
Adaptive Transaction Scheduling for Transactional
Memory Systems

Richard M. Yoo
yoo@ece.gatech.edu

Hsien-Hsin S. Lee
leehs@ece.gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT
Transactional memory systems are expected to enable parallel pro-
gramming at lower programming complexity, while delivering im-
proved performance over traditional lock-based systems. Nonethe-
less, there are certain situations where transactional memory sys-
tems could actually perform worse. Transactional memory systems
can outperform locks only when the executing workloads contain
sufficient parallelism. When the workload lacks inherent paral-
lelism, launching excessive transactions can adversely degrade per-
formance. These situations are likely to become dominant in future
workloads when large-scale transactions are frequently executed.
In this paper, we propose a new paradigm called adaptive trans-
action scheduling to address this issue. Based on the parallelism
feedback from applications, our adaptive transaction scheduler dy-
namically dispatches and controls the number of concurrently ex-
ecuting transactions. In our case study, we show that our low-cost
mechanism not only guarantees that hardware transactional mem-
ory systems perform no worse than a single global lock, but also
significantly improves performance for both hardware and software
transactional memory systems.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming

General Terms
Design, Performance

Keywords
Contention Intensity, Parallelism, Performance, Transaction Effec-
tiveness, Transactional Memory Systems

1. INTRODUCTION
Due to its radically simple programming semantics, a transac-

tional memory (TM) system [11, 12] has loomed as a promising
parallel programming model for the emerging multi-core platforms.
Especially for hardware transactional memory (HTM), program-
mers do not need to worry about the exact data conflict information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

Rather, a programmer can speculatively mark a potentially conflict-
ing code region as a transaction and let the underlying TM imple-
mentation to guarantee the sequential correctness among transac-
tions. In addition, by speculatively executing more than one trans-
action in a critical section, a TM system can theoretically achieve
higher performance by exploiting parallelism inhibited by a con-
ventional lock-based system. Unfortunately, due to its implemen-
tation complexity, most HTM research thrusts mainly focus on im-
plementation issues with less attention to the performance [7, 1, 22,
19, 6, 17, 3].

Software transactional memory (STM) researchers, on the con-
trary, were well aware of the performance issues on TM. Recently,
STM researchers proposed the concept of the contention manager
[10, 14, 23], a user-level code module that enforces priority among
transactional accesses. The priority could be determined by sev-
eral indicators, such as a timestamp-based age of a transaction,
the amount of work done based on memory footprint, etc [10, 23].
When a transaction encounters a conflict, it consults its contention
manager. With the priority and other transactional information,
the contention manager heuristically evaluates and decides whether
aborting the offending transaction will improve the overall through-
put. When the contention manager decides not to abort the offend-
ing transaction, the transaction consulting the contention manager
will use a delay back-off, thus allowing the offending transaction
to finish before the requestor retries the NACKed permission. By
varying the number of back-off attempts and their intervals, the
contention managers can significantly reduce the number of trans-
action aborts [23]. An STM implementation employing a con-
tention manager has shown reasonable performance improvement
over one without. It also demonstrates the capability of avoiding
livelocks [10, 13, 14].

However, contention managers have their limitations. First, con-
tention managers are fundamentally reactive, for their policies are
enforced only after a conflict is detected. When a transaction in-
vokes its contention manager due to a conflict, it cannot wait in-
definitely. Since the transaction has already started executing a
critical section, the situation would be equal to a deadlock if it in-
definitely waits for the contention to disappear. Hence, contention
managers are only good at resolving imminent contention; the of-
fending transaction should commit very soon, or it would be forced
to abort. Once the contention disappears by aborting the oppo-
nent, contention managers have no control over when the aborted
transaction should resume. This is rather myopic, since the aborted
transaction can restart immediately, conflicting with other transac-
tions again. Contention managers only cure the outcome of the
contention; they do not reduce the cause of the contention itself.

Secondly, contention managers are accessed frequently. Depend-
ing on the implementation [14], they are called whenever 1) a trans-
action starts, aborts, or commits, 2) a transaction acquires an object,
3) a transaction reads / writes an object (to collect information),
or 4) a conflict is present (to enforce priority). Prior research has
shown that contention management code itself accounts for a large
portion of the execution time when contention traffic is high [26].

169

For this reason, contention managers tend to be distributed; they
detect and resolve conflicts in a per-transaction manner. This na-
ture significantly limits the capability of a contention manager to
maintain a system-wide coherent view of contention, and also lim-
its the conflict resolution scheme to heuristics.

Lastly, since contention managers are user-level code modules, it
is difficult to incorporate a contention manager into an HTM imple-
mentation. To do so, hardware would have to trap into software for
each transactional event to collect transactional information. Other-
wise, an HTM could maintain the transactional information in some
architectural registers and expose them to contention managers, but
it would be hard to define a generic contention manager interface
given that different applications benefit from different types of con-
tention management schemes [10, 13, 14].

To tackle these problems, in this paper, we propose a new tech-
nique called adaptive transaction scheduling (ATS). In ATS, a sched-
uler adaptively controls the number of concurrent transactions ex-
ecuting in critical sections based on the contention feedback from
the application. This is done by selectively scheduling those trans-
actions that tend to abort frequently.

The scheduler is designed such that it is consulted only when
a transaction starts under high contention. This infrequent access
allows the scheduler to be implemented as a centralized module,
thereby enabling an advanced and coherent system-wide schedul-
ing scheme. Although it is a centralized scheme, under HTM it
does not suffer from scalability issues due to its adaptive and light-
weight nature. The scheduling scheme has no adverse effect on
performance when contention is low, and will mitigate performance
degradation as contention grows.

Based on this framework, we designed a low-cost scheduler that
can be easily integrated into either an HTM or STM. For the HTM,
we observed that ATS not only improves performance by reducing
the number of transaction aborts, but also improves the quality of
transactions. We also show that our scheme guarantees a perfor-
mance lower bound when coarse-grained lock (CGL) critical sec-
tions are transformed into transactions. For STM, we demonstrate
that ATS delivers significant performance improvement while act-
ing as a QoS safety net under an oversubscription configuration.

To the best of our knowledge, this paper is the first to incorpo-
rate transaction scheduling on TM systems to adaptively exploit
the maximum parallelism. The rest of the paper is organized as
follows. Section 2 describes our scheduling framework. Section 3
and Section 4 discuss our implementation on LogTM and RSTM
and analyze their performance. Related studies in TM area are dis-
cussed in Section 5. Finally, Section 6 concludes.

2. TRANSACTION SCHEDULING
In our execution model, a thread enters and leaves multiple crit-

ical sections throughout its lifetime. Upon entering a critical sec-
tion, the thread starts a transaction. The thread might resume the
transaction multiple times if the previous transaction aborts. A
thread leaves the critical section when it commits the transaction.

Figure 1 highlights the difference between our transaction schedul-
ing approach and the contention manager approach. As shown in
Figure 1(a), a contention manager tries to reduce the contention
by adjusting when to retry the denied object (e.g., a cache line).
Typically, a contention manager employs an exponential backoff
scheme with retry interval expanding exponentially to a maximum
limit until success. A contention manager can decide to abort a cer-
tain transaction, but it does not deal with when to resume an aborted
transaction.

In contrast, our transaction scheduling scheme in Figure 1(b)
specifically deals with when to resume the aborted transaction. It
dynamically schedules the point where an aborted transaction re-
sumes its execution. To say that a transaction scheduler uses an
exponential backoff scheme means that an aborted transaction re-
sumes with an exponentially increased interval to a maximum limit.
As can be seen, these two approaches are orthogonal, dealing with
different aspects of TM’s characteristics.

Transaction

Denied access
Retry 1

Retry 2

Aborted
Resume transaction

Contention
manager

delaying retries

Un
de

te
rm

in
ed

(a) Contention Manager

Transaction

Denied access
Retry 1

Aborted

Resume transaction

Scheduler delaying
transaction resume

(b) ATS

Figure 1: Contention Manager versus ATS

We do not schedule all the transactions. Transactions resort to
the scheduler only when they encounter high contention. To de-
tect when to schedule a transaction, we introduce a dynamic metric
called contention intensity.

2.1 Contention Intensity
The effectiveness of a transaction is closely related to the inten-

sity of the contention a transaction encounters during its execution.
By limiting the number of concurrently executing transactions at
a given time, we can dynamically control the contention intensity.
Once the contention intensity is kept below a desired level, we can
significantly increase the transaction effectiveness, thereby improv-
ing the overall system performance.

Contention Intensity can be detected in either a centralized or
decentralized manner. A centralized detection scheme relies on a
global module to collect the contention information over the entire
system, whereas in a decentralized scheme each thread will keep
their own contention information. In our study, we used the decen-
tralized scheme. To quantify the contention intensity, we define the
contention intensity as a dynamic average based on current avail-
able contention information. Each thread maintains its contention
intensity (CI) in the following manner:

CIn = α ×CIn−1 +(1−α)×CC

Maintaining contention intensity information enables a paral-
lelism feedback mechanism for a TM system. Initially, CI is set to
0. This equation is then evaluated whenever a transaction commits
or aborts, based on the previous CI and the current contention (CC).
In this equation the CC term is set to 0 when a transaction com-
mits, and set to 1 when a transaction aborts. The weight variable,
α , determines which portion of the equation weighs more — either
the past history or the current contention information. When the
α value is large, the equation biases toward past history; the con-
tention intensity varies slowly while canceling out the noise from
the current contention information. When the α value is small, the
current contention information is reflected more quickly. In fact,
based on the past commit / abort history, the contention intensity
predicts the likelihood that a transaction would face another con-
flict.

By default, the contention intensity value should be reset to 0
when a thread changes the entered critical section (which starts at
a different PC). To put it differently, when a thread loops around
the same single critical section, the contention intensity is not re-
set. Nonetheless, we observed that resetting the contention inten-
sity does not have a significant impact on performance, since by the
time all the threads leave a particular critical section — i.e., do not
re-enter that particular critical section before entering another criti-
cal section — each thread’s contention intensity is already close to
0 due to the phased behavior of multi-threaded applications.

2.2 A Low Cost Transaction Scheduler
In our ATS scheme, aside from the OS thread scheduler, we im-

plement a transaction scheduler directly inside a TM system. To
utilize the scheduler, each thread maintains its own contention in-
tensity as described in Section 2.1. When a thread either begins

170

a transaction or resumes a transaction after abort, it compares its
contention intensity with a designated threshold. When the con-
tention intensity is below the threshold, the thread begins a trans-
action normally. Otherwise, the thread will stall and report to the
scheduler, awaiting a dispatch. The scheduler will then signal back
the thread to proceed once the thread is ready to restart. Therefore,
when the contention intensity is low, ATS has little effect except
for the penalty of intensity check. A thread will no longer consult
the scheduler and begin a transaction normally when the contention
intensity subsides below the threshold.

Dispatch
transaction

Scheduler

Queue
transaction

Notify
scheduler

Begin
transaction

Queue of Transactions

Transaction
commit / abort

Notify
scheduler

Figure 2: A Queue-Based Transaction Scheduler

Figure 2 shows the organization of a queue-based scheduler. This
scheduler maintains a single centralized queue of transactions, which
resembles the run queue found in a regular OS thread scheduler.
This queue dispatches one single transaction at a time.

If a transaction is at the head of the queue, and if no other trans-
action dispatched from the queue is still executing, it is dispatched
immediately. Otherwise, the transaction will wait in the queue un-
til the exclusivity is met. Moreover, a transaction that was dis-
patched from the queue must notify the scheduler when it commits
or aborts. This will trigger the dispatch of the next transaction.

Note that this queuing behavior effectively serializes high con-
tention transactions. At one extreme, when all the transactions are
queued, this mechanism gracefully degenerates transactions into a
lock. With a properly chosen weight for the moving average and
a threshold, this mechanism can guarantee that the performance of
transactions would at least be comparable to a single coarse-grained
lock.

It is noteworthy to point out that we strived to keep the design of
the scheduler as simple as possible. This way, the scheduler could
be easily implemented in an HTM system. Simplicity is not neces-
sarily bad when it does show significant performance improvement,
as we will demonstrate later.

2.3 Transaction Scheduler in Action
In Figure 3 we use an example to detail the behavior of a transac-

tion scheduler. Let us first assume that there is only one critical sec-
tion throughout the entire program with only one global transaction
queue. In this figure, the timeline flows from top to bottom; on the
right side locates the hypothetical variation of the contention inten-
sity over time (an average of all CIs from running threads). When
the contention intensity is below the threshold (Timeline 1), trans-
actions begin execution without resorting to the scheduler. As the
contention intensity grows beyond the threshold, some transactions
start to report themselves to the queue managed by the scheduler
(Timeline 2). The scheduler dispatches only one single transaction
at a time from the queue, which effectively reduces the number of
concurrently executing transactions. At Timeline 3, as more trans-
actions are queued and serialized, the contention intensity starts to
decrease. Once the contention intensity of a transaction drops be-
low the threshold, it will begin transactions without consulting the
scheduler, exploiting more parallelism (Timeline 4, 5). Although
demonstrated with one average CI for all running threads in this
figure, each thread actually maintains its own CI. This design also
prevents threads from exhibiting abrupt group behavior.

time

Contention Intensity

ThresholdTimeline 1

Timeline 2

Timeline 3

Timeline 4

Timeline 5

Queued TransactionExecuting Transaction

Figure 3: Behavior of a Queue-Based Scheduler

The scheduler adaptively changes the number of concurrently
active transactions, so that the contention will not increase without
bound (livelock). In essence, the scheduler tries to keep the num-
ber of concurrent transactions close to the maximum number of
data parallel transactions, while the contention intensity acts as an
error signal. Since the contention intensity is updated dynamically,
this scheme can also adapt to phase changes during the execution.
In other words, the scheduler will exploit the maximum inherent
parallelism at any given phase.

Now let us consider the case where there are multiple critical sec-
tions starting at different PCs. When we maintain a dedicated queue
for each critical section, the scheduler can control the number of
concurrent transactions in each of the critical sections. On the con-
trary, when we maintain a single queue for all critical sections, the
scheduler would control the number of concurrent transactions exe-
cuting in any of the critical sections. Due to the phased behavior of
multi-threaded programs, however, we noticed that threads usually
enter and leave a critical section at roughly the same time. There-
fore, at any given point of execution, the case of different threads
executing different critical sections was rather rare, and a single
global queue for all critical sections will be sufficient. This mim-
ics current TM systems which do not differentiate transactional ac-
cesses from different critical sections. Throughout the rest of this
paper, we only focus on the case where we have a single global
queue for all the critical sections.

2.4 Comparison with Contention Manager
This ATS approach is completely different from the contention

manager approach. First, the two approaches take effect at different
points of transaction execution. A contention manager takes effect
after a transaction has started; it is invoked when there is a conflict.
ATS takes effect before a transaction starts executing, to reduce the
potential contention. For example, upon discovering transactions
A and B conflict, a contention manager could stall transaction B to
resolve the conflict. However, it cannot prevent another transaction
C from starting execution although it is highly likely that it will
induce yet another conflict.

Secondly, our ATS scheme differs from the contention manager
approach in the frequency of module accesses. To collect transac-
tional information, contention managers are called whenever there
is a transactional update; this forces contention managers to be dis-
tributed. In contrast, since our transaction scheduler is accessed
only when a transaction starts under high contention, it can be cen-
tralized. This centralization enables advanced, coherent scheduling
policies. Controlling the number of concurrent transactions is only
possible when we have a global view of the contention. Due to its
adaptive nature, a centralized ATS does not undermine the scalabil-
ity of an HTM system.

171

Lastly, infrequent access and a simple design of ATS enables its
low-cost integration with HTM, as we will describe in Section 3.
More importantly, contention managers can only be implemented
on obstruction-free TM systems [9, 10]; largely due to this assump-
tion, contention managers can resolve conflicts on a peer-to-peer
basis without the system-wide contention information. In contrast,
ATS can be implemented on other types of TM systems (e.g., lock-
free) as well.

In fact, ATS is a complementary technique to the contention
manager approach as they address different properties of a TM sys-
tem. We can say that ATS performs macro scheduling to orchestrate
when to start a transaction based on mutual contention information
collected, and after a transaction has started contention manager
will perform micro scheduling to reduce contention on the fly.

3. HTM INTEGRATION
To evaluate the advantages of ATS, we implement our proposed

queue-based scheduling scheme in both HTM and STM systems.
This section details our ATS implementation on LogTM [19] (an
HTM system), and Section 4 discusses our implementation on RSTM
[14] (an STM system).

3.1 LogTM Settings
For an HTM system, we implemented ATS on LogTM [19].

LogTM has been released as a memory timing module of the GEMS

simulator [15]1. LogTM contains a dedicated module, the trans-
action manager, which is accessed whenever a transaction starts,
aborts, or commits. We implemented our scheduling algorithm so
that this transaction manager maintains the contention intensity in-
formation.

We assume that the hardware queue resides in a central loca-
tion of the system. Since our implementation supports one active
transaction per CPU, the queue depth amounts to the total num-
ber of CPUs on the system. For those HTM systems that support
more than one transaction per CPU, the system could fall back to
contention manager-only approach when the queue is full. When
a CPU decodes a transaction begin instruction, it compares the
current contention intensity value with the threshold. When the
contention intensity is above threshold, the CPU generates a signal
directed to the scheduler asking for intervention; at the same time,
it stalls the thread. When the queued transaction becomes ready
for execution, the scheduler signals back the CPU to start the trans-
action. We assigned a 16-cycle delay for the signal to propagate
from a CPU to the global queue, and another 16-cycle delay for the
queue to notify the CPU to proceed. In our experiments, however,
the actual value of the latency did not affect the performance to
a significant degree since a queued transaction typically waits for
hundreds to thousands of cycles. Table 1 specifies the simulated
machine in GEMS.

The simulated system uses only the Ruby memory timing model
of the GEMS simulator. Thus, the CPU simulates a single-issue, in-
order SPARCv9 processor. Cache coherence is managed by a cen-
tral directory and the interconnection network is based on a hierar-
chical switch. In LogTM, there was a fixed delay of 40 cycles when
a transaction aborts from the system, and an additional penalty of
20 cycles that is taxed for each block of log written back to the
memory. By default, LogTM’s contention management scheme is
stalling [19]; the NACKed transaction keeps retrying the access
with a fixed time interval unless it detects a possible deadlock situ-
ation. Our ATS scheme was built on top of this contention manager.

1The delayRestart feature of LogTM had to be replaced with ex-
ponential backoff since it caused deadlock in rare situations. This
means that in the baseline LogTM, aborted transactions will auto-
matically resume execution with exponentially increased time in-
terval to a maximum limit.

Simulated System Settings

CPU
Sixteen 1GHz SPARCv9
single-issue, in-order
non-memory IPC=1

L1 Cache
4-way split, 64 KB
5-cycle latency

L2 Cache
4-way unified, 16 MB
10-cycle latency

Memory 4 GB
Directory centralized, 6-cycle latency

Interconnection Network
hierarchical switch topology
40-cycle link latency

LogTM Settings

m_abortStartupDelay 40 cycles
m_abortPerBlockDelay 20 cycles

Table 1: Simulation Settings for LogTM

3.2 Benchmark Suite
Our benchmark suite includes selected SPLASH-2 applications [28]

and a modified Deque microbenchmark included in the LogTM re-
lease. These workloads are transactionized by replacing the locks
with transactions. Table 2 lists the benchmark suite. We use the
same subset of SPLASH-2 applications used in the original LogTM
paper [19]. Those omitted ones are not considered as representative
TM applications since their critical sections mostly perform trivial
memory operations, e.g., single induction variable increments.

Workload Input Set # Threads

Water-nsquared 512 15
Water-spatial 512 15
Ocean (contiguous_partitions) 258 8
Raytrace teapot 15
Cholesky 14 15
Barnes 512 bodies 15
Radiosity test 15
Deque N/A 15

Table 2: LogTM Benchmark Suite

For the Deque microbenchmark, each transaction first enqueues
(dequeues) a value on the left (right) of a global deque. It then per-
forms a local job, and increments the global counter at the end. The
major difference from the released version of Deque benchmark is
that the amount of local job done by a transaction is adjustable
by the parameter transaction length. This parameter controls the
length of a transaction — shorter transactions typically increase the
level of parallelism while longer transactions tend to reduce its like-
lihood. By continuously adjusting the parameter, we could examine
our scheduler’s behavior over a wide spectrum of potential paral-
lelism. When comparing the performance to a lock-based imple-
mentation, BEGIN_TRANSACTION and END_TRANSACTION
macros were substituted with pthread mutex lock() and
pthread mutex unlock() to a single global lock, respectively. De-
spite its small size, this microbenchmark heavily stresses the trans-
action scheduling and the contention management scheme of the
underlying TM system. As more TM systems become available,
we expect this type of coarse-grained, frequent transaction will be-
come more prevalent [18].

In all of these benchmarks, one of the 16 CPUs was dedicated
for the OS to prevent the kernel thread from preempting applica-
tion threads. Hence, most of the workloads were executed with
15 threads. Benchmark Ocean was executed with 8 threads, for
it requires the number of threads to be power of two. Moreover,
since LogTM did not support thread migration, thread affinity was
fixed so that each thread executes on a single CPU. Throughout the
experiments, α was fixed to 0.7, while the threshold was fixed to
0.5.

172

Benchmark Execution Time Xact Begin Commit Abort (%) Xact Latency (stdv) L1D MPKI
base ATS base ATS base ATS base ATS base ATS base ATS

Water-nsquared 52383081 52383081 17664 17664 17664 17664 0 (0%) 0 (0%) 1548 (315) 1548 (315) 2.70 2.70
Water-spatial 65462563 65462563 285 285 285 285 0 (0%) 0 (0%) 501 (4764) 501 (4764) 1.25 1.25
Ocean 291813916 291813916 1666 1666 1664 1664 2 (0.1%) 2 (0.1%) 849 (279) 849 (279) 2.33 2.33

Raytrace 50333882 50852127 48654 48128 47782 47781 872 347 6857 6332 6.73 6.67
(1.8%) (0.7%) (37280) (11499)

Cholesky 22596229 22258328 6754 6550 5938 5935 816 615 1553 1174 1.10 1.11
(12.1%) (9.4%) (4824) (2720)

Barnes 25015887 23878230 3055 2575 2319 2319 736 256 9326 2245 0.96 0.95
(24.0%) (10.0%) (74878) (4736)

Deque-14436 24037196 20970633 3713 1783 1200 1200 2513 583 129541 39045 5.06 2.32
(67.7%) (32.7%) (143462) (35107)

Deque-2048 20081574 13783990 3492 1866 1200 1200 2292 666 72857 10641 2.50 1.54
(65.2%) (35.7%) (102182) (8948)

Radiosity 472253209 239312955 490658 336154 276917 278711 213741 57443 16488 1738 12.96 3.99
(43.6%) (17.1%) (60769) (4975)

Table 3: Execution Time Statistics on LogTM

3.3 LogTM Result Analysis

3.3.1 Execution Time Characteristics
Table 3 shows a variety of execution time statistics gathered for

the parallel sections of each benchmark. For each category, we
show the numbers for the baseline LogTM (base) and the LogTM
enhanced with ATS. Also, we experimented two Deque scenarios
denoted by Deque-14436 and Deque-2048 that set their transac-
tion length parameters to 14436 and 2048 memory operations, re-
spectively.

The most prominent effect by ATS is the reduction of execu-
tion time. Figure 4 shows the speedup over the baseline LogTM
by measuring the parallel sections of the program. Based on the
application characteristics, we divided the applications into three
groups: low-contention, medium-contention, and high-contention
workloads. Figure 5 shows the transaction abort rate for each ap-
plication.

Medium-contention

Workloads

High-contention

Workloads

Low-contention

Workloads

0.0

0.5

1.0

1.5

2.0

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

oc
ea

n

ra
yt
ra

ce

ch
ol
sk

ey

ba
rn

es

de
qu

e-
14

43
6

de
qu

e-
20

48

ra
di
os

ity

E
x
e
c
u
ti
o
n
 T

im
e
 S

p
e
e
d
u
p

Figure 4: Execution Time Speedup

Not surprisingly, low-contention workloads exhibit zero or neg-
ligible abort rates. As explained in Section 3.2, critical sections
performing simple induction variable increments are the most com-
mon in this category. For this type of workload, the scheduler has
neither positive nor negative effect. Hence, the execution time re-
mains the same.

With the medium-contention workloads, the abort rates become
more noticeable. Raytrace, Cholskey, and Barnes belong to this
category. ATS shows marginal performance effect in these cases.
As shown in Figure 4, Cholskey and Barnes show 2% and 5%
speedup respectively. For Raytrace, the chosen α value (0.7) turned
out to be too conservative such that the scheduler overly serial-

Low-contention

Workloads

Medium-contention

Workloads

High-contention

Workloads

0

10

20

30

40

50

60

70

80

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

oc
ea

n

ra
yt
ra

ce

ch
ol
sk

ey

ba
rn

es

de
qu

e-
14

43
6

de
qu

e-
20

48

ra
di
os

ity

T
ra

n
s
a
c
ti
o
n
 A

b
o
rt

 R
a
te

 (
%

)

LogTM

LogTM + sched

Figure 5: Transaction Abort Rate

ized transactions, resulting in 1% slowdown. Nevertheless, the
scheduler significantly reduces the transaction abort rate for all
three workloads. Note that the Xact Begin column of Table 3
shows the baseline starting transactions in excess but committing
(Commit column) nearly the same amount of transactions as the
ATS-enabled LogTM. In those workloads that rely on convergence
as their termination condition, the number of committed transac-
tions could be slightly different from the baseline case since ATS
changes the application behavior.

ATS shows a huge benefit when running high-contention work-
loads. Both Deque microbenchmark programs show 15% and 46%
speedup respectively, while Radiosity is improved by 97%. As
also shown, the scheduler nearly halves the transaction abort rates.
In addition, Table 3 indicates that for high contention workloads
the baseline issues 50% to 100% more transactions than the ATS-
enabled LogTM. Aside from performance advantages, reducing the
number of aborted transactions would also improve power con-
sumption and cache pollution when thread affinity is not applied.

3.3.2 Improving the Quality of Transactions
Not only does ATS reduce execution time and transaction abort

rate, it also improves the quality of each transaction. The first of
such characteristic is the transaction latency, i.e., the number of cy-
cles of a committed transaction’s lifetime. In LogTM, when there is
a contention, it does not abort the offending transaction right away.
It stalls the offending transaction until the memory request can be
satisfied [19]. Hence higher contention typically leads to a longer
transaction latency. While stalling for the opponent, the stalled
transaction graduates no useful instructions. It simply squanders
CPU cycles and energy. Figure 6 shows the normalized average
transaction latency for the committed transactions. For example,

173

Low-contention

Workloads

Medium-contention

Workloads

High-contention

Workloads

0

0.2

0.4

0.6

0.8

1

1.2

w
at

er
-n

sq
ua

re
d

w
at

er
-s

pa
tia

l

oc
ea

n

ra
yt
ra

ce

ch
ol
sk

ey

ba
rn

es

de
qu

e-
14

43
6

de
qu

e-
20

48

ra
di
os

ity

N
o
rm

a
liz

e
d
 T

ra
n
s
a
c
ti
o
n
 L

a
te

n
c
y

Figure 6: Normalized Transaction Latency

the transaction latency of Radiosity was reduced down to around
10% of the baseline. Moreover, not only does our scheduler reduce
the average of transaction latency, it also reduces the standard de-
viation of transaction latency. The stdv values in Table 3 show
this trend. The implication is that the scheduler not only shortens
the transactions, but also makes them more deterministic and pre-
dictable, something expected from a “high-quality scheduler.”

Combined with the results from Section 3.3.1, the ATS mecha-
nism demonstrates fewer CPU cycles are wasted while performing
the same amount of work, leading to performance improvement
and energy savings. Moreover, under a multitasking OS, the over-
all throughput could be improved by context-switching to a thread

of a different process while ATS delays resuming a transaction2.
Nevertheless, as explained by Amdahl’s law, the transaction la-

tency reduction cannot always be translated to a proportional speedup.
For example, in Barnes the amount of time when there is at least
one transaction executing was less than 30% of the total execution
time. Further, we found that the execution time of Barnes is usually
dominated by only a few long transactions. As such, even though
the latencies of the majority of the transactions were reduced, the
overall execution time did not decrease much as long as the execu-
tion times of those long transactions were not reduced. We expect
our scheduler to perform better when the lengths of the transactions
are of uniform duration.

The second aspect of the quality of a transaction is observed from
the cache miss rate. Upon each transaction abort, TM implemen-
tations that keep speculative results in caches (eager version man-
agement [19]) must invalidate buffered results following the cache
coherence protocol. Frequent aborts amount to more cache line
invalidations which lead to a higher cache miss rate when a trans-
action resumes. The L1D MPKI column in Table 3 shows the L1D
cache Misses Per Kilo Instructions. As expected, we can see that
high-contention workloads benefit from our technique.

3.3.3 Guaranteeing Performance Lower Bound
One way to obtain a TM workload is to convert critical sections

guarded by coarse-grained locks into transactions. This amounts to
expanding the contention scope of threads, since threads that were
contending on different locks will now contend with each other.
This contention scope is similar to that where all the critical sec-
tions are synchronized by a single global lock.

Due to its queue-based nature, ATS would serialize most of the
transactions under extreme contention. This essentially degener-
ates its behavior to that of a single global lock. In other words, 1)
ATS can guarantee a performance lower bound for workloads that
were obtained by transforming coarse-grained lock critical sections
into transactions, and 2) the performance in this situation will be

2We could not obtain performance results for such cases since a
transaction in the baseline LogTM cannot survive a context switch.

comparable to the case where all the critical sections are synchro-
nized by a single global lock.

TM implementations that detect conflicts at commit time (lazy
conflict detection) can guarantee a similar performance lower bound
since at least one transaction would commit at a single commit
phase [7]. TMs that detect conflicts at object acquisition (eager
conflict detection), unfortunately, cannot guarantee such a bound as
transactions can repeatedly abort each other under high contention.
ATS gives a performance lower bound to such eager conflict de-
tection TMs. Considering that most of the current TM workloads
are generated by the aforementioned approach, this performance
guarantee would be necessary.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

2048 4096 6144 8192 10240 12288 14336

Transaction Length

T
ra

n
s
a
c
ti
o
n
s
 /

 s
e
c

LogTM + sched

LogTM

SGL

Figure 7: Throughput on Deque Microbenchmark

Figure 7 shows the throughput variation of Deque microbench-
mark with varied transaction lengths. The longer the transaction
length is, the harder to parallelize the workload. Overall, we see
a gradual decrease in throughput for all three schemes as transac-
tion length increases. The baseline LogTM occasionally exhibits
worse performance compared to the single global lock (SGL). On
the contrary, ATS-enabled LogTM always shows better or on-par
performance with respect to the single global lock.

This serialization is particularly well suited for those HTM im-
plementations that stall all other transactions in favor of one over-
flown transaction or a transaction performing I/O or a system call
[3]. In our scheduling framework, stalling all other transactions
amounts to forcing all transactions to report to the scheduler, with
the overflown (syscall) transaction positioning at the head of the
queue.

4. STM INTEGRATION

4.1 RSTM Settings
As for the STM, we implemented our ATS on top of the RSTM

framework from the University of Rochester [14]. RSTM is a C++
TM library that implements per-object transactions. When an ob-
ject is passed as an argument to a template, the template returns a
transaction-enabled wrapper object. Between BEGIN_TRANSACTION
and END_TRANSACTION macros, all the accesses through the
read / write method of this wrapper object are treated as transac-
tional reads / writes. Managing these transactions are completely
handled by a software library.

We keep the contention intensity information in each thread’s
local storage where RSTM keeps each transaction’s transaction de-
scriptor. Moreover, the access to the central scheduling queue was
serialized with a single global lock, and the conditional variables
found in the pthread library were used to synchronize the commu-
nication between the scheduler and transactions. For proper syn-
chronization, each conditional variable was again guarded with a
local lock. Compared to the baseline RSTM, the performance of
our scheduler implementation is actually penalized since the global

174

lock and the locks guarding conditional variables introduce syn-
chronization overheads in scheduling.

To quantify the performance, we measured the throughput of the
entire system with 5 microbenchmark programs from the RSTM li-
brary: RBTree, HashTable, LinkedList, RandomGraph, and LFU-
Cache, which are the common benchmarks repeatedly used in STM
literature [23, 14, 26]. The contention manager Polka [23] was used
as the default in our experiments. Polka implements a mixture
of exponential back-off and memory footprint-size based priority
mechanism. RSTM also allows programmers to configure 1) the
visibility of the read-only transactions to other transactions, and
2) the conflict detection mechanism (eager or lazy). We selected
the best configuration for each workload [14]. Namely, RBTree,
HashTable, and LinkedList were executed with (invisible, eager)
configuration while RandomGraph and LFUCache were executed
with (visible, lazy) configuration. Our ATS-enabled library was im-
plemented on top of the same contention manager using the same
configurations. When comparing the throughput with the lock-
based implementation, we used the cgl library included in RSTM
release which transforms transactions back into critical sections
guarded by a single global lock.

We measured the throughput on two real machines: a 2-way
SMP system and an 8-way SMP system. The 2-way SMP repre-
sents the current top-of-the-line dual processor system, while the 8-
way SMP system projects the future many-core processors but run-
ning at a stripped-down configuration with lower clock frequency

and slower bus speed3. Table 4 describes the specifications of those
two machines and their operating systems.

2-way SMP System

CPU

2, Intel Xeon 3.0 GHz
Front-Side Bus: 800 MHz
L2: 2 MB
HyperThreading off

Memory 2 GB

Operating System
Red Hat Enterprise Linux AS release 4
2.6.9-34.0.1.ELsmp

8-way SMP System

CPU
8, Intel Pentium III 550 MHz
Front-Side Bus: 100 MHz
L2: 2 MB

Memory 4 GB

Operating System
Red Hat Enterprise Linux AS release 4
2.6.9-11.ELsmp

Table 4: RSTM Hardware Settings

4.2 RSTM Result Analysis

4.2.1 Results on a 2-way SMP Machine
We first performed a sensitivity study on α , resulting in the val-

ues α = 0.3 and threshold = 0.5 which showed the best average
performance to demonstrate the results of our ATS scheme. In Sec-
tion 4.2.4, we will discuss an algorithm that can self-tune the α

value within the ATS.
Figure 8 shows the performance (in transactions per second) of

our ATS-enabled RSTM versus the baseline RSTM and the locks
by varying the number of threads. In each subfigure, the x-axis
plots the number of concurrent threads, while the y-axis plots the
throughput at log scale. Unlike the HTM systems, the performance
of STM systems can be much worse than locks since managing
the per-object transaction information in software causes signifi-
cant overheads. As shown, ATS improves the throughput substan-
tially over the baseline RSTM for RBTree, HashTable, and LFU-
Cache, while showing almost on-par (RandomGraph) or slightly
lower (LinkedList) performance in the others.

Figure 9 summarizes all the RSTM experimental results on the
2-way SMP machine. In the figure, the lower end of each vertical

3Due to the absence of hardware resources we could access, per-
formance results on a 4-way SMP cannot be obtained. Moreover,
8-way SMP was the largest machine we had access to.

bar represents the minimum relative throughput of our scheduling
method for the five benchmarks. In the same manner, the upper end
of each vertical bar represents the maximum relative throughput.
The line across these vertical bars represents the harmonic mean of
5 relative throughputs for each thread count. The aggregate perfor-
mance speedup in harmonic mean is around 1.3x ∼ 1.5x, while the
maximum relative throughput can be as high as 5.9x. The vertical
bars skewing toward the y ≥ 1 region indicates the effectiveness
of our ATS scheme in performance across the different number of
threads used.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Thread Count
R

e
la

ti
v
e
 T

h
ro

u
g
h
p
u
t

harmean

Figure 9: Scheduler Performance on a 2-way SMP Machine

4.2.2 Results on an 8-way SMP Machine
We performed the same sensitivity study and measured their re-

sults for an 8-way SMP machine. In this case, we selected α = 0.5
as it outperformed the others when a sufficient number of threads
(thread count ≥ 17) were executing. With α = 0.5, a new thread
will encounter two consecutive aborts before resorting to the sched-
uler. Due to the space limitation, we only summarize the perfor-
mance results in Figure 10.

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Thread Count

R
e

la
ti
v
e

 T
h

ro
u

g
h

p
u

t

harmean

Figure 10: Scheduler Performance on an 8-way SMP Machine

As shown in the figure, when the number of concurrent threads
is small, the relative throughput remains around 1. In these sce-
narios, the overheads of the queue synchronization actually bring
slight performance degradation. As the contention increases with
more concurrent threads (≥ 17), the ATS-enabled RSTM starts to
show performance improvement. The aggregate performance im-
provement ranges from 1.1x to 1.4x. Although there are some cases
where minimum relative throughput goes below 1, that those verti-

175

0 5 10 15 20 25 30

1

 e
+

0
5

2

 e
+

0
5

5

 e
+

0
5

1

 e
+

0
6

2

 e
+

0
6

5

 e
+

0
6

Thread Count

T
ra

n
s

a
c

ti
o

n
s

 /
 s

e
c

o
n

d

RSTM + Scheduling (alpha = 0.3)
RSTM
Lock

(a) RBTree

0 5 10 15 20 25 30

2

 e
+

0
5

5

 e
+

0
5

1

 e
+

0
6

2

 e
+

0
6

5

 e
+

0
6

Thread Count
T

ra
n

s
a

c
ti

o
n

s
 /

 s
e

c
o

n
d

(b) HashTable

0 5 10 15 20 25 30

2

 e
+

0
4

5

 e
+

0
4

2

 e
+

0
5

5

 e
+

0
5

2

 e
+

0
6

Thread Count

T
ra

n
s

a
c

ti
o

n
s

 /
 s

e
c

o
n

d

(c) LinkedList

0 5 10 15 20 25 30

5

 e
+

0
3

2

 e
+

0
4

5

 e
+

0
4

2

 e
+

0
5

5

 e
+

0
5

Thread Count

T
ra

n
s

a
c

ti
o

n
s

 /
 s

e
c

o
n

d

(d) RandomGraph

0 5 10 15 20 25 30

1

 e
+

0
5

5

 e
+

0
5

2

 e
+

0
6

5

 e
+

0
6

Thread Count

T
ra

n
s

a
c

ti
o

n
s

 /
 s

e
c

o
n

d

(e) LFUCache

Figure 8: Individual Benchmark Results on a 2-way SMP Machine

cal bars position higher than 1 indicates that the scheduling mech-
anism results in an overall net performance gain.

4.2.3 Effect of Page Faults on Performance
To better explain the significant performance improvement of

ATS, in a separate experiment, we collected SAR counters while
the workloads are running. SAR is a Linux performance monitor-
ing tool that collects OS level statistics such as CPU utilization,
number of context switches, interrupts, page faults, etc., for a spec-
ified time interval. We resorted to OS level counters since it has
been reported that OS level counters play a key role in identify-
ing the behavior of an application using a runtime library [5]. By
manually performing correlation analysis over the collected coun-
ters, we found that the number of page faults (including major and

minor page faults4) shows the best correlation to the performance
improvement.

Figure 11(a) shows the throughput trend of RBTree on the 2-
way SMP system as the number of threads increases. We chose it
for our further analysis as ATS shows the most noticeable perfor-
mance gain. Figure 11(b) shows the numbers of page faults as the
sampling sequence increases. The figure has been flipped against
x-axis to show the similarity of the trend to Figure 11(a). The SAR
counter sampling frequency was not perfectly synchronized with
the thread count increase. Nonetheless, these two graphs show that
the performance improvement of ATS has close correlation to the
reduction of page faults.

We attribute this to our scheduling scheme reducing the number
of transactions that start execution. When there are more transac-

4Major faults are those faults that actually end up loading a mem-
ory page from disk. Minor faults are those faults that only miss in
the OS frame cache.

tions, they tend to allocate more pages. Especially in Linux where
page frame is managed on a per-CPU basis [4], when some of those
transactions are aborted, pages that were brought in without con-
tributing to the overall progress would adversely pollute the per-
CPU page frame cache [4]. By reducing the number of transac-
tions dispatched, ATS increases the hit rate of page frame cache,
which in turn leads to better performance. This also explains the
lower performance improvements of ATS on the 8-way SMP sys-
tem when compared to the 2-way SMP system, since the increased
number of processors — hence the number of per-CPU page frame
caches — tend to increase page frame cache locality.

One could argue why someone would want to run a TM system
in such an oversubscribed configuration. Unlike HTM systems, one
of the key virtues of STM systems was to provide virtualized trans-
actions that can survive context switches. Therefore, for an STM
system, performance results for the oversubscribed configuration
are equally important to those of the undersubscribed configura-
tion. Many studies report the performance results of STM systems
under an oversubscribed configuration [14, 23, 24, 25].

More specifically, there are two likely scenarios where a user
might launch more threads than there are in the system. First, we
can never assume that the end-user will dedicate the entire system
to execute a single TM workload. For a dynamic scenario where
multiple workloads are running in the system, a user cannot pre-
determine the correct number of threads to execute. Second, un-
der the strict nested transaction model [20] a transaction can spawn
multiple concurrent child transactions. Therefore, a TM implemen-
tation should not pose any upper bounds on the number of threads.
These two scenarios will be prevalent once TM systems get de-
ployed. Under such situation, ATS would act as a safety net to
provide a reliable QoS on the overall system throughput.

176

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Thread Count

T
ra

n
s
a

c
ti
o

n
s
 /

 s
e

c

RSTM + sched

RSTM

(a) Performance over Increasing Threads

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sample Sequence

-1
 *

 P
a

g
e

 F
a

u
lt
s
 /

 s
e

c

RSTM + sched

RSTM

(b) Page Fault Trend over Sample Se-
quence

Figure 11: Effect of Page Faults on Performance (2-way SMP)

4.2.4 Tuning the α Value Dynamically
Due to the space limitation, until now we have only shown the

experimental results with the best performing α-values. However,
throughout our experiments the value of α played a significant role
in determining the overall ATS performance. In this section we
discuss how to adapt the α-value automatically for performance
given an application’s dynamic behavior.

Recall from Section 2.1 that the contention intensity is com-
prised of two parts: past history and current contention. The past
history and the current contention act as two different conflict pre-
dictors, while the α-value determining which predictor to weigh
more. By applying competitive learning between these two predic-
tors, the α-value can be adjusted automatically. In this scheme, pe-
nalizing one predictor will reward the other. The following pseudo-
code describes the algorithm:

if (abort == true) {
if (current_contention == 0) {

// penalize current contention
alpha += Scheduler::DELTA;

}
if (past_history <= Scheduler::THRESHOLD) {

// penalize past history
alpha -= Scheduler::DELTA;

}
// clip alpha value
alpha = (alpha < 0) ? 0 : alpha;
alpha = (alpha > 1) ? 1 : alpha;

}
current_contention = abort ? 1 : 0;
past_history = alpha * past_history +

(1 - alpha) * current_contention;

This algorithm adjusts the α-value only when an abort has mate-
rialized due to a misprediction. Upon each abort, α is adjusted by
a step function to penalize the predictor that mispredicted. Penaliz-
ing the current contention rewards the past history, and vice versa,
but the α-value does not change when both predictors mispredict.

Figure 12 shows the result of applying the above algorithm to the
ATS-enabled RSTM. All the performance results were measured
with the same 5 microbenchmarks on the 2-way SMP machine. We
specifically chose this 2-way configuration since ATS showed the
most sensitivity over the α-value.

Each line in the figure represents the harmonic mean of the rel-
ative throughput at a particular α configuration. Three of the lines
represent the α-values previously used for the sensitivity analysis:
0.3, 0.5, and 0.7. The other implemented the above algorithm with
α initially set to 0.5, and the constant adjustment set to 0.1.

0 5 10 15 20 25 30

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

Thread Count

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

alpha=0.3
alpha=0.5
alpha=0.7
adapt

Figure 12: Automatic Tuning of the α Value (2-way SMP)

Although α was initially set to 0.5, we can see that the adaptive
scheme more closely follows the performance of α = 0.3, which
is the best setting among the three constant α-values. We also ob-
served that no matter the initialization value, α converged to 0.4
for most of the workloads. With this training technique, the ATS
scheduler will be able to adapt dynamically to maximize transac-
tion throughput based on the online workload behavior observed.

5. RELATED WORK
TM [11, 12] is one kind of approach to maximize parallel perfor-

mance by speculative execution. Other approaches utilizing specu-
lation also include Rajwar and Goodman’s speculative lock elision
[21] and speculative synchronization from Martínez and Torrel-
las [16]. Nonetheless, speculative methods potentially suffer from
backfire if speculation fails frequently. Our paper minimizes this
negative effect on TM systems.

Other approaches to maximize the performance of TM systems
include contention managers [10, 23]. Contention managers try to
maximize the performance by effectively handling the contention
after it has been detected. Hardware support to utilize this infor-
mation has also been discussed [29]. Rather than to take action
after the contention has been detected, our method fundamentally
reduces the contention itself. Bai et al. [2] also propose a different
method to reduce the contention itself. Nonetheless, the approach
is limited in that it requires the Java executor framework, and it is
only applicable to dictionary-based structures. ATS is more closely
related to admission control found in an OS [27]. Under admission
control, an OS can delay the admission of the work until the system
utilization subsides below some threshold.

Previously proposed retry construct [8] is also similar to ATS
in a sense that it delays the resume of a read transaction until a
value in its read set changes. However, retry is more of a lan-
guage construct for transactional synchronization, not meant to be

177

used as a performance optimization feature. Moreover, the con-
struct does not specify in which order retried transactions should
resume. We suspect that the resume order would have significant
impact on workload performance, and in that case our scheduler
could be utilized to impose ordering on the retrying transactions.

6. CONCLUSION
In this paper, we propose the concept of adaptive transaction

scheduling, called ATS, that addresses performance issues caused
by excessive transactions in both hardware transactional memory
and software transactional memory systems. With the runtime par-
allelism feedback obtained from the contention intensity detection
mechanism, we can significantly increase transaction effectiveness
for workloads that lack parallelism due to high contention. Dif-
fering from a contention manager that manages contention after it
has been detected, our ATS proactively reduces contention itself
upon transaction scheduling. In our experiments, we show that our
ATS scheme is a complementary technique that delivers additional
performance on top of a contention manager.

Based on this notion, we demonstrated a very low-cost adaptive
transaction scheduler. In this scheme, the number of concurrent
transactions are adaptively adjusted by dynamically controlling the
execution point of a transaction to maximally exploit the paral-
lelism inherent within a given program phase. Through our case
study, we have shown that our scheduler not only guarantees that an
ATS-enabled HTM system can perform better than approaches us-
ing single global lock, but also significantly improves performance
for both generic HTM and STM systems. In our experiments, the
maximum performance speedup on an HTM system reaches 1.97x.
The relative performance speedup’s on STM are from 1.3x to 1.5x
while the speedup of the peak performance is 5.9x.

7. ACKNOWLEDGMENTS
We would like to thank Kevin Moore, Josh Fryman, and sev-

eral anonymous reviewers for their constructive input to this re-
search. This work was supported in part by an NSF CAREER
Award (CNS-0644096).

8. REFERENCES
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.

Leiserson, and S. Lie. Unbounded transactional memory. In
HPCA-11, February 2005.

[2] T. Bai, X. Shen, C. Zhang, W. N. Scherer, III, C. Ding, and
M. L. Scott. A Key-based Adaptive Transactional Memory
Executor. Technical Report URCS TR 909, University of
Rochester, December 2006.

[3] C. Blundell, J. Devietti, E. C. Lewis, and M. Martin. Making
the fast case common and the uncommon case simple in
unbounded transactional memory. In ISCA-34, 2007.

[4] D. P. Bovet and M. Cesati. Understanding the Linux Kernel,
3rd Edition. O’Reilly, November 2005.

[5] K. Chow, R. Morin, and K. Shiv. Enterprise Java
performance: Best practices. In Intel Technology Journal,
volume 7, issue 1, pages 32–46, February 2003.

[6] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson,
M. V. Biesbrouck, G. Pokam, B. Calder, and O. Colavin.
Unbounded page-based transactional memory. In
ASPLOS-12, pages 347–358, 2006.

[7] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and
consistency. In ISCA-31, pages 102 – 113, June 2004.

[8] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy.
Composable memory transactions. In PPoPP’05.

[9] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In
ICDCS-23, page 522, 2003.

[10] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III.
Software transactional memory for dynamic-sized data
structures. In PODC 2003, pages 92 – 101.

[11] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA-20, pages 289 – 300. May 1993.

[12] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool, 2006.

[13] V. Marathe, W. Scherer III, and M. Scott. Adaptive software
transactional memory. In DISC-2005.

[14] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer, III, and M. L. Scott. Lowering
the overhead of nonblocking software transactional memory.
In TRANSACT, June 2006.

[15] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. In Computer
Architecture News, September 2005.

[16] J. Martínez and J. Torrellas. Speculative synchronization:
Programmability and performance for parallel codes. In
IEEE Micro Top Picks from Microarchitecture Conferences,
2003.

[17] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
semantics for practical transactional memory. In ISCA-33,
pages 53–65, 2006.

[18] C. C. Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In ISCA-34, pages 69–80, 2007.

[19] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In
HPCA-12, pages 254 – 265, February 2006.

[20] J. E. B. Moss and A. L. Hosking. Nested transactional
memory: Model and preliminary architecture sketches. In
SCOOL’05.

[21] R. Rajwar and J. R. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In
MICRO-34, pages 294–305, 2001.

[22] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In ISCA-32, pages 494 – 505, June 2005.

[23] W. N. Scherer, III and M. L. Scott. Advanced contention
management for dynamic software transactional memory. In
PODC 2005, pages 240 – 248.

[24] W. N. Scherer, III and M. L. Scott. Contention management
in dynamic software transactional memory. In Proceedings
of the 2004 ACM PODC Workshop on Concurrency and
Synchronization in Java Programs, 2004.

[25] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J. Marathe.
Delaunay triangulation with transactions and barriers. In
IISWC-2007, pages 107–113.

[26] A. Shriraman, M. F. Spear, H. Hossain, V. J. Marathe,
S. Dwarkadas, and M. L. Scott. An integrated
hardware-software approach to flexible transactional
memory. In ISCA-34, pages 104–115, 2007.

[27] J. A. Stankovic. Admission control, reservation, and
reflection in operating systems. IEEE Bulletin of Technical
Committee on Operating Systems and Application
Environments (TCOS), 10(2), 1998.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In ISCA-22, pages 24–36,
1995.

[29] C. Zilles and L. Baugh. Extending hardware transactional
memory to support nonbusy waiting and nontransactional
actions. In TRANSACT, 2006.

178

