23, 27, 31,
32], as well as requirements to combine well with hardware
transactions once those become available [4, 21, 27].

1.2 Software Transactional Memory
The first STM design by Shavit and Touitou [33] pro-

vided a non-blocking implementation of static transactions.
They had transactions maintain transaction records with
read-write information, access locations in address order,
and had transactions help those ahead of them in order to
guarantee progress. The first non-blocking dynamic schemes
were proposed by Herlihy et al [18] in their dynamic STM
(DSTM) and by Fraser and Harris in their object-based
STM [14] (OSTM). The original DSTM was an excellent
proof-of-concept, and the first obstruction-free [17] STM,
but involved two levels of indirection in accessing data, and
had a costly implementation in the JavaTM programming
language. This implementation was improved on later by
the ASTM of Marathe et al [23]. The OSTM of Fraser and
Harris took a slightly different programming approach than
DSTM, allowing programmers to open and close objects
within a transaction in order to improve performance based
on the programmer’s understanding of the data structure be-
ing implemented. We found that the latest C-based versions
of OSTM, which involve one level of indirection in accessing
data, are the most efficient non-blocking STMs available to
date [13]. A key element of being non-blocking is the main-
tenance of publicly shared transaction records with undo or
copy-back information. This tends to make the structures
more susceptible to cache behavior, hurting overall perfor-
mance. As our empirical data will show however, OSTM
performs reasonably well across the concurrency range.

A recent paper by Ennals [9] suggested that on modern op-
erating systems, deadlock avoidance is the only compelling
reason for making transactions non-blocking, and that there
is no reason to provide it for transactions at the user level.
We second this claim, noting that mechanisms already exist
whereby threads might yield their quanta to other threads
and that Solaris’ schedctl allows threads to transiently de-
fer preemption while holding locks. Ennals [9] proposed an
all-software lock-based implementation of software transac-
tional memory using the object-based approach of [15]. His
idea was to have transactions acquire write locks as they
encounter locations to be written, writing the new values in
place and having pointers to an undo set that is not shared
with other threads (we call this approach encounter order,
it is typically used in conjunction with an undo set [31]). A
transaction collects a read-set which it validates before com-
mitting and releasing the locks. If a transaction must abort,
its executing thread can restore the values back before re-
leasing the locks on the locations being written. The use of
locks eliminates the need for indirection and shared trans-
action records as in the non-blocking STMs, it still requires
however a closed memory system. Deadlocks and livelocks
are dealt with using timeouts and the ability of transactions
to request other transactions to abort.

As we show, Ennals’s algorithm exhibits impressive per-
formance on several benchmarks. It is not clear why his work
has not gained more recognition. A recent paper by Saha et
al [31], concurrent and independent of our own work, uses

a version of the Ennals’s lock-based algorithm within a run-
time system. It uses encounter order, but also keeps shared
undo sets to allow transactions to actively abort others.

Moir [27] has suggested that the pointers to transaction
records in non-blocking transactions can be used to coor-
dinate hardware and software transactions to form hybrid
transactional schemes. His HybridTM scheme has an im-
plementation that acquires locks in encounter order.

Our paper reexamines the design decisions behind these
state-of-the-art STM algorithms. Building on the body of
prior art together with our new understanding of what makes
software transactions fast, we introduce the transactional
locking (TL) algorithm which we believe to be the simplest,
most flexible, and best performing STM/HyTM to date.

1.3 Our Findings
The following are some of the results and conclusions pre-

sented in this paper:

• Ennals [9] suggested to build deadlock-free lock-based
STMs rather than non-blocking ones [13, 27]. Our em-
pirical findings support Ennals’s claims: non-blocking
transactions [13, 27] were less efficient than our TL
lock-based ones on a variety of data structures and
across concurrency ranges, even when they used a more
complex yet advantageous non-mechanical program-
ming interface [13]. Given that, as we show, locks
provide a simple interface to hardware transactions,
we recommend that the design of HyTMs shift from
non-blocking to lock-based algorithms.

• Both Ennals and Saha et al [9, 31] have transactions
acquire write locks as they encounter them (an “undo-
set” algorithm). Saha et al [31] claim that this is a con-
scious design choice. Both of the above papers failed
to observe that encounter order transactions perform
well on uncontended data structures but degrade on
contended ones. We use variations of our TL algorithm
to show that this degradation is inherent to encounter
order lock acquisition.

• In its default operational mode, our new TL algorithm
acquires locks only at commit time, using a Bloom fil-
ter [5] for fast look-aside into the write-buffer to allow
reads to always view a consistent state of its own mod-
ified locations. Slow look-aside was cited by Saha et
al [31] as a reason for choosing encounter order lock-
ing and undo writing in their algorithm (one should
note though that we do not support nesting in our
STM). As we explain, unlike encounter order locking
which seems to require type-stable memory or special-
ized malloc/free implementations, commit time lock-
ing fits well with the memory lifecycle in languages like
C and C++, allowing transactionally accessed mem-
ory to be moved in and out of the general memory pool
using regular malloc and free operations.

• Of all the algorithms we tested, lock-free, or lock-
based, the TL algorithm which acquires locks at com-
mit time, is the only one that exhibits scalability across
all contention ranges. Moreover, we found the advan-
tage of encounter order algorithms, when they do ex-
hibit better performance, to be small enough so as to
bring us to conclude that even from a pure perfor-



mance standpoint, one should always default to using
commit time locking.

• Both Ennals and Saha et al [9, 31] provide mechanisms
for one transaction to abort another to allow progress.
In the case of Saha et al this mechanism might add a
significant cost to the implementation because write-
sets must be shared so one transaction can completely
undo another. We claim these mechanisms are unnec-
essary, and show that they can be effectively replaced
by time-outs.

• Perhaps most importantly, we show that concurrent
code generated mechanically using our new TL algo-
rithm has scalability curves that are superior to those
of all fine-grained hand-crafted data structures even
when varying size and contention level. This implies
that contrary to our belief, it is the overhead of the
STM implementations (measured, for example, by sin-
gle thread performance cost) that limits their perfor-
mance, not the superior contention management hand-
crafted structures can deliver based on the program-
mer’s understanding of the data structures (This is not
to say that there aren’t structures where hand-crafting
will increase scalability to a point where it dominates
performance). Lower overheads benefit transactions
in two ways: (1) shorter transactions are less exposed
to interference and (2) shorter transactions imply a
higher rate of arrival at the commit point. We are
in the process of collecting more data to support this
claim.

• Finally, our findings bode well for HTM support, which
we expect will suffer from the same abort rates as our
TL algorithm, yet will reduce the overhead of opera-
tions significantly. For HTM designers, our findings
suggest that hardware transactional design should fo-
cus on overhead reduction.

In summary, TL’s superior performance together with the
fact that it combines seamlessly with hardware transactions
and with any system’s memory life-cycle, make it an ideal
candidate for multi-language deployment today, long before
hardware transactional support becomes commonly avail-
able.

2. TRANSACTIONAL LOCKING
The transactional locking approach is thus that rather

than trying to improve on hand-crafted lock-based imple-
mentations by being non-blocking, we try and build lock-
based STMs that will get us as close to their performance
as one can with a completely mechanical approach, that is,
one that simplifies the job of the concurrent programmer.

Our algorithm operates in two modes which we will call
encounter mode and commit mode. These modes indicate
how locks are acquired and how transactions are committed
or aborted. We will begin by describing our commit mode
algorithm, later explaining how TL operates in encounter
mode similar to algorithms by Ennals [9] and Saha et al
[31]. The availability of both modes will allow us to show
the performance differences between them.

We associate a special versioned-write-lock with every trans-
acted memory location. A versioned-write-lock is a simple
single-word spinlock that uses a compare-and-swap (CAS)

operation to acquire the lock and a store to release it. Since
one only needs a single bit to indicate that the lock is taken,
we use the rest of the lock word to hold a version number.
This number is incremented by every successful lock-release.
In encounter mode the version number is displaced and a
pointer into a threads private undo log is installed.

We allocate a collection of versioned-write-locks. We use
various schemes for associating locks with shared memory:
per object (PO), where a lock is assigned per shared object,
per stripe (PS), where we allocate a separate large array of
locks and memory is stripped (divided up) using some hash
function to map each location to a separate stripe, and per
word (PW) where each transactionally referenced variable
(word) is collocated adjacent to a lock. Other mappings
between transactional shared variables and locks are pos-
sible. The PW and PO schemes require either manual or
compiler-assisted automatic put of lock fields whereas PS
can be used with unmodified data structures. Since in gen-
eral PO showed better performance than PW we will focus
on PO and do not discuss PW further. PO might be im-
plemented, for instance, by leveraging the header words of
objects in the Java programming language [2, 8]. A single
PS stripe-lock array may be shared and used for different
TL data structures within a single address-space. For in-
stance an application with two distinct TL red-black trees
and three TL hash-tables could use a single PS array for
all TL locks. As our default mapping we chose an array of
220 entries of 32-bit lock words with the mapping function
masking the variable address with “0x3FFFFC” and then
adding in the base address of the lock array to derive the
lock address.

The following is a description of the PS algorithm al-
though most of the details carry through verbatim for PO
and PW as well. We maintain thread local read- and write-
sets as linked lists. A read-set entry contains the address of
the lock and the observed version number of the lock asso-
ciated with the transactionally loaded variable. A write-set
entry contain the address of the variable, the value to be
written to the variable, and the address of the associated
lock. The write-set is kept in chronological order to avoid
write-after-write hazards.

2.1 Commit Mode
We now describe how TL executes a sequential code frag-

ment that was placed within a TL transaction. We use our
preferred commit mode algorithm. As we explain, this mode
does not require type-stable garbage collection, and works
seamlessly with the memory life-cycle of languages like C
and C++.

1. Run the transactional code, reading the locks of all
fetched-from shared locations and building a local read-
set and write-set (use a safe load operation to avoid
de-referencing invalid pointers as a result of reading an
inconsistent view of memory).

A transactional load first checks (using a Bloom filter
[5]) to see if the load address appears in the write-set.
If so the transactional load returns the last value writ-
ten to the address. This provides the illusion of pro-
cessor consistency and avoids so-called read-after-write
hazards. If the address is not found in the write-set the
load operation then fetches the lock value associated
with the variable, saving the version in the read-set,



and then fetches from the actual shared variable. If the
transactional load operation finds the variable locked
the load may either spin until the lock is released or
abort the operation.

Transactional stores to shared locations are handled
by saving the address and value into the thread’s lo-
cal write-set. The shared variables are not modified
during this step. That is, transactional stores are de-
ferred and contingent upon successfully completing the
transaction. During the operation of the transaction
we periodically validate the read-set. If the read-set
is found to be invalid we abort the transaction. This
avoids the possibility of a doomed transaction (a trans-
action that has read inconsistent global state) from
becoming trapped in an infinite loop.

2. Attempt to commit the transaction. Acquire the locks
of locations to be written. If a lock in the write-set
(or more precisely a lock associated with a location
in the write-set) also appears in the read-set then the
acquire operation must atomically (a) acquire the lock
and, (b) validate that the current lock version subfield
agrees with the version found in the earliest read-entry
associated with that same lock. An atomic CAS can
accomplish both (a) and (b). Acquire the locks in
any convenient order using bounded spinning to avoid
indefinite deadlock.

3. Re-read the locks of all read-only locations to make
sure version numbers haven’t changed. If a version
does not match, roll-back (release) the locks, abort
the transaction, and retry.

4. The prior observed reads in step (1) have been vali-
dated as forming an atomic snapshot of memory [1].
The transaction is now committed. Write-back all the
entries from the local write-set to the appropriate shared
variables.

5. Release all the locks identified in the write-set by atom-
ically incrementing the version and clearing the write-
lock bit (using a simple store).

A few things to note. The write-locks have been held for
a brief time when attempting to commit the transaction.
This helps improve performance under high contention. The
Bloom filter allows us to determine if a value is not in the
write-set and need not be searched for by reading the sin-
gle filter word. Though locks could have been acquired in
ascending address order to avoid deadlock, we found that
sorting the addresses in the write-set was not worth the ef-
fort.

2.2 Encounter Mode
The following is the TL encounter mode transaction. For

reasons we explain later, this mode assumes a type-stable
closed memory pool or garbage collection.

1. Run the transactional code, reading the locks of all
fetched-from shared locations and building a local read-
set and write-set (the write-set is an undo set of the
values before the transactional writes).

Transactional stores to shared locations are handled
by acquiring locks as the are encountered, saving the

address and current value into the thread’s local write-
set, and pointing from the lock to the write-set entry.
The shared variables are written with the new value
during this step.

A transactional load checks to see if the lock is free or
is held by the current transaction and if so reads the
value from the location. There is thus no need to look
for the value in the write-set. If the transactional load
operation finds that the lock is held it will spin. During
the operation of the transaction we periodically vali-
date the read-set. If the read-set is found to be invalid
we abort the transaction. This avoids the possibility
of a doomed transaction (a transaction that has read
inconsistent global state) from becoming trapped in an
infinite loop.

2. Attempt to commit the transaction. Acquire the locks
associated with the write-set in any convenient order,
using bounded spinning to avoid deadlock.

3. Re-read the locks of all read-only locations to make
sure version numbers haven’t changed. If a version
does not match, restore the values using the write-set,
roll-back (release) the locks, abort the transaction, and
retry.

4. The prior observed reads in step (1) have been vali-
dated as forming an atomic snapshot of memory. The
transaction is now committed.

5. Release all the locks identified in the write-set by atom-
ically incrementing the version and clearing the write-
lock bit.

We note that the locks in encounter mode are held for a
longer duration than in commit mode, which accounts for
weaker performance under contention. However, one does
not need to look-aside and search through the write-set for
every read.

2.3 Contention Management
As described above TL admits live-lock failure. Consider

where thread T1’s read-set is A and its write-set is B. T2’s
read-set is B and write-set is A. T1 tries to commit and locks
B. T2 tries to commit and acquires A. T1 validates A, in its
read-set, and aborts as a B is locked by T2. T2 validates B
in its read-set and aborts as B was locked by T1. We have
mutual abort with no progress. To provide liveness we use
bounded spin and a back-off delay at abort-time, similar in
spirit to that found in CSMA-CD MAC protocols. The delay
interval is a function of (a) a random number generated at
abort-time, (b) the length of the prior (aborted) write-set,
and (c) the number of prior aborts by the current thread for
this transactional attempt.

2.4 The Pathology of Transactional Memory
Management

For type-safe garbage collected managed runtime environ-
ments such as that of the Java programming language, any
of the TL lock-mapping policies (PS, PO, or PW) and modes
(Commit or Encounter) are safe, as the GC assures that
transactionally accessed memory will only be released once
no references remain to the object. In C or C++ TL prefer-
entially uses the PS/Commit locking scheme to allow the C



programmer to use normal malloc() and free() operations to
manage the lifecycle of structures containing transactionally
accessed shared variables. Using PS was also suggested in
[31].

Concurrent mixed-mode transactional and non-transactional
accesses are proscribed. When a particular object is be-
ing accessed with transactional load and store operations it
must not be accessed with normal non-transactional load
and store operations. (When any accesses to an object are
transactional, all accesses must be transactional). In PS/-
Commit mode an object can exit the transactional domain
and subsequently be accessed with normal non-transactional
loads and stores, but we must wait for the object to quiesce
before it leaves. There can be at most one transaction hold-
ing the transactional lock, and quiescing means waiting for
that lock to be released, implying that all pending trans-
actional stores to the location have been“drained”, before
allowing the object to exit the transactional domain and
subsequently to be accessed with normal load and store op-
erations. Once it has quiesced, the memory can be freed and
recycled in a normal fashion, because any transaction that
may acquire the lock and reach the disconnected location
will fail its read-set validation.

To motivate the need for quiescing, consider the following
scenario with PS/Commit. We have a linked list of 3 nodes
identified by addresses A, B and C. A node contains Key,
Value and Next fields. The data structure implements a tra-
ditional key-value mapping. The key-value map (the linked
list) is protected by TL using PS. Node A’s Key field con-
tains 1, its value field contains 1001 and its Next field refers
to B. B’s Key field contains 2, its Value field contains 1002
and its Next field refers to C. C’s Key field contains 3, the
value field 1003 and its Next field is NULL. Thread T1 calls
put(2, 2002). The TL-based put() operator traverses the
linked list using transactional loads and finds node B with
a key value of 2. T1 then executes a transactional store
into B.Value to change 1002 to 2002. T1’s read-set con-
sists of A.Key, A.Next, B.Key and the write-set consists of
B.Value. T1 attempts to commit; it acquires the lock cover-
ing B.Value and then validates that the previously fetched
read-set is consistent by checking the version numbers in
the locks converging the read-set. Thread T1 stalls. Thread
T2 executes delete(2). The delete() operator traverses the
linked list and attempts to splice-out Node B by setting
A.Next to C. T2 successfully commits. The commit oper-
ator stores C into A.Next. T2’s transaction completes. T2
then calls free(B). T1 resumes in the midst of its commit
and stores into B.Value. We have a classic modify-after-free
pathology. To avoid such problems T2 calls quiesce(B) after
the commit finishes but before free()ing B. This allows T1’s
latent transactional ST to drain into B before B is free()ed
and potentially reused. Note, however, that TL (using qui-
escing) did not admit any outcomes that were not already
possible under a simple coarse-grained lock. Any thread
that attempts to write into B will, at commit-time, acquire
the lock covering B, validate A.Next and then store into B.
Once B has been unlinked there can be at most one thread
that has successfully committed and is in the process of writ-
ing into B. Other transactions attempting to write into B
will fail read-set validation at commit-time as A.Next has
changed.

Consider another following problematic lifecycle scenario
based on the A,B,C linked list, above. Lets say we’re us-

ing TL in the C language to moderate concurrent access to
the list, but with either PO or PW mode where the lock
word(s) are embedded in the node. Thread T1 calls put(2,
2002). The TL-based put() method traverse the list and
locates node B having a key value of 2. Thread T2 then
calls delete(2). The delete() operator commits successfully.
T2 waits for B to quiesce and then calls free(B). The mem-
ory underlying B is recycled and used by some other thread
T3. T1 attempts to commit by acquiring the lock cover-
ing B.Value. The lock-word is collocated with B.Value, so
the the CAS operation transiently change the lock-word con-
tents. T2 then validates the read-set, recognizes that A.Next
changed (because of T1’s delete()) and aborts, restoring the
original lock-word value. T1 has cause the memory word
underlying the lock for B.value to “flicker”, however. Such
modifications are unacceptable; we have a classic modify-
after-free error.

Finally, consider the following pathological scenario ad-
mitted by PS/Encounter. T1 calls put(2,2002). Put() tra-
verses the list and locates node B. T2 then calls delete(2),
commits successfully, calls quiesce(B) and free(B). T1 ac-
quires the lock covering B.Value, saves the original B.Value
(1002) into its private write undo log, and then stores 2002
into B.Value. Later, during read-set validation at commit-
time, T1 will discover that its read-set is invalid and abort,
rolling back B.Value from 2002 to 1002. As above, this con-
stitutes a modify-after-free pathology where B recycled, but
B.Value transiently “flickered” from 1002 to 2002 to 1002.
We can avoid this problem by enhancing the encounter pro-
tocol to validate the read-set after each lock acquistion but
before storing into the shared variable. This confers safety,
but at the cost of additional performance.

As such, we advocate using PS/Commit for normal C code
as the lock-words (metadata) are stored separately in type-
stable memory distinct from the data protected by the locks.
This provision can be relaxed if the C-code uses some type
of garbage collection (such as Boehm-style [6] conservative
garbage collection for C, Michael-style hazard pointers [25]
or Fraser-stye Epoch-Based Reclamation [10]) or type-stable
storage for the nodes.

2.5 Mechanical Transformation of Sequential
Code

As we discussed earlier, the algorithm we describe can be
added to code in a mechanical fashion, that is, without un-
derstanding anything about how the code works or what the
program itself does. In our benchmarks, we performed the
transformation by hand. We do however believe that it may
be feasible to automate this process and allow a compiler to
perform the transformation given a few rather simple limi-
tations on the code structure within a transaction.

We note that hand-crafted data structures can always
have an advantage over TL, as TL has no way of know-
ing that prior loads executed within a transaction might no
longer have any bearing on results produced by transaction.

Consider the following scenario where we have a TL-protected
hashtable. Thread T1 traverses a long hash bucket chain
searching for a the value associated with a certain key, it-
erating over “next” fields. We’ll say that T1 locates the
appropriate node at or near the end of the linked list. T2
concurrently deletes an unrelated node earlier in the same
linked list. T2 commits. At commit-time T1 will abort be-
cause the linked-list “next” field written to by T2 is in T1’s



read-set. T1 must retry the lookup operation (ostensibly
locating the same node). Given our domain-specific knowl-
edge of the linked list we understand that the lookup and
delete operations didn’t really conflict and could have been
allowed to operate concurrently with no aborts. A clever
“hand over hand” hand-coded locking scheme would have
the advantage of allowing this desired concurrency. Never-
theless, as our empirical analysis later in the paper shows,
in the data structure we tested, the beneficial effect of this
added concurrency on overall application scalability does not
seem to be as profound as one would think.

2.6 Software-Hardware Inter-Operability
Though we have described TL as a software based scheme,

it can be made inter-operable with HTM systems.
On a machine supporting dynamic hardware, transactions

executed in hardware need only verify for each location that
they read or write that the associated versioned-write-lock is
free. There is no need for the hardware transaction to store
an intermediate locked state into the lock word(s). For ev-
ery write they also need to update the version number of
the associated stripe lock upon completion. This suffices
to provide inter-operability between hardware and software
transactions. Any software read will detect concurrent mod-
ifications of locations by a hardware writes because the ver-
sion number of the associated lock will have changed. Any
hardware transaction will fail if a concurrent software trans-
action is holding the lock to write. Software transactions
attempting to write will also fail in acquiring a lock on a
location since lock acquisition is done using an atomic hard-
ware synchronization operation (such as CAS or a single
location transaction) which will fail if the version number of
the location was modified by the hardware transaction.

3. AN EMPIRICAL EVALUATION OF STM
PERFORMANCE

We present here the a comparison of algorithms represent-
ing state-of-the-art non-blocking [13], lock-based [9] STMs
on a set of microbenchmarks that include the now standard
concurrent red-black tree structure [18], as well as concur-
rent skiplists [13]and a concurrent shared queue [26].

The red-black tree tested with transactional locking was
derived from the java.util.TreeMap implementation found
in the Java programming language JDK 6.0. That imple-
mentation was written by Doug Lea and Josh Bloch. In
turn, parts of the Java TreeMap were derived from the Cor-
men et al [7]. The skiplist was derived from Pugh [28].
We would have preferred to use the exact Fraser-Harris red-
black tree but that code was written to to their specific
transactional interface and could not readily be converted
to a simple form. We use large and small versions of the
data structures, with 20,000 keys or 200 keys. We found lit-
tle difference when we further increased the size of the trees
a hundred-fold.

The skiplist and red-black tree implementations expose a
key-value pair interface of put, delete, and get operations.
The put operation installs a key-value pair. If the key is not
present in the data structure put will insert a new element
describing the key-value pair. If the key is already present
in the data structure put will simply update the value as-
sociated with the existing key. The get operation queries
the value for a given key, returning an indication if the key

was present in the data structure. Finally, delete removes
a key from the data structure, returning an indication if
the key was found to be present in the data structure. The
benchmark harness calls put, get and delete to operate on
the underlying data structure. The harness allows for the
proportion of put, get and delete operations to be varied by
way of command line arguments, as well as the number of
threads, trial duration, initial number of key-value pairs to
be installed in the data structure, and the key-range. The
key range describes the maximum possible size (capacity) of
the data structure.

The harness spawns the specified number of threads. Each
of the threads loops, and in each iteration the thread first
computes a uniformly chosen random number used to select,
in proportion to command line argument mentioned above,
if the operation to be performed will be a put, get or delete.
The thread then generates a uniformly selected random key
within the key range, and, if the operation is a put, a random
value. The thread then calls put, get or delete accordingly.
All threads operate on a single shared data structure. At
the end of the timing interval specified on the command
line the harness reports the aggregate number of operations
(iterations) completed by the set of threads.

For our experiments we used a 16-processor Sun FireTM

V890 which is a cache coherent multiprocessor with 1.35Ghz
UltraSPARC-IV r© processors running SolarisTM 10.

Our benchmarked algorithms included:

Mutex, SpinLock, MCSLock We implemented three vari-
ations of mutual exclusion locks. Mutex is a Solaris
Pthreads mutex, Spinlock is a lock implemented with
a CAS based Test-and-test-and set [20], and MCSLock
is the queue lock of Mellor-Crummey and Scott [24].

stm fraser This is the state-of-the-art non-blocking STM
of Harris and Fraser [13]. We use the name originally
given to the program by its authors. It has a spe-
cial record per object with a pointer to a transaction
record. The transformation of sequential to transac-
tional code is not mechanical: the programmer speci-
fies when objects are transactionally opened and closed
to improve performance.

stm ennals This is the lock-based encounter order object-
based STM algorithm of Ennals taken from [9] and
provided in LibLTX [13]. Note that LibLTX includes
the original Fraser and Harris lockfree-lib package. It
uses a lock per object and a non-mechanical object-
based interface of [13]. Though we did not have access
to code for the Saha et al algorithm [31], we believe the
Ennals algorithm to be a good representative this class
of algorithms, with the possible benefit that the En-
nals structures were written using the non-mechanical
object-based interface of [13] and because unlike Saha
et al, Ennals’s write-set is not shared among threads.

TL Our new transactional locking algorithm. We use the
notation TL/Enc/PO for example to denote a version
of the algorithm that uses encounter mode lock acqui-
sition and per-object locking. We alternately also use
commit mode (CMT) or per-stripe locking (PS).

hanke This is the hand-crafted lock-based concurrent re-
laxed red-black tree implementation of Hanke [12] as
coded by Fraser [13]. The idea of relaxed balancing
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Figure 1: Throughput of Skip Lists with 20% puts, 20% deletes, and 60% gets

is to uncouple the re-balancing from the updating in
order to speed up the update operations and to allow
a high degree of concurrency. The algorithm also uses
an understanding of the structures data relationships
to allow traversals of the data structure ignore the fact
that nodes are being modified while they are traversed.

fraser CAS-Based This is a lock-free skiplist due to Fraser
[13] (A variant of this algorithm by Lea is included in
the Java programming language JDK 6.0).

MS2Lock, SimpleLock Using the Mutex, Spinlock, and
MCSLock locking algorithms to implement locks, we
show three variants of Michael and Scott’s concurrent
queue implemented [26] using two separate locks for
the head and tail pointers, and three additional vari-
ants of a simple implementation using a single lock for
both the head and tail.

3.1 Locking vs Non-Blocking
In our first benchmark we tested a skiplist tree data struc-

ture in various configurations varying the fraction of modify-
ing the fraction of puts, deletes, and get operations (method
calls). We only show the case of 20% puts, 20% deletes, and
60% gets because all other cases were very similar. As can be
seen in Figure 1, Fraser’s hand-crafted lock-free CAS-based
implementation is has twice the throughput or more than
the best STMs. Of the STM methods, the lock-based TL
and Ennals STMs outperform all others. They are twice as
fast as Fraser and Harris’s lock-free STM, and more than
five times faster than course grained locks. Though the
single thread performance of STMs is inferior to that of
locks, the crossover point is two threads, implying that with
any concurrency, choose the STM. This benchmark indicates
that improving both latency and single thread performance
should be a goal of future STM design. The TL implementa-
tion with encounter order and PO locks is the best performer
on large data structures but is the first to deteriorate as the
size of the structure decreases, increasing contention.

3.2 Encounter vs Commit and PO vs PS
In our second benchmark we tested a red-black tree data

structure in various configurations considered to be com-
mon application usage patterns. As can be seen in Fig-

ure 2, the TL lock-based algorithm outperforms Ennals’s
lock-based and Fraser’s non-blocking STMs. On large data
structures under contention (part (d)) it even outperforms
Hanke’s hand-crafted implementation.

There are several interesting points to notice about these
graphs.

• Overall the TL algorithm in commit (CMT) mode us-
ing PO locking does as well as the Ennals and TL
encounter order (ENC) algorithms.

• The performance of both the Ennals encounter order
algorithm deteriorates as the data structure becomes
smaller (or as the number of modifying operations in-
creases). Part (c) of Figure 2 shows that this is not a
fluke. The encounter order TL algorithm exhibits the
same performance drop.

• If one looks at the high contention benchmark in Fig-
ure 3, where 80% of the operations modify the data
structure and where 72% of all transactional references
are loads, one can see that this continues to the ex-
treme. Under high contention, Ennals’s algorithm de-
grades to become worst than any of the locks, the TL
in encounter order and the lock-free Harris and Fraser
STM stop scaling, the hand-crafted Hanke algorithm
starts to flatten out, and the two commit mode TL
STMs continue to scale. The scalability of the two
commit mode TL algorithms gets further support if
one looks at the normalized throughput graphs of Fig-
ure 5. It is quite clear that commit mode TL STMs
are the only ones that show overall scalability. Our
conclusion is that one should clearly not settle on en-
counter order locking as the default as suggested by
Saha et al [31], and pending investigation with larger
set of benchmarks, it may well be that one could settle
on always using commit time lock acquisition.

• Perhaps surprisingly, abort rates seem to have little ef-
fect on overall scalability and performance. We present
sample abort rate graphs in Figure 5 that correspond
to the normalized scalability graphs above them. As
can be seen PO does better than PS, a conclusion
agrees with that of Saha et al [31]. This is true even
though, as seen in the large data structure abort rate
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Figure 2: Throughput of Red-Black Tree with 5% puts and 5% deletes and 20% puts, 20% deletes

graphs, PO introduces up to 50% more transaction
failures than PS, yet the scalability of PO is better.
Moreover, as can be seen in small red-black trees in
which the failure rates increase tenfold when compared
to large ones, TL/CMT/PO and TL/ENC/PS have
the same abort rates yet TL/CMT/PO has twice the
scalability of TL/ENC/PS and twice the performance
if one looks at the graph in Part C of Figure 2. In
general, Abort rates seem to be shadowed by the bet-
ter locality of reference (accessing the lock and object
together) provided by PO. Unfortunately, as we noted
earlier, in languages like C and C++ one must use PS
mode to allow interoperability with the normal malloc-
free memory lifecycle.

Our third benchmark in Figure 4 shows the performance
of various locking and STM methods in implementing a
shared queue algorithm. A shared queue is a natural exam-
ple of a small data structure with high levels of contention.
As we show, a TL queue mechanically generated from se-
quential code delivers the same performance as the hand-
crafted Michael and Scott two Lock algorithm (MS2Lock).

3.3 What Makes Transactions Faster?
The graphs in Figure 5 possibly contain our most telling

data. These are graphs that depict the scalability of the var-
ious methods by recasting the data we presented earlier in
Figures 2 and 1 at 20%/20%/60%, normalizing the graphs
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based on the single thread performance. Contrary to all
of our conjectures, the STMs, and in particular TL using
commit order, have the best overall scalability, outperform-
ing the hand-crafted red-black tree structures (results for
skiplists were similar). As can be seen, this scalability is
supported by the fact that the overall abort rates for TL
are low. This is rather surprising, since we thought the
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great advantage of hand-crafted data structures, as opposed
to mechanically generated STM code, was the programmers
ability to control contention based on his knowledge of the
data flow relationships. For example, both the Hanke lock-
based red-black tree and the Fraser lock-free skiplist, allow
traversals to ignore ongoing modifications to the data struc-
ture. However, as seen in Figure 5, and as we found out in
similar benchmarks with 95% get operations (not presented
here), TL, as well as other STMs, scaled better than these
structures.

A couple of interesting data points we found were that our
TL algorithm in commit mode scaled, for example, three
times more than Hanke’s algorithm at 16 processors, and
yet both algorithms had the same throughput. On the red-
black tree, TL commit mode scaled well both in PO and PS
mode.

In conclusion, it is really the relative overheads, as can
be seen from the single thread performance numbers in Fig-
ures 2 and 1, that determine which algorithm will perform
better on a given benchmark. Our TL algorithm in com-
mit mode is in fact algorithmically very similar to suggested
hardware transaction schemes, implying that hardware trans-
actions “in general” will fail in the same cases that software
ones fail. Given that hardware transactions will lower the
overheads of transactional execution, this holds great hope
that HTM-based mechanically transformed sequential code
can be as fast, or even faster, than hand-crafted data struc-
tures.

3.4 Summarizing the Comparison Among Ap-
proaches

Table 1 summarizes our comparison of the different meth-
ods of constructing lock-based STMs. There are three algo-
rithmic elements being compared: encounter order locking of
written locations (ENC) versus commit time locking (CMT),
per stripe locking (PS) versus per object locking (PO), and
validation of the read-set on every write (VOW) or only be-
fore committing (VBC). We compare the different methods
in terms of the compatibility with the memory lifecycle of
garbage collected languages like the Java programming lan-
guage, or C programs that use a closed memory pool, versus
C programs that use only malloc and free style allocation.
The table shows which techniques work safely only with GC

or a closed pool such as Fraser’s Epoch-based reclamation
scheme. The discussion based on which these table entries
were derived appears in Section 2.4. We rank performance
using a scale which includes very poor, poor, good, better,
and best for any given category of data structure and load,
based on the benchmarks presented earlier in this section.
We do not show entries for the combination of commit time
locking (CMT) and validation on every write (VOW) since
VBC is significantly less costly than VOW and it suffices for
commit time locking.

We note that TL uses a versioned write-lock, but if we
were to instead use a RW lock (with so-called visible read-
ers) then all the VBC forms ({ENC,CMT} x {PO,PS}) will
work safely with malloc and free. In addition, RW locks
don’t admit so-called zombie transactions, ones that may
dereference invalid pointers or enter infinite loops because
they read an inconsistent state. We decided against RW
locks early on in our algorithm design because they gen-
erate excessive cache coherency traffic on traditional SMP
systems.

The following is a summary of the findings the table re-
veals.

• A quick glance at the table reveals that the perfor-
mance of VOW schemes is very poor. We based this
data on benchmarking we performed on Moir’s HyTM
[27] which uses a mechanism similar to ENC/PS/VOW
in order to allow programmers to freely use malloc and
free. It is not clear to us at this point how to catego-
rize the work of Saha et al [31] who use, to the best of
our understanding, ENC/PS/VBC. They make some
assumptions on the runtime/memory system that keep
it closed.

• As can be seen, it would seem that ENC locking is the
best approach only on large objects using PO lock-
ing. However, ENC delivers very poor performance
on small data structures. The CMT locking approach,
on the other hand, delivers best-of-breed performance
for all objects and all concurrency levels, and even on
large uncontended objects when ENC/PO delivers bet-
ter throughput than CMT/PO. It would thus be the
best choice for languages like the Java programming
language or systems that have a closed memory sys-
tem to use CMT/PO as provided by the TL algorithm.

• It would seem that the CMT/PS used in TL is the
only scheme to deliver good performance for systems
in which programmers wish to use malloc and free
style allocation. ENC/PS/VOW is non-viable because
of the overhead of the repeated validation. we note
that she throughput of CMT/PS is not as good as
CMT/PO (or ENC/PO on large unloaded structures)
because of the extra cache traffic due to the separate
lock locations, but is reasonable.

3.5 Finer Analysis of Overhead
To better understand what the sources of the overhead in

the TL design were, we looked at the single thread perfor-
mance of our TL algorithm. We note that HTMs attempt
to cut down the costs of both reads and writes. We wanted
to find out what the benefit of using an HTM transaction
to acquire all write locks at commit time might be. We con-
ducted a simple benchmark in which the TL algorithm ran
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on a red-black tree of size 50 with 40% put, 40% delete, and
20% get operations in single threaded mode, replacing all ex-
pensive CAS-based lock acquisitions with simple reads and
writes. We found that in our benchmark with a 1:4 ratio of
transactional reads to writes, the number of operations per
second with CAS was 5.2 million and if we converted CAS
to non-atomic reads and writes it yielded 5.8 million oper-
ations per second, an improvement of .6 million, or about
10%. Even here it turned out that speeding up lock acqui-
sition is simply not worth it.

We then asked ourselves if eliminating the construction
of a read-set might have a significant effect. We again ran
red-black tree benchmark but did not construct a read-set
and made only one pass through the transactional code, as
would be done by a transaction that had hardware support
for determining if the read set was consistent. Our transac-
tional loads still had to look-aside into the write-set. The
transactional load operation fetched the lock-word and then
the data. The result was an increase of the total number of
completed operations to 8.2 million per second.

4. CONCLUSION
We presented an evaluation of the factors affecting the

performance of STM algorithms. Perhaps surprisingly, we
found that the determining performance factors were the

“fixed” costs/overheads associated with STM mechanisms
(such as read-set validation), and not factors associated with
scalability (such as transaction abort rates). This led us
to the design of the transactional locking (TL) algorithm,
which tries to minimize these costs.
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