
jcc: Integrating Timed Default Concurrent Constraint
Programming into JAVA

Vijay Saraswat1, Radha Jagadeesan?2, and Vineet Gupta3

1 CSE Department, Penn State University, University Park, Pa 16802
2 School of CTI, De Paul University, Chicago Il 60604

3 Google, Inc, Mt View, Ca 94043.

Abstract. This paper describesjcc, an integration of the timed default concur-
rent constraint programming framework [16] (Timed Default cc) into JAVA [7].
jcc is intended for use in education and research, for the programming of em-
bedded reactive systems, for parallel/distributed simulation and modelling (par-
ticularly for space, robotics and systems biology applications), and to support the
development of constraint-based program analysis and type-checking tools.
In fully implementing theTimed Default cc framework,jcc supports the notion
of (typed) logical variables (called “promises”, after [5]), allows the programmer
to add his/her own constraint system (an implementation of theHerbrand con-
straint system is provided), implements (instantaneous) defaults via backtracking,
implements a complete renewal of the constraint-store at each time instant, and
implements bounded-time execution of theTimed cc control constructs.
jcc implements the notion ofreactive vats[5] as single threads of execution
within the JVM; a vat may be thought of as encapsulating a single synchronous,
reactiveTimed cc computation. A computation typically consists of a dynami-
cally changing collection of interacting vats (some of which could potentially be
located at different JVMs), with dynamically changing connectivity.
jcc programs fully inter-operate with JAVA programs, and compile into standard
JVM byte-code.jcc programs fully respect the JAVA type system; logical vari-
ables are typed.jcc is compatible with the Generic Java [3] extensions, thereby
allowing the use of parameterized types. Indeed,jcc may be viewed as an exten-
sion of JAVA which replaces JAVA ’s notoriously difficult imperative thread-based
concurrency with the notion of reactive vats interacting via constraints on logical
variables.
jcc source code is available under the Lesser GNU licence through SourceForge.4

1 Introduction and Overview

While JAVA [7] has been remarkably successful as a new programming language, its
treatment of concurrency remains extremely problematic from a conceptual point of
view, and extremely difficult from a practical point of view. To a fairly traditional core
of strongly-typed class-based object-oriented programming, JAVA adds threads and syn-
chronization based on locking mutable objects in a heap shared between all the threads,

? Research supported in part by NSF CCR 0244901
4 The authors wish to thank Daniel Burrows, Lav Rai, Avanti Nadgir and Guilin Chen for their

feedback and contributions to thejcc system.

together with rules that govern the flow of information between thread-specific data-
structures (stack, heap cache) and the shared store [7, Chapter 17]. Surprisingly, the
requirement that some seemingly natural properties should hold (e.g. coherence) leads
to significant performance penalties [13]. Worse, some intuitively obvious properties
(e.g. the thread-safety of immutable objects such asString s, double-checked locking
[4] etc) do not hold. The originators of JAVA have commissioned a working group (JSR
1335) to fix these problems. While this work is still in progress (e.g. see [10]), clearly
the development of alternate models of concurrency for JAVA seems called for.

A particularly insidious problem in reasoning about JAVA programs is that every line
of JAVA code,particularly code not using any explicit concurrency or synchronization
construct, could be executed in parallel by multiple threads on the same object, leading
to potentially serious synchronization problems. That is, concurrent execution in JAVA

is the default. This makes reasoning about the correctness of any piece of JAVA code
extremely difficult – there is no clear separation between “sequential” JAVA and multi-
threaded JAVA . One must explicitly consider all possible interleavings of method calls
on an object in order to guarantee safety.

In this paper we proposejcc, a new concurrency model for loosely-coupled concur-
rent programming in JAVA based on the ideas of synchronous reactive programming [2,
16] (sometimes called “event-loop concurrency”). The model and the implementation
are intended to support applications in education and research, for the programming of
embedded reactive systems, for parallel/distributed simulation and modelling (particu-
larly for space and systems biology applications), and to support the development of
constraint-based program analysis and type-checking tools. In future work we expect to
extendjcc to the richer setting ofHybrid cc (supporting a notion of continuous change,
[8]), thereby opening up many more areas of application, particularly in the realm of
modelling and simulation of physical, engineered and biological systems.

Vats and Ports.Fundamentally, we propose thatboth the stack and the heap (the loca-
tion for objects) are private to a thread, so thatby defaultmutable objects do not need
to be synchronized since they can be operated on only by a single thread. Following
[5], we call such a self-contained thread of execution avat. (Vats are closely related to
the new JAVA notion ofisolates[19]; one may think of vats as single-threaded isolates.)
A single Java Virtual Machine (JVM) instance may now be thought of as consisting
of multiple vats together with a shared heap ofimmutable objects.6 Vats communicate
with each other through a few, shared, mutable “gatekeeper” objects calledports. Each
port is located at a vat and may be “read” only by (code running in) that vat; it may be
written into by any vat referencing a related immutable object called theteller for the
port. Objects written into a port are (deep) copied from the source vat to the target vat,
with the copying bottoming out on immutable objects (e.g. tellers). Ports are considered

5 Seehttp://jcp.org/en/jsr/detail?id=133 , particularly the discussion of how
the current specification is broken “Unfortunately the current specification has been found
to be hard to understand and has subtle, often unintended, implications.. . . Several important
issues [. . .] simply aren’t discussed in the existing specification.”

6 An object is said to be immutable in JAVA if all its fields arefinal : that is, they must be
assigned at the time of object creation and never again thereafter.

primitive objects injcc; they cannot be written injcc, though they can be subclassed by
jcc code (cfThread in JAVA).7 Thus a port represents a single-reader, multiple-writer
queue of objects. We say that a vatA sends a messageto vatB if it writes an object into
a port ofB; jcc guarantees, using ideas fromwait-free synchronization[9], that sending
vats are never blocked. Theenvironmente(A) of a vatA may be defined as the union of
the setf(A) of vats that posses tellers for ports inA and the converse sett(A) of vats
for whose portsA possesses tellers.8

With such an architecture, it is natural to require that a vatA process a single mes-
sage from its environment at a time, and process it to completion before receiving the
next message. In processing a message, the vat may create new objects (in its local
heap), invoke methods on the objects in its heap, and send messages to vats int(A).
None of these operations may block; therefore if each vat may be guaranteed to execute
a bounded number of operations in response to each input message, it is guaranteed to
complete the processing of each input message in a bounded amount of time.

Time. We now make the observation that the receipt of a message from the world, and
the computation of a response, imposes a total order on the execution of the vat. This
total order is calledtime (cf. Berry’s synchrony hypothesis, [12]). Note that the notion
of time here islogical as opposed to physical – the “next” message is not required to
occur at the next “second” or “millisecond”. However, a particular implementation (e.g.
on a real-time operating system) may guarantee that a message arrives at a vat at every
chosen physical time instant, e.g. millisecond. (For such programs it must be guaranteed
that the vat is able to respond, with the available compute cycles, before the arrival of
the next message.) Thus the techniques in this paper can be used to program physical
real-time systems as well.

The explicit introduction of time allows us to introduce a host of control structures
that make it possible to describe behaviorsacross time, as we now discuss.

In JAVA -like languages, one may think of each objecto as participating in anobject
flow. The elements of this flow are the objects which are communicated as arguments
in message invocations ono, or returned as the result of a method invocation byo, or
created byo. Immutable objects can only redirect the flow to other objects. Mutable ob-
jects can sample the flow, record it in their finite state (their set of fields), and predicate
their responses to subsequent flows on this memory (= record of past state).

JAVA -like languages only allow objects to storedata from past interactions. The
methods defined on an object may be thought of as specifying theinstantaneous re-
sponseof an object to a stimulus (= method invocation) from its environment. All and
only the code in the body of the method (and the code it calls, transitively) is executed
on the presentation of this stimulus.

We now introduce the idea of allowing objects to storeprograms(or agents) from
past interactions. That is, we allow an object to specify, based on current interactions,
code that should be executed in thefuture (to compute the response of this object to
future stimuli). To enable this, we introduce the notion oftime-based control constructs.

7 Subclassing may specify, for instance, how received messages are ordered before being de-
queued.

8 Because we allow tellers to be communicated in messages, these sets vary dynamically.

The statementnext {S} is executed at the current time instant and records that the
statementS should be executed at the next time instant (that is, the next time that the
enclosing vat processes a message from its environment). Thus actions at any given
instant depend not only on the particular method invocation at that time instant, but also
on such agents from the past. Since there may be several such agents, and they may
have been independently generated (and at different instants in the past) it becomes
very convenient for us to think of them as executing (logically) inparallel. This is
referred to asintra-vat logical parallelism.

How should these agents be organized so that the result of executing them is in-
dependent of their order of execution? Here we may appeal to the theory ofdetermi-
nate concurrencyas developed in concurrent constraint programming [14, 16]. We view
these agents as concurrent constraint programs that interact with each other by impos-
ing and checking constraints on shared (logical) variables. (We allow bothpositiveand
negativeforms of checking or asking. A positive ask suspends until a particular item is
entailed by the store; a negative ask can be fired if it can be established that a particular
item will never be entailed by the store for the duration of this time instant. This may
require lookahead or backtracking.) We can make these agents sensitive to the data
generated in the current interaction by posting that data in the constraint store at the
beginning of the interaction. So as to allow the programmer to precisely define the tem-
poral extent of items in the constraint store, we adopt the rule that by default all items
in the store are dropped at the end of a time instant; therefore at the start of the next
time instant only those items will be available which occur explicitly within the scope
of next (or which are added by the environment at the beginning of that step).

Timed Default CC. Concretely,jcc may be thought of as arising from the integra-
tion of theTimed Default cc framework into (Sequential) JAVA . TheTimed Default
cc framework extends the CCP framework with a notion ofdefaultsand time. To the
tell, (positive) ask, concurrency as conjunction and hiding as existential idea of CCP,
defaults add the idea ofnegative asks: agents may be specified that fire based on the
absenceof information (for the duration of the computation).9 Time introduces the idea
of phased execution: a time instant is identified with the receipt of a stimulus from the
environment and the execution of a default CCP (Default cc) program to determine
both the instantaneous response and the computation to be executed at the next time
instant.

While time and defaults are conceptually completely orthogonal (i.e. the seman-
tics of one is defined independently of the other); past work has shown that the ex-
tensions are particularly synergistic. In particular, defaults allow variousinstantaneous
pre-emptioncontrol constructs (such asdo...watching) to be expressed in the lan-
guage. Indeed defaults may be used to express arbitrarily sophisticated patterns of in-
terruption, resumption and evolution across time.

Desiderata forjcc One of our goals is to introduceTimed Default cc in the mainstream
of programming practice. One pathway to this goal is the design of a completely new

9 It is necessary to insist that negative information be stable so as to retain the notion that the
result of the computation should be independent of scheduler delays or the order of execution
of agents.

programming system (c.f. Oz [18]) organized around constraints and communication.
However, our experience in leading several engineering teams in industry that have
designed, implemented and released commercial products and services in the Internet
space points to the enormous value of integrating these ideas into existing languages
and environments such asC++, JAVA , andC#.

We thus set up the following design goals forjcc:

1. jcc programs should completely inter-operate with JAVA : they should be able to use
JAVA class libraries (that do not explicitly use threads), and be callable from JAVA

class libraries.
2. jcc programs should be strongly typed, and the type system should inter-operate

with the JAVA type system, including theGeneric Java extension [3].
3. jcc programs should compile to standard JVM byte codes.
4. A simple API should be provided to allow the programmer to add new constraint

systems.
5. To support reflective meta-programming,jcc should provide an abstraction type for

agents, and classes for each of the additional built-in control constructs for agents
(e.g.Always , Next etc).

6. The implementation should be usable for small to medium-sized programs.

1.1 Comparison with Other Work

The conceptual framework of vats and promises has been borrowed from the program-
ming languageE [5], which itself has been influenced by a long line of concurrent logic
programming languages. Unlike the designers ofE, we have sought to realize these
ideas incrementally within JAVA rather than create a new language from whole cloth.

The treatment of defaults and temporal control constructs inTimed Default cc is
closely related to ESTEREL. Just as for ESTEREL, several compilation techniques for
defaults and the temporal constructs are possible (e.g. compilation to finite state ma-
chines, compilation to BDDs or circuits etc). In the current version of thejcc system
(described in this paper) we have chosen to implement the control constructs directly.
Vats may be thought of as quite similar to the Communicating Reactive Processes of
[1]. They differ in that we use a very simple form of concurrent constraint programming
(ports) for inter-vat communication, instead of using the framework of CSP. This frag-
ment is quite similar to the asynchronousπ-calculus and permits dynamic collection of
processes, and dynamically changing connectivity between processes.

The JAVA community has recently introduced the notion ofisolatesto enable mul-
tiple independent computations to run within a JVM [19]. Vats may be thought of as
singly-threadedisolates that communicate declaratively with each other (via ports).

Rest of This Paper.In the next section we discuss the core language design in more
detail. The design is presented in two phases. The first phase introduces vats and ports.
This level is analogous to the design of a concurrent logic programming language such
asJanus [17] (albeit in an object-oriented context). This language is completely usable
in its own right. The second phase introduces the notion of promises, time and defaults.
Next we present several simple examples ofjcc programs.

The jcc system has been produced under the LGPL open source code licence. The
current system, version 0.2, is available for download from SourceForge. All the fea-
tures discussed in this paper have been completely implemented, except for front-end
syntax processing. Instead programmers today have to use the “agent-based syntax”
described below. The implementation has been used in two graduate courses, in which
several hundred line longjcc programs have been developed (e.g. variations on the
ESTERELReflex and Wrist-watch programs).

The current implementation is a few thousand lines long.

2 Language design

Syntactically, the language is obtained from JAVA by adding the constructs given in
Table 1.10 jcc may be thought of via the “equation”:

jcc = JAVA − Threads+ Vats+ Promises+ Agents

2.1 Vats

A vat is a unit of concurrent execution with its own local stack and heap. (It is associ-
ated with a JAVA thread in the current implementation.) Vats function very much like
containersfor components known asAgents , the analogous notion injcc to JAVA ’s
Enterprise Java Beans (EJBs).

Vats may be thought of as executingAgent s and communicate with other vats
throughPort s.

Agents A vat may be created with an instance ofActor or ActiveAgent .11 The
classActor extendsPort and implementsRunnable , and may be thought of as a
component that is accessible from the vat’s context (through the port) and that can be
executed by the vat (very much like an EJB). AnActiveAgent extendsPort and
provides a method to return anAgent .

Agent is the key meta-abstraction injcc. It objectifies an agent whose behavior
extends across time. Agents allow for meta-programming: Agents are objects that can
be constructed on the fly (e.g. based on incoming data), and scheduled for execution.
Agents can be built from other agents. Agents allow for reactive synchronous program-
ming within conventional JAVA syntax (that is, without the use of the control constructs
described in Table 1), since built-inAgent classes are provided for each of the control
constructs. For simplicity one may assume that everyjcc computation is implemented
by associating anAgent with aVat ; thisAgent is built dynamically by executing the
pure JAVA code obtained by translatingjcc control constructs into invocations of con-
structors on the appropriateAgent classes. Therefore in the following we describe the

10 Many other temporal constructs are provided, not all are listed.
11 All the classes mentioned in this section live in the packagejcc.lang . We use the annotation

/*filled*/ to indicate that a variable must have a non-null value. One may use an extended
static checker for JAVA (e.g. [6]) to check these annotations at compile time.

jcc containsJAVA less threads.All syntactic constructs in JAVA (1.3) are permitted injcc
(including inner classes), except as indicated here.jcc programs may not use the classesThread
or ThreadGroup (from the java.lang package) or thesynchronized andvolatile
keywords from JAVA .

realized method keyword.Methods defined on subclasses ofPromise with return type
void may be annotated with the keyword “realized ”. Such a method invocation on an object
o suspends untilo is realized. If the method has a return type of (a subclass of)Promise an
unbound variable of that type is returned; this variable will be equated to the result of the actual
method call made wheno is realized

Additional control constructs. jcc supports the following control constructs. Be-
low, let p range over promises, andS over jump-closed statements, that is, state-
ments which are such that any jumps from withinS (for instance, occurrences
of break , continue or return) are directed at locations withinS. Any vari-
ables occurring in S that are bound outsideS should also be declaredfinal .

when (p) {S} RunS oncep is realized.
next {S} RunS in the next instant.
always {S} RunS at every instant.
every (p) {S} RunS at every instantp is realized.
whenever (p) {S} RunS at the first instantp is realized.
unless (p) {S} RunS once it can be established thatp cannot be realized.
watching (p) {S} RunS, aborting it at the instant in whichp is realized.
...
effect {S} RunS at the end of the current time instant.

jcc.lang classes.User code may use the classes in Table 2, Table 3 as well as the class
Abort :

public class Abort extends Exception {
public Abort() { ...}
public Abort(final Exception z) {...}
public Abort(final String z) {...}}

Table 1.Syntactic Additions injcc

abstract public class Promise implements Backtrackable {
// Call with false to create a new unbound variable.
public Promise(boolean realized){...}
public final Promise /*filled This*/ dereference(){...}
public final void equate(/*filled This*/ Promise other){

...}
public boolean known() {...} // Is this realized?
public void ensureKnown() throws Abort {...}
public void runWhenRealized(/*realized*/ Now call)

throws Abort {...}
public void abortWhenRealized() throws Abort {...}
public boolean equals(/*filled This*/ Object o) {...}
public int hashCode() {...}
public void print(/* filled */ PrintStream o) {...}
//Subclasses define how to equate two realized promises.
abstract protected

void equateBothDerefedAndRealized(/*filled*/ Promise o)
throws Abort;}

public class Atom extends Promise {
public final static Atom NIL = new Atom(null);
/** Create an unbound Atom. */
public Atom() {...}
/** Create an atom that contains the object o. */
public Atom(Object o) {...}
/** Return the value associated with this atom. */
public Object getValue() {...}
protected void equateBothDerefedAndRealized ...}

public class Integer extends Atom {
public Integer() {...}
public Integer(int o) {...}
public Integer(/*filled*/ java.lang.Integer o) {...}
public int intValueDeref() {...}
public int intValue() {...}
// this= a + b. Suspend until any two are realized.
public void plus(/*filled*/ Integer a,

/*filled*/ Integer b){...}
... // Similarly for times.}

public class List extends Promise {
final public Promise head;
final public List /*This*/ rest;
public static final List NULL = new List(null, null);
/** Return a new promise for a list. */
public List() {...}
/** Return a new realized list. */
public List(Promise head, List rest) {...}
public boolean isNull() {...}
protected void equateBothDerefedAndRealized ...}

Table 2.Basic Promises injcc

behavior how aVat executes its associatedAgent , and the behavior of these built-in
Agent classes; this suffices to provide a description of how aVat executes anActor .

An Agent has three methods, all of which may be implemented by instantaneous
code (that is, JAVA code not containing any of thejcc control constructs of Table 1). It
is the responsibility of the vat (discussed in more detail below) to invoke these methods
in a manner consistent with interpreting the code as a specification of aTimed Default
cc agent whose behavior extends across time.

The vat invokes the methodnow() in order to execute the code associated with
the agent for the current time instant. Agents support logical concurrency. Through the
notion ofpromisesandwatchers(discussed further below), it is possible for pieces of
computation in a vat to be suspended until the associated promise isrealized. Therefore
a vat also has aschedulerresponsible for scheduling these pieces of computation.jcc
makes no guarantees of the scheduler, other than a watcher will eventually be executed
(within the current time instant) if the variable it is watching is realized.jcc does guar-
anteesingle-threadedexecution for watchers: agents may assume they have exclusive
access to all objects they reference (other than ports). No other thread may be modifying
or accessing these objects at the same time.

Execution of this code may involve backtracking in order to resolve defaults. During
this phase, the agent should not attempt to invoke any side-effects, since the code may be
backtracked over, and these side-effects will not be undone. Once the agent has quiesced
– note that an agent may have several concurrent sub-agents; an agent is considered to
have quiesced only if all subagents have quiesced – the vat will invokeeffect() on
it to give it an opportunity to execute any side-effects (e.g. writing to various streams,
sending messages to other vats).

The notion of effects is reflected injcc syntax through theeffect control con-
struct. When such a control construct is encountered during execution of code by the
vat, the construct is added to a list of effects (and not executed). Additions to this list are
undone on backtracking. Once backtracking is complete and computation has quiesced,
the list of effects is examined and executed.

Ports Vats communicate with the outside world through a collection ofports created
by the code running inside the vat. The port is said to be located at (or owned by) the
vat. A Port maintains an internal buffer for messages received from thetellersof the
port; these messages may be read through thepromisefor the port. Ateller to a port is
an object that possesses the ability to send a message to the port. Messages received on
a port are buffered if the receiving vat is active; otherwise the vat is activated with the
port and receives the message by performing aget operation on the port.

Vat Life-Cycle We now describe the life-cycle of a vat. The vat executes in an infinite
loop. At the top of the loop it suspends, waiting for a message on any one of its ports.
The receipt of such a message triggers an “instantaneous interaction” with the code
running in the vat. The message is equated with the promise associated with the port,
and thenow method associated with the current agent is executed. Once this terminates,
theeffect method is executed. Once this terminates, thenext method is executed to
determine the agent to be executed at the next time instant, and a counter tracking the
time instant (as an integer) is incremented. The vat now returns to the top of the loop.

If the store becomes inconsistent at any time instant, or the agent throws anAbort
exception, the vat terminates its execution abruptly, afterpoisoningall of its ports. The
poison ultimately propagates to all the tellers of these ports, causing local exceptions to
arise whenever an attempt is made to send a message through a poisoned teller. How-
ever, a poisoned vat does not automatically poison other vats; each vat has a separate
constraint store.

2.2 Promises

The classPromise plays the same role injcc as the classjava.lang.Object
plays in JAVA . The class is intended to be the base class subclassed by programmers to
define new data-types.

A promise is atyped logical variable. As far as users of promise are concerned,
a promise may be in one of four states:realized, bound, unrealized and watched, or
unrealized and unwatched.

Typically, instances are created at subtypes ofPromise . They may be created
either asvariables(using the nullary constructor), or as (top-level)constants(using
any other constructor). A (top-level) constant is an instance which is not a variable
but which has components (fields) that may be variable; such an object is also said
to berealized. A variableo is an instance that has no data associated with it. Rather,
its state changes as a result of invocations of the methodo.equate(p) , wherep is
another promise (o is then said to beboundto p). Invoking the methodo.equate(p)
corresponds to posting the constrainto=p to the store.

If an object is neither realized nor bound, it is said to beunrealized.
Note that it is possible to equate a constant to another. If the two constants are

different, one has a contradiction. This is handled by throwing aFailureError .
With this version ofjcc there is no support for recovering from this error. The vat is
said to bepoisoned, and a new vat must be started with a fresh agent. Poisoned vats
cease to process input. Attempts to send a message to the vat through a teller raise an
exception which may be caught by the teller code.

In effect, equatings represent equations imposed on the concerned variables, and the
above process describes a simpleunificationalgorithm (with suspension).

Suspension of ComputationWe now discuss two fundamental properties of promises.
First, computations may suspend on a promise until the promise is realized. This is

accomplished by a new control construct injcc. If S is a statement andp is a promise,
thenjcc admits the statementwhen (p) do {S} .

Such a control construct is defined as follows. Ifp is realized,S is executed imme-
diately. Otherwise,S is suspendedon p; p is now said to beunrealized and watched,
andS is said to be a watcher forp. (A promise may have multiple watchers.) A subse-
quent invocation ofp.equate(q) will causeS to be scheduled for execution ifq is
realized. Ifq is unrealized, then its watchers, if any, are merged with the watchers (if
any) forp, and one ofp andq is bound to the other. (Thus they have the same set of
watchers.) If a promise is not realized, bound or watched, it is said to beunrealized and
unwatched. (Such a promise corresponds to an unconstrained logical variable.)

Thus, as a result ofequate method invocations (called equatings), a promise may
be bound to another promise, which may be bound to another one, and so on. The
dereferenced valueof a promise is the promise that lies at the end of this binding chain.
This promise may be either realized or unrealized (it may not be bound).

Automatic Dereferencing.The second important property of promises is that method
invocation respects promise equatings. Methods invoked on promisep are forwarded
down the chain of equatings: first the promisep is dereferenced to the promiseq at the
end of the chain, and then the method is invoked onq. Thus, any references tothis in
the code for the method onq refer toq and notp. By uniformly dereferencing promises
before invoking methods, we maintain the invariant that the holder of a promise cannot
distinguish between the promise and the value realizing the promise. This is central to
the idea that promises are first-class values injcc: a method may accept a promise as
an argument, store it in a data-structure, read a value from it, place in it a value that has
been separately computed.

Therealized Keyword on Methodsjcc adds therealized keyword for methods
of subclasses ofPromise . The method must bevoid or must return aPromise .
An invocation of such a method on an object returns immediately ifo is unrealized,
suspending the body of the method ono. In case the method returns aPromise a new
variable of the type ofPromise is returned. Ifo is realized, then the body is executed
immediately and the value returned.

2.3 Pre-specified agents

Table 3 enumerates the constructors for the prespecified agents. These classes objectify
the Timed Default cc combinators: their constructors take arbitrary agents as argu-
ments (and return agents). The code for these classes contains the core default and
time-dependent implementation ofjcc.

3 Programming in jcc

All the idioms for programming inTimed cc [15] are available injcc. The publicly
available download has severalTimed cc programs.

One may also program injcc just as one would in JAVA – using standard JAVA

idioms (classes, inheritance, state, assignment, multiple methods) for system modelling.
However, for public methods one should usePromises as arguments and as return
values. This allows the computation to be structured using data-flow synchronization
rather than control-flow synchronization.

Fundamentally, promises are used to modellogical concurrency. Often it is desired
to perform a certain computation on an objecto (e.g. invoke a certain operation), but
the object is not yet in a state in which this operation can be performed successfully.
Therefore it is desired to wait until such time as some other source of change (e.g. an-
other stimulus from the outside world) causes the object to arrive in a state in which the
previous operation can be completed successfully. Promises allow such computations to

public class Always extends BasicAgent {
// Run a at every time instant.
public Always(/*filled*/ Agent a){...}}

public class ElseNext extends BasicAgent {
// Run a at the next instant unless p is realized now.
public ElseNext(/*filled*/ Promise p, /*filled*/ Agent a){
...}}

public class Every extends BasicAgent {
// Run a at every instant in which p is realized.
public Every(/*filled*/ Promise p, /*filled*/ Agent a){
...}}

public class Next extends BasicAgent {
// Run a at the next instant.
public Next(/*filled*/ Agent a){...}}

public class Par extends BasicAgent {
// Run each of the argument agents in parallel.
public Par(/*filled*/ Agent[] a){...}
// and other similar constructors, for i=2...10.}

public class Send extends BasicAgent {
// Send this promise on this teller.
public Send(/*filled*/ Teller t, /*filled*/ Promise p){
...}}

public class Tell extends BasicAgent {
// Equate the two promises now.
public Tell(/*filled*/ Promise p, /*filled*/ Promise q){
...}}

public class Unless extends BasicAgent {
// Run a unless p holds in the current time instant.
// May backtrack.
public Unless(/*filled*/ Promise p, /*filled*/ Agent a){
...}}

public class When extends BasicAgent {
// Run a if p is realized now.
public When(/*filled*/ Promise p, /*filled*/ Agent a){
...}
// Run a if p is equated to q now.
public When(/*filled*/ Promise p, /*filled*/ Promise q,

/*filled*/ Agent a){...}}
public class WhenEver extends BasicAgent {

// Run a at the first instant in which p is realized.
public WhenEver(/*filled*/ Promise p, /*filled*/ Agent a){
...}}

public class Watching extends BasicAgent {
// Run a; abort at the first instant when p is realized
public Watching(/*filled*/ Agent a, /*filled*/ Promise p){
...}}

Table 3.Public constructors for pre-specified agents

be expressed directly. The first method may return immediately with a promise for the
result. The invoking context may continue execution with the returned promise, block-
ing (usingwhen or whenever as appropriate) only as and when it needs the returned
value. In the meantime,o has recorded a computation to be performed in the future to
complete this request. Thus promises allow the programmer to structure the computa-
tion in such a way that small pieces of code may remain suspended on certain events
happening (certain promises becoming realized) and may produce certain other events
(cause other promises to become realized). Indeed, the entire computation can be struc-
tured as lots of such small pieces – tens of thousands of such pieces. The correctness of
each of these pieces is usually much simpler to check.

The semantics of ports and promises (as opposed to shared mutable objects) make
them much more suitable for distributed concurrency. Here one may think of a vat
running on one machine communicating with a vat running on another, through ports.
This allows the two vats to continue normal operations, with a place-holder for the
result, without having to suspend waiting for a response from the other.

A Bank Account Example.Consider for example a bank account. One may wish it to be
programmed in such a way that it accepts method invocations to withdraw and deposit
money. In both cases it should return confirmations. However, if there is not enough
money to cover a withdrawal, then the withdrawal should be repeated after each of the
nextn deposits, and if it is still not possible to withdraw then a negative confirmation
should be sent. The typical way to do this in JAVA is to synchronize on some lock object
and implement the conditional wait by usingwait/notifyAlls . Instead, we may
usePromises as the arguments and return values. The caller of the deposit/withdraw
method may proceed, leaving behind code that waits for the result to be realized. The
withdraw method will realize its result at some future indeterminate point in time only
when it has succeeded, or failed to do so aftern tries12.

public class BankAccount {
int balance = 0;
Boolean balanceUpdated = new Boolean();
List pendingW = new ArrayList();
public BankAccount() {

every (balanceUpdated) {
effect {

if (! pendingW.isEmpty()) {
for (ListIterator e = pendingW.listIterator();

e.hasNext();) {
if (((Withdrawal) e.next()).tryWithdrawal())
e.remove();

}}}}}
private class Withdrawal(int amount, Confirmation c) {

12 In this program,Boolean andList are from thejcc.lang package; for brevity we have
omitted theimport declarations.jcc supportsPizza style [11] implicit constructor declara-
tions via syntax such asclass Shifter(int i) extends Such syntax is as-
sumed to defineint i as a private field in the classShifter , and also define a constructor
Shifter(int i) which initializes the field.

public int count = 10;
public boolean tryWithdrawal() {

if (amount <= balance) {
balance -= amount;
confirmation.equate(new Success(genId()));
return true;

}
if (count <= 0) {

confirmation.equate(new Failure(genId()));
return true;

}
count--;
return false;

}}
int id;
private int genId() {

return id++;
}
public Confirmation deposit(Integer amount) {

Confirmation result = new Confirmation();
when (amount) {

balance +=amount.intValue();
balanceUpdated.equate(true);
confirm.equate(new Success(genId()));

}
return result;

}
public Confirmation withdraw (final Integer amount) {

Confirmation result = new Confirmation();
when (amount) {

int value = amount.intValue();
if (balance <= value) {

balance -= value;
result.equate(new Success(genId()));

} else {
pendingW.add(

new Withdrawal(value, result));
}

}
return result;

}}

Thus one can think ofjcc as a general purpose language, like JAVA , differing from
it only in its treatment of concurrency. Of course for modelling physical systems further
restrictions may be placed, e.g. disallowing mutable state.

Conclusion We have presented the design of the languagejcc which extends JAVA by
replacing its concurrency model, based on ideas from synchronous reactive program-
ming. A number of new time-based control constructs are added. The basic operations
of Timed Default cc are supported.

References

1. G. Berry, S. Ramesh, and R.K. Shyamsundar. Communicating reactive processes. InPro-
ceedings of the 20th ACM Symposium on Principles of Programming Languages (POPL’93),
Charleston, South Carolina. ACM Press, New York (NY), USA, 1993.

2. Gerard Berry. The Esterel v5 Language Primer Version 5.21 Release 2.0. Technical report,
INRIA, April 1999.

3. Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future safe
for the past: Adding Genericity to the Java Programing Language. InOOPSLA, 1998.

4. David Bacon et al. “The double checked locking is broken” declaration.
http://www.cs.umd.edu/ pugh/java/memoryModel/DoubleCheckedLocking.html, 2000.

5. Mark S. Miller et al. E: Open source distributed capabilities, 1998. http://www.erights.org.
6. C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata. Extended static

checking for Java, 2002.
7. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Specification.

Addison Wesley, 2000.
8. Vineet Gupta, Radha Jagadeesan, and Vijay Saraswat. Computing with continuous change.

Science of Computer Programming, 30(1–2):3–49, January 1998.
9. Maurice Herlihy. Wait-free synchronization.ACM Transactions on Programming Languages

and Systems, 13(1):124–149, January 1991.
10. Jeremy Manson and William Pugh. A new approach to the semantics of Multithreaded Java.

http://www.cs.umd.edu/ pugh/java/memoryModel/, January 2003.
11. M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. InProceedings

of the 24th ACM Symposium on Principles of Programming Languages (POPL’97), Paris,
France, pages 146–159. ACM Press, New York (NY), USA, 1997.

12. Gordon Plotkin, Colin Stirling, and Mads Tote, editors.Proof, Language and Interaction:
Essays in Honour of Robin Milner, chapter The Foundations of Esterel, pages 425–454.
Foundations of Computing. MIT Press, 2000.

13. William Pugh. The JAVA memory model is fatally flawed.Concurrency:Practice and Expe-
rience, 12(1):1–11, 2000.

14. Vijay Saraswat.Concurrent Constraint Programming. Doctoral Dissertation Award and
Logic Programming. MIT Press, 1993.

15. Vijay Saraswat, Radha Jagadeesan, and Vineet Gupta. Programming in timed concurrent
constraint languages. In B. Mayoh, E. Tyugu, and J. Penjaam, editors,Constraint Program-
ming: Proceedings 1993 NATO ASI Parnu, Estonia, pages 361–410, Berlin, Germany / Hei-
delberg, Germany / London, UK / etc., 1994. Springer Verlag.

16. Vijay Saraswat, Radha Jagadeesan, and Vineet Gupta. Timed default concurrent constraint
programming.Journal of Symbolic Computation, 22(5–6):475–520, November–December
1996. Extended abstract appeared in theProceedings of the 22nd ACM Symposium on Prin-
ciples of Programming Languages, San Francisco, January 1995.

17. Vijay Saraswat, Kenneth Kahn, and Jacob Levy.Janus: A step towards distributed constraint
programming. InNorth American Logic Programming Conference, October 1990.

18. Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,Computer Sci-
ence Today: Recent Trends and Developments, volume 1000 ofLecture Notes in Computer
Science, pages 324–343. Springer-Verlag, Berlin, 1995.

19. Peter Soper. The Application Isolation API, 2001. JSR 121,
http://www.jcp.org/en/jsr/detail?id=121.

