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Abstract
In this paper, we propose to extend transactional memory with
transaction communicators, special objects through which con-
current transactions can communicate: changes by one transaction
to a communicator can be seen by concurrent transactions before
the first transaction commits. Although isolation of transactions is
compromised by such communication, we constrain the effects of
this compromise by tracking dependencies among transactions, and
preventing any transaction from committing unless every transac-
tion whose changes it saw also commits. In particular, mutually
dependent transactions must commit or abort together, and transac-
tions that do not communicate remain isolated. To help program-
mers synchronize accesses to communicators, we also provide spe-
cial communicator-isolating transactions, which ensure isolation
even for accesses to communicators. We propose language features
to help programmers express the communicator constructs.

We implemented a novel communicators-enabled STM runtime
in the Maxine VM. Our preliminary evaluation demonstrates that
communicators can be used in diverse settings to improve the per-
formance of transactional programs, and to empower programmers
with the ability to safely express within transactions important pro-
gramming idioms that fundamentally require compromise of trans-
action isolation (e.g., CSP-style synchronous communication).

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Design, Languages, Performance

Keywords Transactional Memory, Communication

1. Introduction
Multicore systems are making shared-memory multiprocessors
ubiquitous, requiring concurrent programs to exploit their poten-
tial. But today’s software engineers are ill equipped to write correct
concurrent programs: the collection of tools and methodologies
for cost-effective development of reliable concurrent programs is
sparse. One fundamental problem is maintenance of the shared mu-
table state, used by threads to communicate in a shared-memory
program. To ensure the integrity of this communication, various
mechanisms have been devised for threads to synchronize their
access to this shared state.
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Transactional memory (TM) is a promising technology for facil-
itating concurrent programming by enabling shared-memory mul-
tiprocessors to be programmed in the transactional style, which has
been so successful in database systems: A thread may execute a
block of code as a transaction, which may either commit, in which
case its effects become visible to other threads, or abort, in which
case its effects are discarded. In a conventional database system, the
only effects of consequence are those on the database. TM extends
this protection to memory accesses.

A TM system ensures that transactions are isolated; that is, each
transaction appears to execute without its operations being inter-
leaved with operations of other threads. Furthermore, committed
transactions appear to execute one at a time in some order, which
we call the transaction order. We say the transaction order explains
the execution.

Isolation can greatly simplify concurrent programming because
it supports modular reasoning: a programmer can consider each
transaction separately, rather than having to consider all the possi-
ble interleavings of its operations with the operations of other trans-
actions. However, isolation also limits the applicability of trans-
actions [16] because isolated transactions are incompatible with
barriers, condition variables, and other common synchronization
mechanisms and programming idioms that require communication
among transactions while they are active (i.e., not yet committed or
aborted). We believe that for transactional programming to reach its
full potential, it must work with such techniques for programming
concurrent systems.

Consider, for example, a system that processes client jobs that
should appear to be handled atomically. Processing some of these
jobs may involve accessing a database, and these accesses should
themselves appear atomic. The system may be organized as illus-
trated in Figure 1, with the threads handling client jobs separate
from those with direct access to the database, so that a thread han-
dling a job that requires access to the database must place a request
to do so into a queue; the request will be handled by a database
thread. In such a system, a thread handling a job cannot simply ex-
ecute the job in a single transaction: if the job requires access to the
database, the thread handling the job must communicate with the
database thread that handles its request. Nor can the thread simply
break the job into two transactions, one to handle the part before
the request and the other to handle the part after getting the re-
sult: if the transaction for the second part aborts, then the effects
of the first transaction, and of the database thread that satisfied the
request, should be discarded as well. c

In this paper, we propose transaction communicators, special
objects through which concurrent transactions can communicate:
changes to a communicator by one transaction can be seen by other
transactions before the first transaction commits. Such communi-
cation compromises isolation because a transaction may see the ef-
fects of other transactions that have not committed (and indeed,
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Figure 1. An example scenario where transactions may need to
communicate with each other.

might abort rather than commit). We limit the impact of this com-
promise by preventing a transaction from committing unless every
transaction whose effects it has seen also commits. Thus, two trans-
actions that each see effects of the other transaction must either
both commit or both abort. If they commit, they occupy the same
position in the transaction order. Transactions that do not commu-
nicate (i.e., do not access any communicator) remain isolated.

Transaction communicators reintroduce a problem that transac-
tions are intended to eliminate: the possibility of unsynchronized
conflicting access to shared state. Although this problem is greatly
reduced within transactions (such conflicts can occur only on com-
municators, which should be relatively rare and must be explicitly
declared), programmers must synchronize access to communica-
tors. To help programmers maintain a transactional style of pro-
gramming, we provide a special communicator-isolating transac-
tion that ensures isolation even for accesses to communicators.

We implemented a library-based prototype communicators-
enabled STM runtime in the Maxine VM [21]. Although this proto-
type implementation imposes some restrictions on the use of com-
municators and does not include compiler support for language-
level constructs, it embodies all the core ideas of communicators
and also allows us to perform some preliminary experiments.

In summary, this paper makes the following contributions:

• We present the transaction communicator, a novel abstraction
that permits restricted compromise of isolation of transactions
to enable useful collaboration among them.

• We illustrate how to use communicators with several examples
presented in a simple extension of Java with constructs to ex-
press atomic blocks and communicators.

• We describe a novel STM runtime infrastructure, in the Maxine
VM, that supports communicators.

• We present preliminary evaluation of communicators to demon-
strate their use in enabling interesting transaction communica-
tion idioms and in improving performance of TM applications.

2. Transaction Communicators
As described above, some useful synchronization patterns may re-
quire communication among concurrent transactions. In this paper,
we propose the transaction communicator, a special object that en-
ables desirable communication but limits the impact of the resulting
compromise of isolation: Updates to a communicator by a trans-
action are visible to other transactions accessing the communica-
tor, even before the updating transaction commits, but a transaction
that sees the effects of another transaction must not commit unless
that other transaction commits, nor precede the other transaction
in the transaction order. Thus, communicators induce dependen-
cies among concurrent transactions. In contrast to ordinary transac-
tional memory, mutually dependent transactions induced by cyclic
dependencies on communicators may commit, provided that they
all commit. In this case, they all occupy the same position in the
transaction order.

To guarantee this semantics, before a transaction T can commit,
it must check whether all the transactions it depends on (i.e., those
transactions whose effects it has observed) have already committed.
If so, then T can also commit. Otherwise, T must wait until all
the uncommitted transactions it depends on are ready to commit
(if any of them abort, then T must also abort). Because there may
be a cycle of dependencies in the set of transactions attempting
to commit, the transactions cannot simply commit one at a time.
Rather, the system must detect such cycles and commit all the
transactions in any such cycle together.

In every other way, the semantics of transactions are unchanged.
In particular, a transaction that sees the effects of another transac-
tion on a non-communicator object must be ordered strictly after
the other transaction. Thus, mutually dependent transactions that
make conflicting accesses on non-communicator objects cannot be
committed. Also, no committed transaction may see the effects of
an aborted transaction.1

More precisely, instead of a total order of the committed trans-
actions2 to explain the execution, we require only a total order
of “super-transactions”, each consisting of one or more com-
mitted transactions that have no conflicting accesses on non-
communicator objects. Every committed transaction must be in
exactly one super-transaction. The super-transactions must appear
to execute one at a time in the “super-transaction order”, but the
operations of transactions within the same super-transaction may
appear to be interleaved in any way consistent with the sequential
semantics of each transaction.

Note that based on only non-communicator accesses, transac-
tions within a super-transaction commute. Thus, any total order of
the transactions consistent with the super-transaction order explains
the non-communicator accesses of the execution. That is, looking
only at the operations on non-communicator objects, the transac-
tions appear to be isolated. (Of course, doing the transactions in
that order may have yielded different results for communicator op-
erations, which may in turn have resulted in different operations on
non-communicator objects being invoked.)

3. Communicator-Isolating Transactions
Because operations on communicators within transactions are vis-
ible to other transactions, transactions must synchronize access to
communicators to use them effectively. Although it is possible to

1 We do not specify the guarantees for aborted transactions, as there are
several possibilities (e.g., [6, 9, 14]), and the choice is orthogonal to the
issues addressed in this paper.
2 We do not consider nested transactions for now because when transactions
execute sequential code, as we implicitly assume in this paper, committed
nested transactions can simply be flattened into the enclosing transaction.
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use locks to do so, we prefer to maintain and encourage the transac-
tional style by providing a new kind of transaction that also isolates
accesses to communicators. We call these communicator-isolating
transactions (CITs). The semantics is straightforward: All opera-
tions within a CIT, including accesses to communicators, appear to
execute together without interleaving with operations of any other
thread. Thus, a CIT can be used within an ordinary transaction to
synchronize access to communicators, making it easy, as we illus-
trate in Section 4, to construct communicators of various data types
using simple read/write communicators.

CITs isolate communicator accesses and ordinary transactions
do not, so we cannot simply flatten a CIT nested within an ordinary
transaction into its parent: when the nested CIT commits, its ef-
fects on communicators—but not its effects on non-communicator
objects—must be made visible. (A CIT within a CIT, and an or-
dinary transaction within an ordinary transaction, can be flattened
because no effects are made visible when the nested transaction
commits.3)

4. Illustrations
In this section, we illustrate the utility of transaction communica-
tors (and CITs) with three examples. The first two examples show
how use read-write communicators (i.e., communicators that sup-
port only read and write operations) to implement exchanger and
queue communicators. The last example shows how a communi-
cator can be used to improve scalability by turning transactional
conflicts into dependencies.

We present pseudocode for these examples in an extension to
the Java programming language with support for atomic blocks
and read-write communicators in the form of specially designated
fields.4 Specifically, to an extension of Java with support for atomic
blocks [10], we add two keywords: txcomm designates a field that
ordinary transactions can use to communicate (i.e., the field is a
read-write communicator), and txcommatomic designates a block
of code that should be executed in a CIT. Note that a txcomm mod-
ifier on a reference declaration does not imply that the referenced
object pointed to is a communicator. Transactions cannot commu-
nicate through that object unless it has one or more txcomm fields
of its own.

4.1 Exchangers

Exchanger is a class of the Java concurrency library package whose
instances serve as rendezvous points for threads to meet and ex-
change data objects. An exchange operation invoked within a trans-
action cannot complete successfully without violating isolation. In
this section, we describe a simple communicator-based version of
Exchanger, shown in Figure 2, that can be used by transactions.

The Exchanger declares two txcomm buffers (buf1 and buf2).
A transaction that invokes the exchange method attempts to popu-
late one of the two buffers and return the contents of the other.

The exchange method contains two txcommatomic blocks.
The first is executed by all transactions to check and populate an
available buffer (i.e., one that contains the value null). If neither
buffer is available, the method simply returns null. The second
txcommatomic block is executed only by the transaction that pop-
ulated buf1. This block gets the second buffer’s value and resets
the values of both buffers. In each case, we use a txcommatomic
block to provide atomic access to the two buffers.

3 Flattening is not always possible in systems that support user-visible
aborts, but this issue is orthogonal to those discussed in this paper.
4 We advocate a language extension rather than a library because of the
limitations imposed by library-based STM systems in delivering the pro-
grammability promise of TM [5].

class Exchanger {
txcomm Object buf1;
txcomm Object buf2;
public exchange(Object myBuf) {

Object otherBuf = null;
txcommatomic {

if (buf1 == null) {
// populate the first buffer slot
buf1 = myBuf;

} else {
if (buf2 == null) {

// second buffer slot available
buf2 = myBuf;
// return the buffer in first slot
return buf1;

} else {
// both slots occupied, return null
return null;

}
}

}
// spin-wait for the second buffer to be populated
while (true) {

txcommatomic {
if (buf2 != null) {

// second buffer finally populated
otherBuf = buf2;
buf1 = null;
buf2 = null;
return otherBuf;

}
}

}
}

}

Figure 2. Communicator-based exchanger

As is clear from the pseudocode, enforcing the dependencies is
completely transparent to the programmer. Transactions that con-
duct an exchange on an instance of Exchanger become mutually
dependent. A transaction T that observes that it cannot partici-
pate in an exchange (because both buffers of the exchanger are
already populated), also depends on the transactions that last pop-
ulated those buffers (i.e., the exchanging transactions), so if either
of those two transactions aborts, then all three (including T ) must
abort. However, the exchanging transactions do not depend on T
since neither sees any update by T . Because of this asymmetric
dependency, the exchanging transactions need not abort if T does
(perhaps because it could not participate in an exchange).

4.2 Producer-consumer queues

The producer-consumer queue is a widely used data structure that
permits buffered communication between concurrent threads. We
now present a communicator-based implementation (Figure 3) that
can be used by transactions to communicate, as, for example, in the
job-processing application described in the introduction.

The data structure consists of a simple linked list with head
and tail references. A producer enqueues a new item by adding a
node to the tail; a consumer dequeues an item by taking it from the
node pointed to by the head. Threads/processes can concurrently
access the producer-consumer queue. One particularly interesting
part of the producer-consumer interaction appears in the boundary
cases where the queue is either empty, or full (in case of bounded
queues). When a consumer requests an item from the queue, if
the queue is empty, some implementations force the consumer to
wait for some producer to enqueue an item in the queue. Similarly,
when a producer attempts to enqueue an item in a full queue, the
producer may be forced to wait for a consumer to dequeue an item
from the queue. In both cases, coordination between the producer
and the consumer becomes crucial to avoid unnecessary unbounded
waiting for both.
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class ProducerConsumerQueue {
txcomm Node head = null;
txcomm Node tail = null;
public void produce(Object data) {

Node myNode = new Node(data);
txcommatomic {

if (tail == null) {
head = tail = myNode;

} else {
tail.next = myNode;
tail = myNode;

}
}

}
public Object consume() {

Node node;
while (true) {

txcommatomic {
if (head != null) {

// queue is not empty, do the dequeue
node = head;
if (head.next == null) {

// dequeuing last node
head = tail = null

} else {
head = head.next;

}
return node.data;

}
}

}
}

}
class Node {

txcomm Object data;
txcomm Node next;
public Node(Object data) {

this.data = data;
}

}

Figure 3. Communicator-based producer-consumer queue

Figure 3 illustrates a communicator-based unbounded producer-
consumer queue. The head and tail fields of the queue, as well
as the data and next fields of the node class are declared with
the txcomm modifier. The producer uses a single txcommatomic
block to enqueue a node in the queue. The consumer spin-waits
on an empty queue, and uses a txcommatomic block to dequeue a
node from the queue if the queue is not empty.

Each txcommatomic block is designed to avoid establishing
unnecessary dependencies between transactions. For example, the
producer checks the value of the tail field to determine if the queue
is empty, whereas the consumer checks the value of the head field
to do so. If the producer had checked head to see if the queue is
empty, the check would have created a dependency on the last con-
sumer (which modified head). We observe that, while designing
a communicator-based data structure, the programmer should be
careful to avoid extraneous dependencies between transactions due
to access of txcomm fields. Tools to improve on this programma-
bility aspect of communicators are a subject of future work.

4.3 Maintaining the size of a concurrent collection

Many collection implementations maintain a size field containing
the number of items currently in the collection. Because this field is
modified by each operation that inserts or deletes an item in the col-
lection, it can be a contention bottleneck for the collection, severely
restricting the scalability of transactional applications that use it.
Communicators can be used to transform “low-level” memory con-
flicts on the size field into dependencies, improving scalability by
reducing the number of transactions that must abort or wait.

Figure 4 presents an implementation of a concurrent red black
tree (much of the pseudocode elided for clarity) as a canonical ex-

class RedBlackTree {
// fields
...
// the size of the collection
txcomm int size;
// insert method
boolean insert(Item item) {

atomic {
if (!lookup(item)) {

// item not present, insert logic here
...
// now increment the size of the collection
txcommatomic {

size++;
}
return true;

}
return false;

}
}
// delete method
boolean delete(Item item) {

atomic {
if (lookup(item)) {

// item present, delete logic here
...

// now decrement the size of the collection
txcommatomic {

size--;
}
return true;

}
return false;

}
}

}

Figure 4. Concurrent red-black tree with communicator size field

ample of a concurrent collection with a size field. The size field is
implemented as a communicator (i.e., declared as a txcomm field),
and is modified only inside txcommatomic blocks. This imple-
mentation essentially converts potential transactional conflicts on
accesses to the size field into transactional dependencies, thereby
improving scalability. We support our claim with some perfor-
mance analysis in Section 7.

5. Discussion
5.1 Accessibility of communicators

As described above, communicators may be accessed directly
within ordinary transactions. Although we can imagine a system
in which they may even be accessed nontransactionally, allowing
such access raises many well-known issues related to simultane-
ous transactional and nontransactional access [4]. We envision that
communicators will be used sparingly to enable the kinds of com-
munication patterns among transactions illustrated in Section 4,
and so it is better to avoid those difficult issues by simply forbid-
ding nontransactional access of communicators.

One might even argue that communicators should only be ac-
cessed within CITs, to avoid the problem of unsynchronized ac-
cess to them. Indeed, for expedience, our prototype implementation
(Section 6) only supports such access. However, allowing direct
communicator access within ordinary transactions, particularly for
read-only operations, eliminates some syntactic clutter. Of course,
multiple such “naked” accesses to communicators are not guaran-
teed isolation—CITs are necessary to enforce such isolation.

5.2 Tracking dependencies

The exact dependencies induced by operations on communicators
are subtle. For example, a transaction that reads a value depends on
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Figure 5. Execution illustrating the need for proper validation of
communicators accessed by communicating transactions: x is a
communicator; y and z are not. Transaction A must not commit:
if it did, it must be ordered before or together with B (it sees the
value of x prior to B’s write), and after C (it sees the value C wrote
in z), but B must be ordered before C (C sees the value B wrote).

the transaction that wrote that value, but writing to a communicator
does not make the writing transaction depend on any other transac-
tion, because the writer does not “see” any effects. Thus, we need
only track true read-after-write dependencies, not anti- (write-after-
read) and output (write-after-write) dependencies. We do not even
need to track all read-after-write dependencies: a read sees only the
effects of the most recent write, not those that precede it. And if the
value it reads has been written more than once, then the transaction
reading the value can commit as long as any of the transactions that
wrote the value also commit. Determining a minimal set of depen-
dencies is difficult (if not impossible).

Fortunately, it is not necessary to determine a minimal set of
dependencies: as in dependence-aware STMs [3, 18], maintaining
more dependencies than necessary may cause more transactions to
abort, but preserves the semantics of committed transactions. The
cost of more precise tracking of dependencies should be weighed
against the benefit of aborting fewer transactions. We simply need
to ensure that any extra dependencies do not interfere with progress
guarantees by forming a cycle of dependent transactions that cannot
be committed (for example, by having transactions that conflict on
non-communicator objects).

5.3 Respecting the super-transaction order

Although a transaction may see changes to a communicator by
other transactions in the same super-transaction, it must not see any
changes by transactions in different super-transactions. Consider,
for example, the execution depicted in Figure 5. When transaction
A attempts to commit, the committed value of x is neither the value
that A read nor a value written by a transaction in the same super-
transaction as A (C must be ordered after B and before A and
they cannot be in the same super-transaction as either because it
accesses common non-communicator objects with each). Thus, A
must abort.

We can guarantee this semantics by checking, when a transac-
tion validates, that no other transaction has committed a change
to a communicator it has read (i.e., the same check made for
non-communicator objects). Alternatively, we could enforce anti-
dependencies: a transaction cannot commit unless and until every
transaction it has an anti-dependency on also commits.

5.4 Transaction conflicts

Concurrent accesses of communicators by transactions create de-
pendencies between those transactions. In contrast, concurrent ac-
cesses of ordinary shared objects, where at least one access is a
write, lead to conflicts between transactions, which in turn lead
to transaction stalls and aborts. It is important to address the in-

teraction of such transaction conflicts with communicator-enabled
“transaction cooperation”. Specifically, what happens when trans-
actions that access communicators conflict?

A naive approach to handling conflicts is to simply stall or abort
one of the conflicting transactions, as is often done in ordinary TM
systems without communicators. However, when transactions may
communicate, this approach may lead to deterministic livelocks.
For example, one transaction may wait for an item to be produced
by another (using a communicator-based queue, for example), and
the producer may require an acknowledgment from the consumer
(using another communicator). Thus, the producer and consumer
are necessarily mutually dependent. If they also conflict on some
non-communicator object, then they can never both commit, and
so they will inevitably livelock (or deadlock, if the system stalls
them both indefinitely). Therefore, we need a more sophisticated
approach to handle such conflicts.

We believe that such deterministic conflicts between commu-
nicating transactions are a result of programming error, much as
if a lock-based program allowed a deadlock. A pro-active solution
would be to let the system provide the programmer with appropri-
ate feedback to help diagnose and fix the error. When a transaction
detects a conflict with a transaction that it depends on,5 the system
could throw a special CooperatorConflictException. This solution
returns the responsibility of handling such “dependency-violating”
conflicts to the programmer, where, we believe, it belongs. In most
cases, we think the programmer will be able to identify the error
and find a workaround, or else identify that the conflict as a nonde-
terministic event, which will eventually go away if the transaction
is aborted and retried.

5.5 Programmability issues

Communicators allow cooperation between concurrent transactions
by enabling programmers to build specialized transaction commu-
nication channels. However, communication channels are typically
a means, not the end, of passing data between transactions; the
communicating transactions are actually interested in the data that
is communicated.

For instance, consider a typical producer-consumer interaction:
The producer usually creates the data (which may include writing
to the data) that it passes to the consumer. The consumer then reads
(and possibly writes) the data it received from the consumer. If
the data were an ordinary shared object, this programming pattern
would lead to deterministic conflicts between the producer and
the consumer transactions. To enable such interactions between
concurrent transactions, communicated data objects must also be
communicators. We expect that this will not be a problem in most
cases: the communicated data objects will likely be immutable, in
which case there is no danger of conflicts, or small objects with
scalar fields.

When complex structures are communicated between transac-
tions, the programmer must ensure that access of these structures
will not lead to deterministic conflicts between the communicat-
ing transactions. Although this may be doable in select cases, in
general, such sharing patterns would be too difficult for the pro-
grammer get right (avoid deterministic conflicts). Thus, we advo-
cate that programmers use communicators to communicate just
simple or immutable data objects. We believe that this simple
guideline—enforced either by programming discipline (our current
approach), or by the compiler and runtime system (a subject of fu-
ture research)—will go a long way in making communicators an
acceptable TM programming abstraction.

5 We are assuming abort-on-exception semantics for our TM system.
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6. Implementation
We now describe the STM we developed to evaluate communi-
cators. We developed this STM in the Maxine VM [21], a freely
available, open-source VM written almost exclusively in Java. The
base STM follows earlier STM implementations for managed-code
environments [1, 11]: It is object-based: transaction conflicts are
detected at the granularity of Java objects. However, speculative
writes are logged at the level of primitive types (e.g., references,
ints, floats, etc.) for each field of an object. Transactions write in
place, locking any object that they write. A transaction maintains
an undo log with the previous values of speculatively overwritten
values to be restored in case the transaction aborts. Reads are “in-
visible”: a transaction maintains a read set to ensure consistency,
but it does not access other transactions’ read sets, and cannot de-
termine what locations they have read. For simplicity, we only sup-
port flat nesting of transactions, except for communicator-isolating
transactions nested within ordinary transactions, which must not be
flattened to preserve semantics, as discussed in Section 3.

6.1 The STM runtime

Our STM is library-based: we have not modified the compiler to
support the language-level constructs discussed in Section 2. Thus,
we must manually add the instrumentation that a compiler would
do automatically. For example, we must use beginTransaction
and commitTransaction methods to delimit atomic blocks, and
must explicitly “open” transactional objects before they can be
accessed. Although this results in messier and more error-prone
coding [5], it is simpler to implement and more flexible for the kind
of preliminary experimentation we want to do. In particular, we can
support multiple variants and extensions simultaneously without
having to modify the compiler.

In addition to per-object metadata, we maintain a transaction
descriptor that represents a transaction. The transaction descriptor
contains fields that record its status (i.e., whether it has commit-
ted or aborted or is still active), its read set, its write set, and its
undo log. (The write set is used to detect conflicts at object gran-
ularity; the undo log tracks speculative writes at fied granularity.)
To support communicators, we introduce two new status values,
Protected and Validated, which are used in the commit protocol
described in Section 6.4. We also maintain separate read sets and
undo logs for the communicators the transaction has accessed, and
a list of transactions it depends on (depList).

To implement txcomm fields, we provide a communicator class
for each primitive type (e.g., TxCommObject for reference types,
TxCommInt for integer types, etc.), which the programmer uses to
declare communicators. For example, the declaration

txcomm int count;
is written in our communicator-enabled STM as:

TxCommInt count;

6.2 Communicator-isolating transactions (CITs)

We implement a communicator-isolating transaction (CIT) as a
closed nested transaction within an ordinary transaction. In addition
to performing the usual locking/logging/validation/etc. operations
on ordinary shared object accesses, a CIT performs similar opera-
tions on communicator accesses (using special get and set methods
of the communicators) to guarantee their isolation from concurrent
CITs (recall that in our implementation, communicators can be ac-
cessed only from CITs). The separate read and write sets and undo
log for communicator accesses are used in this context. In partic-
ular, a CIT acquires exclusive ownership of all the communica-
tors it writes, and shares (with concurrent CITs) read-only accesses
to communicators by making these reads “invisible” to concurrent
writer CITs, and validating the reads (using the communicator read
set) when the CIT attempts to commit. This behavior is like that of

closed nested transactions, with a key difference: when a CIT com-
mits, it releases the exclusive ownership of all the communicators
it modified (note that we implement flat nesting semantics for CITs
nested within other CITs; thus the inner CIT’s commit essentially
becomes a nop). This enables subsequent communicator accesses,
potentially done by concurrent transactions, to “see” the updates of
the CIT. A committing CIT merges its communicator undo log en-
tries in the enclosing (parent) transaction to enable rollback in case
the transaction aborts.

6.3 Tracking depedencies

To track dependencies, each communicator has a lastWriter field,
which points to the transaction that most recently wrote it. A trans-
action that accesses a communicator adds that communicator’s last
writer to its depList. Thus, our implementation tracks output de-
pendencies as well as true dependencies.

To avoid the potential bad behavior exhibited in Figure 5, we
maintain two version numbers: writeVersion, which every transac-
tion that writes the communicator increments and stores in its write
set; and commitVersion, which a committing transaction updates
with the version number it stored in its write set (provided that the
number in its write set is greater than the current commitVersion).
When a transaction first reads a communicator, it also reads and
logs the communicator’s writeVersion in its communicator read
set. Then, during its final validation (when it is committing), the
transaction compares the commitVersion of each communicator
that it read with the writeVersion that the transaction logged for
that communicator in its communicator read set, and aborts if the
former is greater than the latter. This check permits a reader of a
communicator to commit only if no subsequent writer of that com-
municator has committed. This has the effect of indirectly tracking
some anti-dependencies between transactions.

6.4 Transaction commits and aborts

To detect cycles of dependent transactions, we use two new status
values, Protected and Validated, in the commit protocol. When
a transaction T attempts to commit, it first switches its status
to Protected. From this point on, no other thread may abort T
directly. However, T must abort itself if its read set is not valid
or if some transaction it depends on aborts.

After becoming Protected, T constructs the set S of all trans-
actions it directly or indirectly depends on as follows: Starting with
the transactions in its depList, remove any that are Committed,
and for any Protected or Validated transaction A in S, add the
transactions in A’s depList. (A’s depList will not change after this
because A has begun its commit protocol.) If any transaction in S
is Aborted then T also aborts.

When all transactions in S are either Protected or Validated
(and their depLists have been added to S), then T validates its read
set. If the validation fails, then T aborts. Otherwise, T changes its
status to Validated, and waits for all the transactions in S to be
Validated. (As before, committed transactions are removed from
S, and T must abort if any transaction in S aborts.) When all
transactions in S are Validated, T changes its status to Committed.
Because our STM writes in place, nor further clean-up is needed.

When a transaction T aborts, we must roll back its speculative
writes. For any object that only T has written, this is straightfor-
ward, because T stored the value it overwrote in its undo log. How-
ever, if T wrote a communicator, its abort may lead to a cascade of
aborts by other transactions that directly or indirectly depend on T ,
and several of these transactions may have written the same com-
municator. In this case, we must be careful to restore the correct
value. To that end, we implemented the following conservative so-
lution: T waits for the transaction that wrote the communicator im-
mediately before T—we call that transaction T ’s predecessor—to
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either commit or abort. If T ’s predecessor commits, then T restores
the value written by the predecessor. On the other hand, if T ’s pre-
decessor aborts, T should not do its rollback (which would restore
the value written by its aborted predecessor).

7. Evaluation
We now describe our experience using communicators in three
benchmarks. The first benchmark is a transactional red-black tree
with a size field that contains the number of nodes in the tree. This
benchmark illustrates how communicators can improve scalabil-
ity by transforming transaction conflicts into dependencies. The
second benchmark was inspired by a specific component (to be
elaborated later) of SPECjbb2005 [20], an industry-standard JVM
evaluation benchmark. This benchmark illustrates the use of com-
municators to enable parallelism in large transactions. The third
benchmark is a variant of the job-processing example from Sec-
tion 1. This benchmark illustrates communicators as enablers of
explicit synchronous communication between concurrent transac-
tions. Our results also give insight into the performance character-
istics of our implementation. Together, they demonstrate that com-
municators are an effective tool for helping programmers express
a diverse range of programming idioms that were impossible to
express, or required specialized solutions (e.g., open nesting [17],
irrevocability [23], etc.).

Our experiments were conducted on a multiprocessor system
consisting of eight 2.8GHz Quad-Core AMD OpteronTM chips.
Thus, the system supports 32 hardware threads.

7.1 Red-black tree with size field

Concurrent collections are frequently used in parallel programs,
and TM runtimes are often evaluated on concurrent collections such
as red-black trees and hash tables. However, the collection imple-
mentations do not accurately reflect versions used in real systems,
which support a size() operation that returns the number of items
currently in the collection. Typically a collection implementation
maintains a size field, which is modified appropriately when items
are inserted into or deleted from the collection. Accesses to the size
field of a collection may significantly increase contention between
transactions performing insert/delete operations even on disjoint re-
gions in the collection.

Figure 6 illustrates our point: The red-black tree with an ordi-
nary size field does not scale beyond 4 threads—updates to size
quickly become a contention bottleneck, and throughput drops sig-
nificantly as the number of threads increases. In these tests, we
used the Polite contention manager [12], which employs exponen-
tial backoff before aborting the conflicting transaction. We believe
that no contention manager will perform significantly better be-
cause updates to size become a serialization bottleneck.

Making the size field a communicator (much like in the code in
Figure 4—no other fields or objects are communicators, so transac-
tional accesses of non-size fields of the red-black tree and its nodes
are subject to ordinary TM conflict detection and management
policies) dramatically improves performance: This implementation
scales much better, deteriorating in performance only slightly after
peaking with about 10 threads. The communicators infrastructure
imposes a latency cost of approximately 15% at low thread counts,
but this loss is more than made up for by scalability as the number
of threads increases.

7.2 Emulating intra-transaction concurrency

Concurrency within transactions has been advocated by researchers
as a means to improve performance of large transactions [22]. Com-
municator can be used to emulate large transactions with internal
concurrency, and thereby achieve the same performance improve-
ments, by combining several transactions into super-transactions.
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Figure 6. Throughput results of test runs on Red-Black implemen-
tations that contain the size field. The ordinary size graph depicts
the throughput in the case where the size field is an ordinary shared
object. The txcomm size graph depicts the throughput in the case
where the size field is a implemented as a communicator. In both
implementations, the red-black tree can contain up to 128K nodes,
and usually averages to about 64K nodes. Each thread repeatedly
executes one of the insert/delete/lookup operations on the red-black
tree, with a 10%/10%/80% distribution respectively. Each opera-
tion of the tree is executed in a transaction. The performance num-
bers reported here were averaged over 3 runs of 30 seconds each.

For example, communicators can be used to emulate master-
slave parallelism within a transaction: A master transaction initiates
slave transactions to do computations on their respective data parti-
tions (shared data is partitioned between the slave transactions), and
then waits for all the slaves to finish. (In the communicators-based
equivalent of master-slave parallelism, programmers must be care-
ful to avoid any overlap in the data partitions that may lead to deter-
ministic conflicts between the slaves.) We demonstrate this poten-
tial with a benchmark inspired by our observation of SPECjbb2005,
an industry-standard benchmark used to evaluate server-side JVMs.
It emulates a 3-tier client/server application. The tiers are for in-
put selection, middle tier business logic, and backend computation
that represents a database in the form of a set of Java collections
(TreeMaps and HashMaps).

The application simulates a store-management system, in which
the store consists of a group of warehouses (each controlled by a
distinct thread), and each warehouse contains an inventory of dif-
ferent types of items, a customer pool, a supplier pool, etc. Seven
types of SPECjbb “transactions” represent typical activities that ap-
pear in such applications: new orders, stock updates, customer up-
dates, etc. One of these transactions—the DeliveryTransaction—
does bulk deliveries for all possible outstanding orders within a
warehouse. This is a big transaction: it walks through the entire
HashMap of new orders, fulfilling any outstanding orders it en-
counters. Although this transaction is executed infrequently (about
3% of the SPECjbb transactions are deliveries), it consumes a large
portion of the application’s running time (approximately 50% in
our experiments). We believe that such heavyweight operations are
a good target for intra-transaction concurrency.

To that end, we have developed a benchmark that mimics just
the delivery transaction of SPECjbb. The benchmark consists of
a pre-populated, 32K entry, hash table. A transaction (not the
SPECjbb “transaction”) can invoke an enumeration operation on
the hash table, which walks through all the items in the table and
randomly updates their values. The hash table is split into disjoint
partitions, each of which is processed by a slave transaction.
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class MasterSlaveCoordinator {
// flag used by the master to instruct the slaves
// to process their data partitions
txcomm boolean go;
// the count indicating how many slaves have
// completed their task
txcomm int slavesDone;

}

Figure 7. The master instructs the slaves to process their hash
table partition by setting the go flag. Each slave increments the
slavesDone counter once it has processed its hash table partition,
and then attempts to commit. The master transaction spin-waits
for the slavesDone counter to become equal to the total number
of slaves, and then attempts to commit. All coordination is done
within nested txcommatomic blocks.
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Figure 8. Speedup (over single-threaded transaction runs) results
of our intra-transaction concurrency improvement benchmark. The
performance results were averaged over 3 test runs. The hash table
used had a maximum capacity of 32K entries, with the table being
approximately half full at all times of the test runs.

After initializing the hash table (to about half the capacity of
32K), the master thread repeatedly runs enumeration transactions
(we ran a total of 50,000 transactions for each test). In the non-
concurrent version, the master thread itself invokes the enumera-
tion. In the concurrent version, the master instructs its slaves to
process their respective hash table partitions, and then waits for all
the slaves to finish. The coordination between master and slaves
uses two communicators, shown in Figure 7.

Figure 8 shows the speedup of our communicator-based solu-
tion over the single-threaded version. The cost of using communi-
cators, as seen in the 1-slave configuration, is approximately 20%.
As the number of threads increases, our parallelized version deliv-
ers up to 3.2x speedup, with throughput peaking with 10 threads,
before slowly deteriorating. Figure 9 shows that this deterioration is
caused by the increasing costs of enforcing dependencies between
transactions: The cost of the commit protocol, fueled by the com-
plex transaction dependencies, increases significantly with more
slave transactions. With 4 slaves, over 40% of the time is spent
in the commit protocol. With 28 slaves, only 15% of the time is
spent in doing useful work, and most of the remaining time (about
65%) is spent in the commit protocol. This highlights the need to
improve the commit protocol in our system. Note that virtually no
transaction aborts in this benchmark (less than 0.5% time is spent
in aborted transactions).

7.3 A client-server application

We developed a simple variant of the job-processing example from
Section 1, in which a client requests a server to execute a task,
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Figure 9. Distribution of percentage of time spent in a transac-
tion. Work refers to the amount of time spent doing real work (enu-
merating through the hash table partitions); Coordination refers to
the time spent in coordination between the master and the slave
threads; Commit refers to the time spent committing the interde-
pendent transactions together; and Abort refers to the time spent
executing transactions that eventually abort.

and the server returns a response. The request and response oc-
cur through communicators, so the client and server operations ap-
pear to happen together, as a super-transaction. Shared data is par-
titioned between client and server transactions. All client transac-
tions access a shared client-side hash table, and all the server trans-
actions access a shared server-side hash table. Local computations
are simulated using idle spin loops. Client and server threads are
paired together during initialization, and communication happens
only between these pairs.

Each client thread repeatedly executes client-side transactions.
A client-side transaction (i) executes an operation (insert, delete,
or lookup) on the client-side hash table, (ii) posts a request to
the server-side transaction (this request instructs the server-side to
execute an operation on the server-side hash table), (iii) does some
local computation (including a 100-microsecond idle loop), (iv)
waits for the response from the server-side, and finally, (v) based
on the response (which is a success/failure flag), executes another
operation on the client-side hash table.

Each server thread also repeatedly executes server-side trans-
actions. A server-side transaction (i) waits for a request from the
client-side, (ii) does some local computation (a 100-microsecond
loop), (iii) performs the requested operation on the server-side hash
table, and finally (iv) posts the response of the hash table operation.

The data structure used by the client and server transactions to
communicate is depicted in Figure 10.

Unlike previous benchmarks, there is no obvious implementa-
tion to compare against: Without communicators, client and server
transactions cannot communicate. One alternative approach to the
problem is to use irrevocable transactions [23], where a client-
side transaction becomes irrevocable when it posts a request, and
instead of using transactions, server-side threads use alternate syn-
chronization mechanisms (e.g., locks) to ensure atomicity of the
server-side operations. Thus the client-side transaction, after it be-
comes irrevocable, can interact with a server-side thread. Although
workable, irrevocability does not scale. Furthermore, replacing
transactions with a different synchronization mechanism on the
server-side may be a nontrivial endeavor. Nonetheless, we compare
this alternative with our client-server benchmark.

Figure 11 shows the throughput results of our benchmark with
1 through 16 client theads (and the same number of server threads).
Clearly the irrevocability-based solution does not scale and our
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class ClientServerAnchor {
// request type: insert, delete, lookup
txcomm int requestType;
// request hash table key
txcomm int requestKey;
// response: indicates the success/failure of
// requested operation
txcomm boolean response;
// flag to indicate if the client request is ready
txcomm boolean clientRequestReady;
// flag to indicate if the server response is ready
txcomm boolean serverResponseReady;

}

Figure 10. The client places its request in the requestType and re-
questKey fields (which means that it wants the server transaction to
execute the operation of type requestType for the key requestKey
on the server-side hash table). The client signals the server to pro-
ceed by setting the clientRequestReady flag. Similarly the server
transaction places its response in the anchor’s response field, and
signals the client by setting the serverResponseReady flag.
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communicator-based solution scales well (by a factor of almost
4). However, the irrevocability-based solution outperforms our
communicator-based solution in single-thread runs (by a factor
of about 2), because of the high overheads associated with the co-
ordination of operations on communicators, and the high-latency
commit operation. Furthermore, the server-side hash table in the
irrevocability-based solution is the high-performance concurrent
HashMap from the java.util.concurrent package, which is much
faster than our transactional hash table.

Notice that the transactions for which we present performance
results here are quite big (more than 100 microseconds long). We
experimented with shorter transactions as well and found that the
coordination/commit overhead for communicators was too high
for our approach to outperform the irrevocability-based approach,
again emphasizing the need for to improve the performance of our
communicator infrastructure.

8. Related work
The idea of relaxing isolation to allow concurrent transactions to
cooperate was embodied in our earlier work on synchronizers [16].
However, synchronizers enforced bidirectional dependencies be-
tween communicating transactions, which introduced several dif-
ficulties. For instance, a set of transactions about to commit could
be forced to abort by another transaction that belatedly reads or
writes a synchronizer that the transactions accessed. As a result, id-
ioms such as synchronous exchange channels (exchangers) cannot

be easily implemented with synchronizers. Suggested workarounds
place a significant burden on the programmer.

Tracking dependencies among transactions is not original to our
work. Rather, it has been proposed as a way to reduce aborts in
transactional memory implementations [3, 18]. However, those sys-
tems maintain isolation, so transactions with cyclic dependencies
must all abort, whereas with communicators, such transactions may
commit (as long as they all commit).

Transactional events [7] enable composition of synchronous
communication between threads by adding transactional all-or-
nothing semantics to sequences of communication events. The
communication messages are sent by threads via “event synchro-
nization transactions”. The fates of such synchronously communi-
cating transactions are joined in that they commit or abort together.
Composing synchronous communication operations significantly
simplifies idioms such as 3-way synchronous operations. Transac-
tional events appear to be similar to synchronizers, though their
use is targeted toward a smaller problem domain—composition of
multiple synchronous send/receive operations to simplify otherwise
complex synchronous communication protocols.

Accesses to communicators, particularly when done within a
nested txcommatomic block, can be viewed as a form of open
nesting [2, 17], because updates made to txcomm fields within the
txcommatomic block become visible to concurrent transactions
once the txcommatomic block commits, even if the outer atomic
block has not yet committed. However, there is a crucial difference:
we track dependencies between transactions due to communicator
accesses, and the system ensures that a transaction cannot commit
unless all transactions that it depends on also commit. Furthermore,
if the transaction for the outer atomic block aborts, the effects
of the nested txcommatomic transaction are also rolled back. In
contrast, the effects of a committed open-nested transaction are not
rolled back; instead, the programmer must provide “compensating
actions” to reverse these effects.

The TIC model [19] also attempts to enable cooperation be-
tween concurrent transactions by introducing the Wait primitive
that “punctuates” the calling transaction. Punctuation breaks the
isolation of a transaction by splitting it into two distinct transac-
tions, one before and one after the Wait call. To address the vio-
lated isolation, TIC proposes several new constructs and type sys-
tem extensions to “expose” the violation to the calling contexts,
and to help the programmer restore program invariants broken dur-
ing such violations. This model of punctuation and restoration is
somewhat similar to open nesting and compensating actions, al-
beit with better type system support. However, the complete lack
of isolation between the two halves of a punctuated atomic block
can present significant programmability challenges in some con-
texts (e.g. the job scheduling problem from Figure 1). Dudnik and
Swift [8] take a similar punctuate-on-wait approach in their condi-
tion variable proposal. They do not, however, support mechanisms
to propagate punctuation information and enable restoration of bro-
ken program invariants, as TIC does.

Recently, and independently, Lesani and Palsberg developed
transactors [15], which combines the actor model with transac-
tions. Transactors can send and receive messages within transac-
tions, which create dependencies between transactions by different
actors. As with communicators, transactions cannot commit unless
the transactions they depend on commit, and cyclic dependencies
require all transactions in the cycle to commit or abort together.

9. Conclusion
Although transactional memory is a promising mechanism to help
address the challenge of writing concurrent programs, we believe
that the scope of transactional programming will be limited unless
it works with commonly used programming idioms and concur-
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rency control techniques that are incompatible with isolation of
transactions. To that end, we have presented transaction communi-
cators, which enable programmers to have concurrent transactions
communicate in a controlled fashion, sufficient to enable program-
ming idioms such as CSP-style synchronous communication [13],
producer-consumer interactions, etc.

Our preliminary evaluation demonstrates that communicators
can be useful in a wide range of settings—to alleviate contention
bottlenecks, to break down and parallelize large transactions, and
to perform explicit inter-transaction communication. We believe
that communicators open a new research frontier for transactional
programming. In addition to the programming idioms explored in
this paper, we expect to find many more useful and interesting
ways of programming TM applications using communicators (e.g.,
condition variables, enforcing transaction ordering, etc.).
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